人教版七年级下册数学 列二元一次方程组解决实际应用题专题练习题(无答案)

合集下载

人教版七年级下册数学二元一次方程组应用题(和差倍分问题)

人教版七年级下册数学二元一次方程组应用题(和差倍分问题)

人教版七年级下册数学二元一次方程组应用题(和差倍分问题)1.第一小组的同学分铅笔若干支,若每人各取5支,则还剩4支;若有1人只取2支,则其余每人恰好6支.问第一小组同学有多少人?铅笔有多少只?2.甲仓库存粮比乙仓库存粮少5吨,现从甲仓库运出存粮30吨,从乙仓库运出存粮的40%,这时乙仓库所余粮食是甲仓库所余粮食的2倍,问甲、乙两仓库原各存粮多少吨?3.用一根绳子环绕一棵大树.若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子又少了3尺.这根绳子有多长?环绕大树一周需要多少尺?4.某中学为了丰富学生的课外体育活动,准备购买一批新的篮球和足球总共160个.已知购买篮球的数量比足球的数量的2倍还多10个,求购买的篮球和足球的数量分别是多少个5.高台县为加快新农村建设,建设美丽乡村,对A、B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;巷道镇建设了2个A类村庄和5个B类村庄共投入资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)骆驼城镇改建3个A类美丽村庄和6个B类美丽村庄共需资金多少万元?6.学校开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品.若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.求甲、乙两种笔记本的单价各是多少元?7.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.求甲、乙两种办公桌每张各多少元?8.新冠肺炎疫情期间,佩戴口罩是做好个人防护的重要举措。

小明家先后两次在同一电商平台以相同的单价邮购买了A、B两种型号的口罩,第一次购买20个A型口罩,30个B型日单,共花费190元;第二次购买30个A型口罩,20个B型口罩,共花费160元,求A、B两种型号口罩的单价.9.李欣同学昨天在文具店买了2本笔记本和4支水笔,共花了14元;王凯以同样的价格买了1本笔记本和3支水笔,共花了9元;问笔记本和水笔的单价各是多少元?10.某停车场的收费标准如下:小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元,中、小型汽车各有多少辆?11.列一元一次方程解应用题:某仓库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个仓库中的57,问每个仓库各有多少吨粮食?12.养牛场原有的大牛和小牛一天约用饮料475kg;一周后购进一批大牛和小牛后,这时大牛数量增加为原来的3倍,小牛数量增加为原来的2倍,一天约用饮料1350kg,已知大牛一天的饮料需20kg,小牛一天的饮料需5kg,则养牛场原有大牛和小牛数量各是多少?13.我校去年有学生3100名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%.问该校去年有寄宿学生与走读学生各多少名?14.《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从树上飞下去一只,则树上、树下的鸽子就一样多了.”地上的鸽子对树上的鸽子说:“若从地上飞到树上一支鸽子,则树上鸽子是地上的3倍.”你知道树上,树下各有多少只鸽子吗?15.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍.如果我给你一袋,我们才恰好驮的一样多!”求驴子和骡子原来所驮货物分别为多少袋?16.体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元,求商店购进篮球,排球各多少个?17.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.18.在某超市小明买了1千克甲种糖果和2千克乙种糖果,共付38元;小强买了2千克甲种糖果和0.5千克乙种糖果,共付27元.(1)求该超市甲、乙两种糖果每千克各需多少元?(2)某顾客到该超市购买甲、乙两种糖果共20千克混合,欲使总价不超过240元,问该顾客混合的糖果中甲种糖果最少多少千克?19.南充某制衣厂现有22名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作这种衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子配套,一件衬衫配两条裤子,则应各安排多少人分别制作衬衫和裤子?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,在(1)的条件下,求该厂每天制作衬衫和裤子所获得的利润?20.某农户原有15头大牛和5头小牛,每天约用饲料325kg;两周后,由于经济效益好,该农户决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg.问每头大牛和每头小牛1天各需多少饲料?。

初一下册数学二元一次方程组应用题

初一下册数学二元一次方程组应用题

初一下册数学二元一次方程组应用题初一下册数学二元一次方程组应用题人生的道路很长,但关键的却往往只有几步,而初中就是这关键几步中的第一步。

今天应届毕业生店铺为大家搜索整理了初一下册数学二元一次方程组应用题,希望对大家学习有所帮助。

初一下册数学二元一次方程组应用题篇11.一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?2. 某厂买进甲、乙两种材料共56吨,用去9860元。

若甲种材料每吨190元,乙种材料每吨160元,则两种材料各买多少吨?3. 某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问某人买的甲、乙两股票各是多少元?4.某运输公司有大小两种货车,2辆大车和3辆小车可运货15.5吨,5辆大车和6 辆小车可运货35吨,客户王某有货52吨,要求一次性用数量相等的大小货车运出,问需用大、小货车各多少辆?5.通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟。

求通讯员到达某地的路程是多少千米?和原定的时间为多少小时?6.若干学生住宿,若每间住4人则余20人,若每间住8人,则有一间不空也不满,问宿舍几间,学生多少人?7.有甲乙两种债券年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?8. 种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。

3种包装的饮料每瓶各多少元?9.某班同学去18千米的北山郊游。

只有一辆汽车,需分两组,甲组先乘车、乙组步行。

车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。

已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离。

10.一级学生去饭堂开会,如果每4人共坐一张长凳,则有28人没有位置坐,如果6人共坐一张长凳,求初一级学生人数及长凳数.11.两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度。

人教版七年级下册数学实际问题与二元一次方程组(销售问题)应用题训练

人教版七年级下册数学实际问题与二元一次方程组(销售问题)应用题训练

人教版七年级下册数学8.3实际问题与二元一次方程组(销售问题)训练1.在水果店里,小李买了5kg苹果、3kg梨,老板少要1元,收了90元;老王买了12kg苹果、6kg梨,老板按九折收钱,收了189元,该店苹果和梨的单价各是多少元?2.七(3)班的生活委员第一学期为班级买了3个垃圾桶和5个拖把,共用了55元,第二学期买了4个垃圾桶和6个拖把,其中垃圾桶价格是第一学期价格的8折,拖把价格不变,共用了64元.求第一学期购买垃圾桶和拖把的单价分别是多少?3.元旦期间银座商城用36000元购进了甲、乙两种商品,其中甲种商品的进价为120元/件,售价为130元/件;乙种商品的进价为100元/件,售价为150元/件,当两种商品销售完后共获利润6000元,求甲、乙两种商品各购进多少件?4.元旦期间,甲、乙两个商场开展促销活动,甲商场实行“全场52折”的优惠;乙商场实行“满200元减100元”的优惠(如:某顾客购物320元,他需付款220元,购物420元,他也只需付款220元).(1)张丽想买商场标价都是850元的同一套衣服,她应该选择哪家商场?(2)李明发现在甲、乙商场购买一样标价六百多元的某商品,最后付款额是一样的,请问此商品的标价是多少元?(3)丙商场推出“先打折”,再“满200元减100元”的活动.李明发现在丙商场购买(2)中的商品,虽然标价一样但比在乙商场要多付25元钱,问丙商场先打了多少折后再参加活动?5.某彩电厂为响应国家家电下乡号召,计划生产A、B两种型号的彩电,两种型号的彩电生产成本和售价分别为:A型每台成本800元,售价1000元,B型每台成本1000元,售价1300元,经预算,彩电厂若投入成本64000元,两种彩电全部出售后,可获利18000元.(1)请问彩电厂生产A、B两种型号的彩电各多少台?(2)彩电厂计划将这两种彩电售出后获得的全部利润购买两种物品:体育器材和实验设备支援某希望小学.若体育器材每套6000元,实验设备每套3000元,把钱全部用尽且两种物品都购买的情况下,请求出所有的购买方案.6.某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A种原料和2吨B种原料,生产每件乙产品需要3吨A种原料和1吨B种原料,该厂现有A种原料120吨,B种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)去年每件甲产品售价为3万元,每件乙产品售价为5万元,根据市场调研情况,今年每件乙产品售价比去年下降10%,问每件甲产品应涨价多少万元,才能使甲乙产品全部出售后的总销售额达到144万元?7.张伯用100元钱从蔬菜批发市场批发了西红柿和豆角共70千克到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:(1)张伯当天批发西红柿和豆角各多少千克?(2)张伯当天卖完这些西红柿和豆角能赚多少钱?8.某电器商场销售进价分别为120元,190元的A,B两种型号的电风扇,如下表所示是近两周的销售情况:(1)求A、B两种型号的电风扇的销售单价;(2)若商场再购进两种型号的电风扇共120台,并且全部销售完;该商场能否实现这120台电风扇的利润为6800元的目标?若能,请给出相应的采购方案,若不能,请说明理由.9.一个电器超市购进A、B两种型号的电风扇进行销售,已知购进2台A型号和3台B型号共用910元,购进3台A型号比购进2台B型号多用260元.(1)求A、B两种型号的电风扇每台进价分别是多少元?(2)超市根据市场需求,决定购进这两种型号的电风扇共30台进行销售,A种型号电风扇每台售价260元,B 种型号电风扇每件售价190元,若超市购进的两种电风扇全部售出后,总获利是1400元,求该超市本次购进A、B两种型号的电风扇各多少台?10.东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?11.为响应政府“阳光体育”号召,西湖集团准备投入一部分资金,在西湖公园修建一批室外的乒乓球场和羽毛球场供市民免费使用.已知修建1个乒乓球场和2个羽毛球场共需要30万元,修建2个乒乓球场和5个羽毛球场共需要71万元.(1)问修建1个乒乓球场和1个羽毛球场分别需要多少万元?(2)西湖集团计划修建这样的乒乓球场和羽毛球场共11个,且投入资金刚好为100万元,问可以修建多少个羽毛球场?。

人教版七年级数学第8章 二元一次方程组应用题期末复习(无答案)

人教版七年级数学第8章 二元一次方程组应用题期末复习(无答案)

二元一次方程组期末复习一、“和、差、倍、分”问题1.若甲、乙两库共存粮95吨,现从甲库运出存粮的32,从乙库运出存粮的40%,那么乙库所余粮食是甲库的2倍,问甲、乙两库原各在多少吨粮食?2.某厂第二车间人数比第一车间人数的45少30人,如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间人数的34,这两个车间各有多少人?3.据统计,记忆两种作物的单位面积产量的比是1:2,现要把一块长200m ,宽100米的长方形土地,分为两块小长方形土地,分别种植两种作物,怎样划分这块土地,使甲、乙两种作物的总产量的比是3:4?4.为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?二、“几何图形”问题1.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?2.如图所示,长方形ABCD 中放置9个形状、大小都相同的小长方形(尺寸如图),则图中阴影部分的面积是多少?3.小明在拼图时发现,用8个一样大的长方形恰好可以拼成一个大的长方形,如图(1)所示,小红看见了,说:“我来试一试!”结果小红七拼八凑,拼成了一个如图(2)所示的正方形,但中间留下了一个洞,恰好是边长为3cm 的小正方形。

则每个小正方形的长与宽分别是多少?↑↓60cm三、“配套”问题m木料可以做方桌的桌面50个或做桌腿300条,现有53m木料,1.一张方桌由1个桌面,4条桌腿组成,如果13那么用多少立方米做桌面,多少立方米木料做桌腿,做出的桌面和桌腿,恰好能配成方桌?能配成多少张方桌?2.某工厂接受了20天内生产1200台GH型电子产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成,工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置。

人教版七年级下数学8.2解二元一次方程组基础练习题(无答案)

人教版七年级下数学8.2解二元一次方程组基础练习题(无答案)

(1) ⎨ ⎧7x +5y = 3(2) ⎨= y (3) ⎨ 2 3解二元一次方程组基础练习肖老师知识点一:代入消元法解方程组:⎧ y = 2x - 3 ⎩3x + 2y =1⎩2x - y = -4⎧ x ⎪⎪⎩3x + 4y =18⎧ x + 5y = 6(4) ⎨⎩3x - 6y - 4 = 0知识点二:用加减法解方程组:⎧x - y = 3(1) ⎨⎩x + y =1⎧ 4x -3y = 0(2) ⎨⎩12x +3y = 8⎧ 4x -3y = 5(3) ⎨⎩4x + 6y =14 ⎧4x + y = 5(4) ⎨⎩3x - 2y =1(5) ⎨ ⎧ 3x - 2y = 7(6) ⎨⎧ x y (2)(化简后整体法) ⎨ ⎪2 + 3 = 2(4)(先化简) ⎨ ⎧ y +1 x + 2(5)(化简后整体法) ⎨ 4⎩ ⎩⎧5x + 4y = 6 ⎩2x +3y =1⎩2x +3y =17拓展训练:解下列方程:⎧ 3(y - 2) = x +1 (1)(先化简) ⎨⎩2(x -1) = 5y -8⎧4x -15y -17= 0 (3)(整体法) ⎨⎩6x - 25y - 23= 0⎪ = 3⎪ 2x -3y =1⎪ =2 3 ⎪3x + 4y =18⎧x y 13x y 3 ⎪ - = ⎩ 3 4 2⎧21x + 23y = 243 (6)(整体法) ⎨⎩23x + 21y = 241⎪5+4=2(7)先化简)6+7=1(8)可化简或整体法)((⎩y=1是方程2x+a y=5的解,则a=⎧2x-13y-23x+13y+2⎪-=0⎩54⎧3x-2y2x+3y⎪3x-2y2x+3y⎪-=5⎩67(9)(你懂的)(10)(先化简)(11)先化简)(12)整体法)综合训练:一.填空题1.在方程y=-3x-2中,若x=2,则y=_____.若y=2,则x=______;2.若方程2x-y=3写成用含x的式子表示y的形式:_________________;写成用含y的式子表示x的形式:___________________________;⎧x=23.已知⎨.⎧x=14.二元一次方程3x-my=4和mx+ny=3有一个公共解⎨,则⎩y=-11. 对于方程组 (1) ⎨ ,( 2) ⎨ ,( 3) ⎨1 ,( 4) ⎨ xy = -10 x + y = -2 x - y = 1 y 5B. 3.方程组 ⎨ 1 1 1 的解为()⎩B. ⎨ 3⎪⎩ 2⎪⎪ 2 ⎩ 4.已知 a , b 满足方程组 ⎨,则 a - b 的值为( )2a + b = 7 ⎩ ax + by = c⎧m=______,n=_____;5.已知 | a - b + 2 | + (b - 3)2 = 0 ,那么 ab = ______6.方程 3x+y=7 的正整数解为_____________二、选择题⎧ x + y = 3 ⎧ x = 2 ⎪ ⎧ x = 2 y ⎩ ⎩ ⎪ ⎩⎧ x + y = 5⎩, 是二元一次方程组的为()A.(1)和(2)B.(3)和(4)C.(1)和(3)D.(2)和(4)⎧ x = 22.若 ⎨是方程 kx - 2 y = 2 的一个解,则 k 等于( )⎩ y = 5A. 85 3 C .6D. -83⎧3x = 4 y ⎪⎪ 2 x - 3 y = 8⎧ x = 4 A. ⎨⎩ y = 3⎧ x = 2 ⎪ y = ⎧ 1 x = C . ⎨⎪ y = 3 ⎪ 8⎧ 1⎪ x = D. ⎨ 4⎪⎩ y = 0⎧a + 2b = 8⎩A.-1B.0C.1D.2 ⎧ x + y = 15.如果方程组 ⎨有唯一的一组解,那么 a ,b ,c 的值应当满足( ) A .a=1,c=1B .a ≠bC .a=b=1,c ≠1D .a=1,c ≠16.已知 x ,y 满足方程组 ⎨ x + m = 4⎩ y - 5 = m,则无论 m 取何值,x ,y 恒有关系式是( )A .x+y=1B .x+y=-1C .x+y=9D .x+y=9⎩y=2m-2,是方程组4x-3y=10的一组解,求m的值。

人教版2022-2023学年七年级下册数学期末复习专题:二元一次方程组的应用(方案问题) (2)

人教版2022-2023学年七年级下册数学期末复习专题:二元一次方程组的应用(方案问题) (2)

人教版2022-2023学年七年级下册数学期末复习专题二元一次方程组的应用(方案问题)原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?4.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200吨,如用新工艺,则废水排量比环保限制的最大量少100吨,新、旧工艺的废水量之比为2:5,两种工艺的废水量各是多少?5.列二元一次方程组解应用题:学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元,购买5个A奖品和4个B奖品共需210元.求A B,两种奖品的单价.6.某同学在A,B两家网店发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是492元,且随身听的单价比书包单价的3倍少108元.(1)求该同学看中的随身听和书包的单价各是多少元.(2)某一天恰好赶上商家促销,网店A所有商品打八折销售,网店B全场每购满100元减25元销售,怎样购买更省钱?写出必要的理由过程.7.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有36吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.8.抗击新冠肺炎疫情期间,全国上下万众一心为武汉捐赠物资.某物流公司运送捐赠物资,已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.(1)求1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)该物流公司现有31吨货物需要运送,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.若A型车每辆需租金100元/次,B型车每辆需租金120元/次,请你设计出所有租车方案并选出最省钱的租车方案,求出此时最少租车费.9.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A 型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元(1)求A B、两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?10.某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有运输方案并指出哪种运输方案费用最少.11.某汽车制造厂开发了一款新式电动汽车计划一年生产安装240辆,由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂抽调熟练工m名,再招聘()<<名新工人,使得招聘的新工人和n n010抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案? 12.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?13.小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.14.有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?15.某学校现有若干间学生宿舍,准备安排给若干名学生住宿.原计划每间住8人,则有10间宿舍无人居住.由于疫情防控需要,每间宿舍只能住5人,则有10人无法入住.问该校现有多少间学生宿舍?16.鹏程中学拟组织七年级部分师生赴滁州市琅琊山进行文学采风活动.下面是活动负责人李老师和小芳同学、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”(1)全部物资一次性运送可用甲型车8辆,乙型车5辆,丙型车辆.(2)若全部物资仅用甲、乙两种车型一次性运完,需运费9600元,求甲、乙两种车型各需多少辆?(3)若该公司打算用甲、乙、丙三种车型同时参与运送,已知车辆总数为14辆,(1)甲、乙两种货车每辆可装多少吨货物?(2)若某货主共有20吨货物,计划租用该公司的货车,正好(每辆货车都满载)把这批货物运完,则该货主有________种租车方案?(3)王先生要租用该公可的甲、乙两种货车送一批货,如果租用甲种货车数量比乙种货车数量多1辆,而乙种货车每辆的运费是甲种货车的1.4倍,结果甲种货车共付运费800元,乙种货车共付运费980元,试求此次甲、乙两种货车每辆各需运费多少元?答案1.(1)每辆甲种货车能装货4吨,每辆乙种货车能装货3吨(2)方案1:租用3辆甲种货车、11辆乙种货车;方案2:租用6辆甲种货车、7辆乙种货车;方案3:租用9辆甲种货车、3辆乙种货车2.(1)A种产品4件,B种产品3件;(2)利润是12万元.3.(1)初一(2)班共有53人或59人;(2)两个一起买票更省钱,比原计划节省298元或290元4.新、旧工艺的废水排量分别为200吨和500吨5.A奖品单价30元,B奖品单价15元.6.(1)随身听单价为342元,书包单价为150元(2)在A购买书包,在B购买随身听更省钱,费用为387元7.(1)1辆A型车和1辆B型车都装满货物一次可分别运货3吨,4吨;(2)故共有四种租车方案,分别为:①A型车0辆,B型车9辆;②A型车4辆,B 型车6辆;③A型车8辆,B型车3辆;④A型车12辆,B型车0辆.8.(1)1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨;(2)共有3种租车方案:方案一,A型车9辆,B型车1辆;方案二,A型车5辆,B型车4辆;方案三,A型车1辆,B型车7辆,最省钱的租车方案是A型车1辆,B型车7辆,最少租车费为940元9.(1)A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元;(2)方案一:购进A型车6辆,B型车5辆;方案二:购进A型车4辆,B型车10辆;方案三:购进A型车2辆,B型车15辆;(3)购进A型车2辆,B型车15辆获利最大,最大利润是91000元10.(1)1辆A货车和1辆B货车一次可以分别运货20吨和15吨;(2)共有3种租车方案,方案1:租用A型车8辆,B型车2辆;方案2:租用A型车5辆,B型车6辆;方案3:租用A型车2辆,B型车10辆;租用A型车8辆,B 型车2辆最少.11.(1)每名熟练工每月可以安装4辆电动汽车,新工人每月分别安装2辆电动汽车;(2)12.(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.13.到甲超市购买这种cc饮料便宜.14.24.5吨15.该校现有30间学生宿舍16.(1)平安客运公司60座和45座的客车每辆每天的租金分别是1000元,800元.(2)按小明提出的租车方案,七年级师生到该公司租车一天,共需租金6000元.(3)租用5辆60座和1辆45座的客车,此时租车费为5800元.17.(1)建设一个A类美丽村庄需120万元,建设一个B类美丽村庄需180万元;(2)共需资金1080万元.18.(1)4;(2)甲种车型需8辆,乙种车型需10辆;(3)甲车2辆,乙车5辆,丙车7辆,此时的总运费为8800元.19.(1)1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车;②最省钱的租车方案是租用7辆A型车,最少租车费是840元20.(1)甲种货车每辆可装2吨货物,乙种货车每辆可装3吨货物;(2)4种租车方案;(3)甲种货车每辆需运费100元,乙种货车每辆需运费140元。

人教七年级数学下册-实际问题与二元一次方程组(附习题)


探究新知
知识点 和差倍分问题
养牛场原有 30 头大牛和 15 头小牛,1 天约用 饲料 675 kg;一周后又购进 12 头大牛和 5 头小牛, 这时 1 天约用饲料 940 kg.饲养员李大叔估计每只 大牛 1 天约需饲料 18~20 kg,每只小牛 1 天约需 饲料 7 ~8 kg. 你能否通过计算检验他的估计吗?
是否正确的良好习惯.
情景导入
上节课我们学习了运用方程组 解决一些实际问题,这节课我们继 续学习建立二元一次方程组的数学 模型解应用题.
探究新知
知识点 几何图形问题
据统计资料,甲、乙两种作物的单位面积产量 的比是 1:2.现要把一块长 200 m、宽 100 m 的长 方形土地,分为两块小长方形土地,分别种植这两 种作物.怎样划分这块土地,使甲、乙两种作物的 总产量的比是 3:4?
解:设这间会议室共有座位 x 排,该校七年级 有 y 名学生,根据题意,得
12x+11=y 解得: x=12
14x-13=y
y=155
答:这间会议室共有座位 12 排,该校七年级有 155 名学生.
基础巩固
随堂演练
1.现用 190 张铁皮做盒子,每张铁皮可制 8 个 盒身或 22 个盒底,而一个盒身与两个盒底配成一个
综合运用
4.有大小两种货车,2 辆大货车与 3 辆小货车 一次可以运货 15.5 吨,5 辆大货车与 6 辆小货车 一次可以运货 35 吨. 求 3 辆大货车与 5 辆小货车 一次可以运货多少吨?
解:设大车一次可以运货 x 吨,小车一次可以运货
y 吨. 由题意,得 2x 3 y 15.5,①
问题1 要求“这批产品的销售款比原料费与运 输费的和多多少元?”我们必须知道什么?

人教版七年级数学下册第八章《二元一次方程组》实际应用单元解答专项(三)

人教版七年级数学下册第八章《二元一次方程组》实际应用单元解答专项(三)1.一方有难,八方支援.“新冠肺炎”疫情来袭,除了医务人员主动请缨走向抗疫前线,众多企业也伸出援助之手,某公司用甲、乙两种货车向武汉运送爱心物资,两次满载的运输情况如表:甲种货车(辆)乙种货车(辆)总量(吨)第一次 4 5 31第二次 3 6 30(1)甲、乙两种货车每辆分别能装货多少吨?(2)现有45吨物资需要再次运往武汉,准备同时租用这两种货车,每辆均全部装满货物,问有哪几种租车方案?2.“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?3.某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),已知每辆汽车可装运甲种家电20台,乙种家电15台.(1)若用8辆汽车装运甲、乙两种家电共150台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?(列二元一次方程组解应用题)(2)如果每台甲种家电的利润是100元,每台乙种家电的利润是200元,那么该公司售完这150台家电后的总利润是多少?4.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.5.小敏和小强参加社会实践,要用白板纸做长方体包装盒,准备把所有白板纸分成两部分,一部分做盒身,另一部分做盒底,已知每张白板纸可以做盒身2个,或者做盒底3个,且一个盒身和两个盒底恰好做成一个包装盒.(1)现有12张白板纸,问能否使做成的盒身与盒底正好配套,为什么?(2)在(1)条件下,小敏和小强经过尝试发现,将一张白板纸经过适当套裁就可以裁出一个盒身和一个盒底,请把这种套裁方式综合考虑,探究能否使裁出的盒身与盒底正好配套,若能,请求出最多可做包装盒的个数;否则说明理由.6.新冠肺炎疫情期间,佩戴口罩是做好个人防护的重要举措.小明家先后两次在同一电商平台以相同的单价免邮购买了A、B两种型号的口罩.第一次购买20个A型口罩,30个B型口罩,共花费190元;第二次购买30个A型口罩,20个B型口罩,共花费160元.(1)求A、B两种型号口罩的单价;(2)“五一”期间,该电商平台举行促销活动,小明发现同样花费160元购买B型口罩,以活动价购买可以比原价多买8个,求“五一”期间B型口罩的活动价.7.为保护环境的需要,电动汽车已经成为未来汽车生产和销售的大趋势,市场上各种品牌的电动汽车如雨后春笋般涌现出来.某电动汽车经销商负责销售某种品牌的A型和B型电动汽车,今年9月份共售出该品牌汽车的A型和B型电动汽车共413台,受国庆黄金周的影响,10月份该经销商售出这两种型号的汽车达到510台,其中A型和B型汽车的销量分别比9月份增长25%和20%.(1)今年10月份,该经销商销售的A型和B型汽车分别是多少台?(2)该品牌电动汽车生产厂家为了占领市场提高销量,决定对该经销商采取销售奖励活动,若A型电动汽车每台售价为10万元,B型电动汽车每台售价为12万元,奖励办法是:每销售一台A型电动汽车按每台汽车售价的a%给予奖励,每销售一台B型汽车按每台汽车售价的(a+0.2)%给予奖励,奖励办法出台后的11月份,A型汽车的销量比10月份增加了10a%,而B型汽车受到某问题零件召回的影响,销售量比10月份减少了20a%,如果11月份该经销商共获得奖励金额为355680元,求a的值.【参考学习:我们以后会学到这样的运算:①a(b+c)=ab+ac,即单项式乘以多项式就是用单项式乘以多项式的每一项,再把所得结果相加;②(a+b)(m+n)=am+an+bm+bn,即多项式乘以多项式就是用一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加.此题在解方程时要用到这样的运算哦!】8.由于武汉“新冠病毒疫情”严重,医疗物资紧缺,乐山市某公司决定捐赠A、B两种型号的医疗物品,这两种医疗物品的体积和质量如表所示:体积(m3/件)质量(吨/件)A型医疗物品0.8 0.5B型医疗物品 2 1(1)已知医疗物品A、B,体积一共是20m3,质量一共是10.5吨,求A、B两种型号的医疗物品各有多少件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元;要将(1)中的物品一次或分批运输到武汉,该公司应如何选择运送、付费方式,才能使运费最少?并求出该方式下的运费.9.某景点的门票价格如下表:购票人数(人)1~50 51~99 100以上(含100)门票单价(元)48 45 42(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?10.有一片牧场原有的草量为akg,草每天都匀速地生长,这片牧场每天牧草的生长量都为mkg.若在其上放牧24头牛,则6天吃完牧草.若放牧21头牛,则8天吃完牧草.若每头牛每天吃草的量也都是相等的,设每头牛每天吃草的量为xkg.问:(1)放牧24头牛,6天所吃的牧草量用含a,m的代数式表示为kg;放牧21头牛,8天所吃的牧草量用含a,m的代数式表示为kg;(2)试用x表示a,m;(3)若放牧16头牛,则几天可以吃完牧草?11.某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)12.丹东的草莓久负盛名,当下正是草莓的销售旺季,某日,我市一水果店以3650元购进两种不同品种的草莓,若按标价出售可获毛利润1600元(毛利润=售价﹣进价),这两种草莓的进价、标价如下表所示:价格/品种A品种B品种进价(元/千克)35 45标价(元/千克)50 65求这两个品种的草莓各购进多少千克.13.若买3根跳绳和6个毽子共72元;买1根跳绳和5个毽子共36元.(1)跳绳、毽子的单价各是多少元?(2)元旦促销期间,所有商品按同样的折数打折销售,买10根跳绳和10个毽子只需180元,问商品按原价的几折销售?14.甲、乙两个拖拉机厂,按计划每月共生产拖拉机460台,由于两厂都改进了技术,本月甲厂完成计划的110%,乙厂本月完成计划的115%,两厂共生产拖拉机519台,本月两厂各超额生产拖拉机多少台?15.“元旦”期间,某校组织开展“班级歌咏比赛”,甲、乙班共有学生102人(其中甲班人数多于乙班人数,且甲班人数不够100人)报名统一购买服装参加演出.下面是某服装厂给出的演出服装的价格表购买服装的套数1~50 51~100 ≥101每套服装的价格/元70 60 50如果两班分别单独购买服装,总共要付款6580元(1)如果甲、乙两班联合起来购买服装,那么比各自购买服装总共可以节省多少钱?(2)甲、乙班各有多少学生报名参加比赛?(3)如果甲班有5名学生因特殊情况不能参加演出,请你为两班设计一种省钱的购买服装方案.。

人教版七年级下册数学二元一次方程组应用题(工程问题)

人教版七年级下册数学二元一次方程组应用题(工程问题)1.为了打造环湖风光带,现有一段长为88米的河道清淤任务,由甲、乙两个工程队先后接力完成.甲工程队每天清理10米,乙工程队每天清理8米,共用时10天,则甲乙工程队各清理了几天?2.某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?3.某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售.该公司的加工能力是:每天可以精加工6吨或者粗加工16吨.现计划用15天完成加工任务.(1)该公司应安排几天精加工,几天粗加工,才能按期完成任务?(2)如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么照此安排,该公司出售这些加工后的蔬菜共获利多少元?4.要修一段420千米长的公路.甲工程队先干2天乙工程队加入,两队再合干2天完成任务;如果乙队先干2天,甲、乙两队再合干3天完成任务,问甲、乙两个工程队每天各能修路多少千米?5.甲、乙两人共同制作--批零件,甲一共制作了2000个零件,乙比甲少制作了1 10,已知甲的工作效率比乙高25%,完成任务的时间比乙少5天,求甲、乙各花了多少时间完成任务.6.有一段长为180米的道路工程,由A,B两个工程队接力完成,A工程队每天完成15米,B工程队每天完成20米,共用时10天, 求A,B两工程队各完成多少米.7.李师傅加工1个甲种零件和1个乙种零件的时间是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟求李师傅加工2个甲种零件和4个乙种零件共需多少分钟.8.一项工程甲单独做需12天完成,乙单独做需18天完成,计划甲先做若干天后离去,再由乙完成,实际上甲只做了计划时间的一半便因事离去,然后由乙单独承担,而乙完成任务的时间恰好是原计划时间的2倍,求原计划甲、乙各做多少天?9.一家商铺进行维修,若请甲、乙两名工人同时施工,6天可以完成,共需支付两人工资5700元,若先请甲工人单独做4天,再请乙工人单独做7天也可完成,共需付给两人工资5450元()1甲、乙工人单独工作一天,商铺应分别支付多少工资?()2单独请哪名工人完成,商铺支付维修费用较少?10.某超市的地面需要铺设地砖,经询问得知:若请甲、乙两个工程队同时施工,8天可以完成,需付两工程队的费用共8000元;若先请甲工程队单独做6天,再请乙工程队单独做,则乙工程队12天可以完成,需付两工程队的费用共7920元.问:(1)甲、乙两工程队单独工作一天,超市应各付多少元?(2)单独请哪个工程队,超市所付费用较少?11.蕲春新长途客运站准备在七一前建成营运,后期工程若请甲乙两个工程队同时施工,8 天可以完工,需付两工程队施工费用7040 元;若先请甲工程队单独施工 6 天,再请乙工程队单独施工12 天可以完工,需付两工程队施工费用6960 元.(1)甲、乙两工程队施工一天,应各付施工费用多少元?(2)若想付费用较少,选择哪个工程队?若想尽早完工,选择哪个工程队?12.修建某一建筑时,若请甲、乙两个工程队同时施工,5天可以完成,需付两队费用共3 500元;若先请甲队单独做3天,再请乙队单独做6天可以完成,需付两队费用共3 300元.问:(1)甲、乙两队每天的费用各为多少?(2)若单独请某队完成工程,则单独请哪队施工费用较少?13.甲乙两人检修一条长270米的自来水管道,甲每小时比乙多检修10米,两人从管道两端同时开始检修,3小时完成任务,甲、乙两人每小时各检修多少米?14.一家商店准备进行装修,若请甲、乙两个装修队同时施工,8天完成,需付两队共3520元费用;若先请甲队单独做6天,再请乙队单独做12天可以完成,需付两队共3480元费用.(1)甲、乙两队工作一天,商场各应付多少元?(2)单独请哪个队装修,商场所付费用最少?15.太原市积极开展“举全市之力,创建文明城市”活动,为2020年进入全国文明城市行列莫定基础.某小区物业对面积为3600平方米的区域进行了绿化,整项工程由甲、乙两个林队先后接力完成,甲园林队每天绿化200平方米,乙园林队每天绿化160平方米,两队共用21天.求甲乙两个园林队在这项绿化工程中分别工作了多少天.16.一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算,若租两车合运,10天可以完成任务,若甲车的效率是乙车效率的2倍.()1甲、乙两车单独完成任务分别需要多少天?()2已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.17.在凉山州“精准扶贫”工作中,甲、乙两个工程队先后接力为某扶贫村庄修建一条2100米长的公路袁甲队每天修建150米,乙队每天修建250米,一共用10天完成援求甲、乙工程队各修建了多少天?18.疫情期间某工厂紧急生产某种消毒液,有甲、乙两套不同的生产设备.若甲设备生产1天,乙设备生产6天,共生产了2 000吨消毒液;若同时使用甲、乙两种设备生产4天,也能生产2 000吨消毒液.求甲、乙设备每天各能生产多少吨消毒液?19.某服装厂接到生产一批防护服的任务,甲车间单独完成需15天,甲车间生产2天后,由于疫情紧急,需提前5天完成任务,乙车间加入共同生产正好如期完成(1)乙车间单独完成这批防护服需几天?(2)若甲车间平均每天生产200套防护服,问乙车间平均每天生产防护服多少套?20.在某外环公路改建工程中,某路段长6140米,现准备由甲、乙两个工程队拟在25天内(含25天)合作完成,已知两个工程队各有20名工人(设甲、乙两个工程队的工工程队1天、乙工程队2天共修路400米;甲工程队2天、乙工程队3天共修路700米.(1)试问:甲、乙两个工程队每天分别修路多少米?(2)甲、乙两个工程队施工8天后,由于工作需要需从甲队调离m人去其他工程工作,总部要求在规定时间内完成,请问:甲工程队最多可以调离多少人?。

人教版七年级数学下册第七章列二元一次方程组解应用题专项训练

第7章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经36岁了。

”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。

已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。

(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。

(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册数学列二元一次方程组解决实际应用题
1、某商场代销甲、乙两种商品,其中甲种商品进价120 元/件,售价130 元/件;乙种商品进价100 元/件,售价150 元/件.如商场用36000 元购进这两种商品,销售完可获利6000 元,则商场购进这两种商品各多少件?
2、某电器商场销售A 、B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5 台A 型号和1 台B 型号计算器,可获利润76元;销售6 台A 型号和3 台B 型号计算器,可获利润120 元.
(1) 求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(利润=销售价格-进货价格)
(2)商场准备用不多于2500 元的资金购进A 、B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?
3、某商场用2500元购进A、B 两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.
(1) 这两种台灯各购进多少盏?
(2) 若A型台灯按标价的9折出售,B型台灯按标价的8折出售,那么这批台灯全部售出后,商场共获利多少元?
4、利民商店经销甲、乙两种商品.现有如下信息:
信息1 :甲、乙两种商品的进货单价之和是5 元;
信息2 :甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2 倍少1元.信息3 :按零售单价购买甲商品3 件和乙商品 2 件,共付了19 元.
请根据以上信息,解答问题:甲、乙两种商品的进货单价各多少元?
5、小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少g?
6、某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9 人到乙厂,则两厂的人数相同;如果从乙厂抽5 人到甲厂,则甲厂的人数是乙厂的2 倍,到两工厂的人数各是多少?
7、把一批书分给几个学生,如果每人分6本,那么还差6本,如果每个学生分5 本,那么还多5 本,这些书有多少本?学生有多少人?
8、暑假期间,部分同学准备开展社会实践活动,决定外出调研某名胜风景点的环境污染情况,为此需在风景点周边住一晚.某旅店只有二人间和三人间两种房型,二人间每晚需50 元,三人间每晚需60 元,并且二人间的数量不超过9 间,三人间比二人间的房间数要少.有同学计算了一下,如果只住二人间,则还有5 人无房可住,如果只住三人间,则只剩下1 人没地方住。

(1)参加此次活动的同学有多少位?
(2)同学们此次住宿花费了430 元,请你算算,同学租住的二人间和三人间各是多少?
9、某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000 元,经粗加工后销售,每吨利润可达4500 元,经精加工后销售每吨获利7500 元。

当地一家农工商企业收购这种蔬菜140 吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16 吨,如果进行细加工,每天可以加工6吨,但两种加工方式不能同时进行.受季节条件限制,企业必须在15天的时间将这批蔬菜全部销售或加工完毕,企业研制了三种可行方案。

方案一:将蔬菜全部进行粗加工;
方案二:尽可能多的对蔬菜进行精加工,来不及进行加工的蔬菜,在市场上直接销售;
方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15 天.
你认为哪种方案获利最多?为什么?
10、某家电商场计划用9 万元从生产厂家购进50 台电视机.已知该厂家生产三种不同型号
的电视机,出厂价分别为A种每台1500 元,B 种每台2100 元,C 种每台2500 元.(1)若该家电商场同时购进两种不同型号的电视机共50 台,用去9 万元,请你研究一下商场的进货方案;
(2)若该家电商场销售一台A种电视机可获利150 元,销售一台B 种电视机可获利200 元,销售一台C 种电视机可获利250 元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,应选择哪种方案?
11、学生问老师:“您今年多大?”老师风趣地说:“我像你这么大时,你才2 岁;你到我这么大时,我已经38 岁了。

”老师今年多大了?
12、今年,小丽和她爸爸年龄和是52岁,三年后,爸爸的年龄将比女儿年龄的2 倍大10 岁,请你算出小丽和她爸爸今年的年龄.
13、兄弟二人,弟弟5 年后的年龄与哥哥5年前的年龄相等,3年后兄弟二人的年龄和是他们年龄差的3倍,则兄弟二人今年的年龄分别是多少?
14、有甲、乙、丙三种货物,若购甲3 件、乙7件、丙1 件共需315 元;若购甲4 件、乙10 件、丙1 件共需420元.问购甲、乙、丙各5 件共需多少元?
15、甲、乙、丙三个容器中盛有含盐比例不同的盐水.若从甲、乙、丙中各取出重量相等的盐水,将它们混合后就成为含盐10% 的盐水;若从甲和乙中按重量之比为2:3 来取,混合后就成为含盐7% 的盐水;若从乙和丙中按重量之比为3:2 来取,混合后就成为含盐9% 的盐水.求甲、乙、丙三个容器中盐水含盐的百分数
16、足球比赛的积分规则是:胜一场得3 分,平一场得1 分,负一场得0 分,一支足球队参加15 场比赛,负4 场,共得29 分,求这支球队胜、平各几场?
17、王老师准备讲授“球赛积分表问题”.为了节省课上时间,课前他将一道球赛积分表的例题抄在黑板上,值日生李明不注意擦掉了表格的一部分内容(如图).王老师随即利用残缺的积分表出了下面三个问题:
(1)求这次比赛中胜1 场、负1 场各积多少分?
(2)求这次比赛中雄鹰队胜场数和负场数;
(3)在这次比赛中某队的胜场积分能等于它负场积分的3 倍吗?
试根据表中信息解决上述问题.
18、一次数学测验共有三道题,第1 题3分,第2 题与第3 题各1 分,全卷满分是5分.某年级数学兴趣小组40 名学生参加了这次测验,所得总分是100 分,其中得0分的有4 人,得1 分的有7人,得2分的有10人,得4 分的有8人.
(1)得3 分和5 分的学生各有多少人?
(2)若规定解答正确的题,给足这道题的分数,解答不正确的不得分.求至少做对两题的学生有几人?
19、某班进行个人投篮比赛,有1未进球,有2人各进一球,有7 人各进2 球,有2 人各进5 球,没有人进5 球以上,小英和一些同学各进3 球,小亮和一些同学各进4 球.已知进球3个或3个以上的同学平均进3.5个球,进球4个或4个以下的同学平均每人进2.5 个球,问进3 个球和进4个球的人数各是多少?
20、一个三位数是一个两位数的5 倍.如果把这个三位数放在两位数的左边,得到一个五位数;如果把这个三位数放在两位数的右边,得到另一个五位数,且后面的五位数比前面的五位数大18648 ,问:两位数、三位数各是多少?
21、有一个三位数,现将最左边的数字移到最右边,得到的数比原来的数小45 ,又已知百位数字的倍比由十位数字和个9位数字组成的两位数小3 ,求原来的三位数.
22、一个两位数的十位数字与个位数字之和是8 ,将十位数字与个位数字对调,得到的新数比原数的2 倍多10 ,求原来的两位数?
23、一个两位数,十位数字比个位数字的2 倍小1 ,若将这两个两位数减去18 恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是多少?
24、戴着红凉帽的若干女生与戴着白凉帽的若干男生同租一游船在公园划船,一女生说:“我看到船上红、白两种帽子一样多.”一男生说:“我看到的红帽子是白帽子的 2 倍”.请问:该船上男、女生各几人?
25、甲乙两杯中盛有水,第一次把甲杯中的水往乙杯中倒,使乙杯中的水加倍;第二次把乙杯中的水往甲杯中倒,使甲杯中所剩的水加倍,并且此时两杯中各有64 克水.则甲、乙两杯中原各有水多少克?
26、甲、乙两人一年的收入之比为8:7 ,支出之比为18:17 .已知甲一年结余了1200 元,乙一年结余了800 元,求甲、乙两人这一年的收入和支出各是多少?
27、修建某一建筑时,若请甲、乙两个工程队同时施工,8 天可以完成,需付两队费用共3520 元;若先请甲队单独做6 天,再请乙队单独做12 天可以完成,需付两队费用共3480 元,问:
(1)甲、乙两队每天费用各为多少?
(2)若单独请某队完成工程,则单独请哪队施工费用较少?
28、甲、乙两人在环形跑道上跑步,他们同时从同一地点出发,当方向相反时,仅需48 秒相遇一次;当方向相同时,每隔10 分钟相遇一次.已知甲比乙每分钟快40 米.求甲、乙两人的速度.
29、抗洪指挥部的一位驾驶员接到一个防洪的紧急任务,要在限定的时间内把一批抗洪物资从物资局运到水库,这辆车如果按每小时30 千米的速度行驶在限定的时间内赶到水库,还差3 千米,他决定以每小时40 千米的速度前进,结果比限定时间早到18 分钟,问限定时间是几小时?物资局仓库离水库有多远?
30、一艘货轮往返于上下游两个码头之间,逆流而上需要48 小时,顺流而下需要32 小时,若水流速度为8 千米/时,则两码头之间的距离是多少千米?
31、甲市到乙市航线长1200km ,一架飞机从甲市顺风航行至乙市需2.5h ,从乙市逆风航
h ,求飞机的速度与风速.
行至甲市需要31
3
32、如图,长方形ABCD 中放置9个形状、大小都相同的小长方形,相关数据图中所示,则图中阴影部分的面积为多少.。

相关文档
最新文档