第二章 实数(教学设计)

合集下载

第二章 实数全章教案-

第二章 实数全章教案-

第二章实数1.数怎么又不够用了第一课时 数怎么又不够用了(1)教学目标1.通过拼图活动,让学生感觉无理数产生的实际背景和学习它的必要性。

2.进一步丰富无理数的实际背景,使学生体会到无理数在实际生活中大量存在,并对无理数产生感性认识。

重点:对无理数的感识难点:对无理数的认识教学过程一、复习1.什么叫有理数,举出例子。

2.勾股定理的内容?若Rt △ABC 的两个直角边分别是5、12,求它的斜边。

二、创设问题情境,引导学生思考,引入课题出示投影(一)P25页首图文1教师指出:随着人类的认识不断发展,人们发现,现实生活中确实存在不同于有理数的数,本章我们将学习元理数、实数、平方根、立方根的概念,学习利用估算或借助计算器求出一个无理数的近似值,并解决有关的实际问题。

出示课题:数怎么不够用了.三、师生共同参与教学活动,获得生活中大量存在的不是有理数的认识1.拼图活动(1)让学生把准备好的两块边长相同的正方形,通过剪一剪、拼一拼,拼成一个大的正方形。

(2)鼓励学生充分思考,交流并给予引导。

(3)教师把学生的几种做法在全班展示。

2.对拼图的结果作进一步分析(1)设大正方形的边长为a ,a 满足什么条件?(2)a 可能是整数吗?说说你的理由。

(3)a 可能是以2为分母的分数吗?可能是以3为分母的分数吗?说说你的理由。

(4)a 可能是分数吗?说说你的理由,并与同伴交流。

教师鼓励学生充分进行思考、交流,给予适时引导。

学生的回答可能是。

“l 2=1,22=4,32=9……越来越大,所以a 不可能是整数。

”“(21)2=41,(32)2=94……结果都是分数,所以a 不可能是分数。

”“两个相同的最简分数的乘积仍然是分数,所以a 不可能是分数”等。

这里只要学生能进行简单的说理即可。

教师归纳:事实上,在等式a 2=2中,a 既不是整数也不是分数,所以a 不是有理数。

说明在生活中存在着不是有理数的数。

3.做一做出示投影(三):P25页“做一做”内容(1)让学生用勾股定理算出以直角三角形的斜边为边的正方形的面积是多少?(2)设正方形的边长为b ,b 满足什么条件? (3)b 是有理数吗?(4)让学生分组交流以上问题后回答。

北师大版八年级数学上册第二章《实数》教案

北师大版八年级数学上册第二章《实数》教案

八年级数学第二章《实数》教案(1)北师大版教学过程一、创设情境,导入新课师:用课件出示下列内容:你能独立完成吗?1. _________和_________统称为有理数,如__________________,_________等都是有理数。

2.无理数是_________的小数,如_________,_________,_________等都是无理数。

3.把下列各数分别填入相应的集合内:,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)生:独立思考并完成。

二、师生互动探究互动一、在实数概念基础上对实数进行不同分类师:上面的一系列数,它们都可以填进这两个圆中,你认为我们学过的数字,有没有不属于上面两种类型的呢?生:没有。

师:那么这节课的课题是实数,那么我们就把这两种类型就叫实数。

即有理数和无理数统称为实数。

生:也就是说实数可分为有理数和无理数。

师:对!你说的太对啦!实数从定义可分为有理数和无理数。

无理数和有理数一样,也有正负之分,那么按正负分实数还可以怎样分类?生:实数按正负分还可以分为正实数和负实数。

师:正数和负数能构成实数吗?还有别的数吗?生:还有0.师:所以实数还可以怎么分?生:实数可以分为正实数、0、负实数。

师:很好,在这里要特别提示大家分类可以有不同的方法,但要按同一标准不重不漏。

互动二、了解实数范围内相反数、倒数、绝对值的意义:师:-2的相反数是什么?生:(齐声)2师:的相反数是什么?生: 是-师:实数a的相反数是什么?生:思考并讨论后回答是-a。

师:同学们回答的非常好,-2的倒数是什么?生:是-。

师:的倒数是什么?生:思考回答。

师:实数a的倒数是什么?生:是。

师:-2的绝对值是什么?生:是2师:的绝对值是什么?生:是师:实数a的绝对值是什么?生:思考、交流,然后回答。

是|a|师:通过以上问题我们可以得哪些结论?生:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。

北师大版八年级数学上册第二章实数教学设计

北师大版八年级数学上册第二章实数教学设计

北师大版八年级数学上册第二章实数教学设计一. 教材分析北师大版八年级数学上册第二章实数,主要介绍了实数的概念、分类和运算。

本章内容是初中数学的重要基础,对于学生理解和掌握数学知识体系具有重要意义。

教材内容安排合理,既有理论知识的讲解,又有实际例子的演示,使学生能够更好地理解和运用实数知识。

二. 学情分析八年级的学生已经掌握了初步的数学知识,对于实数的概念和运算有一定的了解。

但学生在实数的分类和运算方面存在一定的困难,需要通过本章的学习进一步巩固和提高。

同时,学生对于数学知识的理解和运用能力各有差异,需要在教学过程中关注学生的个体差异,因材施教。

三. 教学目标1.理解实数的概念,掌握实数的分类。

2.熟练掌握实数的运算方法,能够运用实数知识解决实际问题。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.实数的分类:有理数、无理数、整数、分数、正数、负数等。

2.实数的运算:加法、减法、乘法、除法、乘方等。

五. 教学方法1.讲授法:讲解实数的概念、分类和运算方法。

2.案例分析法:分析实际例子,让学生更好地理解和运用实数知识。

3.讨论法:分组讨论,培养学生的合作意识和解决问题的能力。

4.练习法:布置适量作业,巩固所学知识。

六. 教学准备1.教材:北师大版八年级数学上册。

2.教案:实数教学设计。

3.PPT:实数相关知识点和案例分析。

4.作业:适量实数运算练习题。

七. 教学过程1.导入(5分钟)利用PPT展示实数的应用场景,引导学生思考实数的概念和分类。

2.呈现(10分钟)讲解实数的概念、分类和运算方法,通过PPT展示相关知识点,让学生更好地理解和掌握。

3.操练(10分钟)分组讨论实数的运算方法,让学生动手实践,相互交流,巩固所学知识。

4.巩固(10分钟)布置适量作业,让学生独立完成,检查对实数知识的掌握情况。

5.拓展(10分钟)分析实际例子,让学生运用实数知识解决实际问题,提高学生的应用能力。

实数 教学设计(二)

实数 教学设计(二)
教学活动
教学建议
教学评价
一、复习提问:
实数乘、除法的运算公式是什么?
二、
如:
有一些数如 , 等,需要对他们进行化简,使得被开放数不含分母和开的尽方的因数.
再如:
例1化简:
(1) (2)
(2)
(3)
(4)√2/27
引导学生回忆所学内容,教师板书,并引出其反向运用.由学生说明a、b的取值.
教师举例说明.让学生寻找解决这种问题的方法,并进行交流、总结.
学生先口头分析交流,在独立完成题目.
关注学生对知识的巩固情况.
关注学生的理解能力.
关注学生的理解能力、探究意识、归纳总结能力.
关注学生的运算能力和理解能力.
七、练习设计
例2化简:
(1)
(2)
(3)
学生讨论完成
教师进行指导
学生独立完成,教师进行指导.
学生小结谈收获教师加以总结.
学生自己摸索做题再交流,同时发挥四人小组的作用.
一、课题名称
实数教学设计(二)
课型
新授课
二、教学目标
熟练运用实数的运算法则和运算律对被开放数含有分母和开的尽的因数的实数进行化简.
三、教学重点、难点
对被开放数含有分母和开的尽的因数的实数进行化简.
对被开放数含有分母实数进行化简.
四、教学手段
讲练结合
六、教学过程
教学内容
可引导学生从以下几方面总结:
1、本节课有哪些新收获?
2、还有哪些疑问与困惑?
关注学生灵活运用知识的能力,交流的积极性.
关注学生的理解能力和应用能力.
根据学生自身情况,总结出任意的一点,教师都应加以表扬与鼓励.
八、板书设计

实数的教学设计(精编7篇)

实数的教学设计(精编7篇)

实数的教学设计(精编7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!实数的教学设计(精编7篇)实数的教学设计(1)教学目标知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用。

最新北师大版八年级数学上册《实数》1教学设计

最新北师大版八年级数学上册《实数》1教学设计

第二章实数6.实数一、依据新课标制定教学重点:1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。

依据新课标制定教学难点:利用数轴上的点表示无理数。

二、教学任务分析1. 教学目标:(1).了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.(2).了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.(3).在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。

(4).在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。

(5).了解数系扩展对人类认识发展的必要性;2. 知识目标:通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理的表达能力。

3. 能力目标:通过对问题的发现和解决,培养学生的相互协作意识及数学表达能力,体验探索、交流与成功。

三、教学过程设计本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:归纳小结;第一环节:复习引入新课内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。

效果:学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。

通过举例明确了无理数的表现形式,野味后续判断或者对实数进行分类提供了认知准备。

第二环节:实数概念和分类内容1:把下列各数分别填入相应的集合内:32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)知识整理:有理数和无理数统称为实数。

北师大版八年级数学上册:2.6《实数》教学设计2

北师大版八年级数学上册:2.6《实数》教学设计2

北师大版八年级数学上册:2.6《实数》教学设计2一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要让学生了解实数的定义,理解实数与数的区别,掌握实数的性质,如大小比较、加减乘除运算等。

教材通过引入实数的概念,使得学生对数的认识更加深入,为后续的函数、方程等知识的学习打下基础。

二. 学情分析学生在学习本节内容前,已经学习了有理数、无理数等基础知识,对数的概念有一定的了解。

但实数作为一个全新的概念,需要学生从更高的角度去理解和把握。

此外,实数的性质和运算规则需要学生在已有知识的基础上进行推理和归纳,因此,学生在学习本节内容时可能会有一定的难度。

三. 教学目标1.理解实数的定义,掌握实数的性质。

2.能够进行实数的大小比较、加减乘除运算。

3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.实数的定义和性质。

2.实数的运算规则。

五. 教学方法1.采用问题驱动法,引导学生主动探究实数的定义和性质。

2.运用实例解析法,让学生通过实际问题理解实数的运算规则。

3.采用小组合作学习法,培养学生团队合作、交流分享的良好学习习惯。

六. 教学准备1.准备相关实数的教学案例和实例。

2.制作PPT,展示实数的定义、性质和运算规则。

3.分组安排,便于学生进行小组合作学习。

七. 教学过程1.导入(5分钟)利用PPT展示实数的定义,引导学生回顾已学的有理数、无理数等知识,为新知识的学习做好铺垫。

2.呈现(10分钟)通过PPT展示实数的性质,如大小比较、加减乘除运算等,让学生初步了解实数的特点。

3.操练(10分钟)让学生通过PPT上的实例,亲自进行实数的运算,巩固实数的性质和运算规则。

4.巩固(10分钟)学生分组讨论,总结实数的性质和运算规则,教师巡回指导,解答学生的疑问。

5.拓展(10分钟)利用实际问题,让学生运用实数知识解决问题,提高学生运用知识的能力。

6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。

八年级数学上册第二章《实数》教案

八年级数学上册第二章《实数》教案

第二章实数1.了解平方根、立方根、二次根式、最简二次根式、实数及其相关概念;会求平方根、立方根;能进行有关实数的简单四则运算和简单的二次根式化简,发展运算能力.2.结合具体情境理解估算的意义,能进行简单的估算,进一步发展数感和估算能力.经历数系扩充、探求实数性质及其运算规律、借助计算器探索数学规律等活动过程,发展抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.能运用实数的运算解决简单的实际问题,提高应用意识,发展解决问题的能力,从中体会数学的应用价值.一、本章主要内容及要求1.体验从具体情境中抽象出数学符号的过程,理解实数.2.掌握必要的运算(包括估算)技能.3.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.4.了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根.5.了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值.6.能用有理数估计一个无理数的大致范围.7.了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值.8.了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算.二、教材分析从有理数扩充到实数是初中阶段数系扩充的最后一个阶段,中学阶段的多数问题是在实数范围内进行的,同时实数也是后继内容(如一元二次方程、函数等)学习的基础.因此,本章学习内容具有基础性,应要求学生能熟练掌握有关实数的运算,适应后续学习的需要.学生以前经历过数系的第一次扩充,已经积累了一些数系扩充的学习经验,感受到数系扩充是源于实际生活的需要.本章再次引领学生经历数系扩充的过程,感受数系扩充的必要性.本章大致按照如下线索展开内容:无理数的引入——无理数的表示——实数的相关概念及其运算(包括简单的二次根式的化简),实数的应用贯穿于内容的始终.具体地,教材首先通过拼图活动和计算器探索活动,给出无理数的概念;然后通过具体问题的解决,引入平方根、立方根的概念和开方运算.由于在实际生活和生产中,人们常常通过估算来求无理数的近似值,为此教材安排了一节“估算”,介绍估算的方法,包括通过估算比较大小、检验计算结果的合理性等.接着,教材用类比的方法引入实数的相关概念、运算律和运算性质等,最后,介绍了二次根式的概念及其化简和运算.在呈现具体内容时,教材关注现实性,力求从学生实际出发,以他们熟悉或感兴趣的问题情境引入学习主题.但考虑到本章内容的特点,以及随着学生年龄的增长,他们的思维水平也在不断提高,因此本章在关注现实性的同时,更加关注数学知识内部的挑战性,为此提供了许多有趣而富有数学含义的问题,如a可能是整数吗?a可能是分数吗?……让学生进行数学的思考,进一步提高学生的抽象思维水平.【重点】1.经历无理数发现的过程,了解无理数的概念和意义.2.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根;能用平方运算与立方运算求某些数的平方根与立方根;会用计算器求平方根和立方根,并能探索一些有趣的数学规律.3.能用有理数估计一个无理数的大致范围,包括通过估算比较大小,检验计算结果的合理性等.4.了解实数的概念,会按要求对实数进行分类,了解实数的相反数和绝对值的意义,知道实数与数轴上的点具有一一对应的关系,了解有理数的运算法则与运算律对实数仍然适用.5.能对带根号的数进行化简,并能利用化简进行有关实数的简单四则运算.6.能运用实数的运算解决简单的实际问题.【难点】1.无理数概念的理解及应用.2.解决与实数有关的实际问题时的思维转化.3.运算性质的掌握与应用.1.注重概念的形成过程,让学生在概念的形成过程中,逐步理解所学的概念.概念是由具体到抽象、由特殊到一般,经过分析、综合,去掉非本质特征,保持本质属性而形成的.加强概念形成过程的教学,对提高学生的思维水平是很有必要的.如无理数的引入,要让学生亲身经历活动,感受引入的必要性,初步认识无理数是无限不循环小数这一意义,在教学时,教师要鼓励学生动手、动脑、动口,与同伴进行合作,并充分地开展交流.再如平方根的概念,对正数有两个平方根学生不太容易接受,往往丢掉负的平方根,因为这与他们以前的运算结果唯一的经验不符.对此,在平方根的引入时,教师可多提一些具体的问题,如9的算术平方根是3,也就是说,3的平方是9.还有其他的数,它的平方也是9吗?……旨在引起学生的思考,让学生从具体的例子中抽象出初步的平方根的概念.接着让学生去讨论:一个正数有几个平方根?0有几个平方根?负数呢?引导学生更深刻地理解平方根的概念,特别是负数的情况,然后再通过具体的求平方根的练习,巩固新学的概念.2.鼓励学生自主探索和合作交流.本章为学生提供了许多有趣而富有数学含义的问题,教学中应当让学生进行充分的探索和交流.如面积为2的正方形的边长a是什么数?教师应引导学生充分进行交流、讨论与探索,从中感受无理数引入的必要性,并体会无限不循环的过程;再如二次根式的相关运算性质,教学中应让学生经历从具体问题到一般规律的探索过程,鼓励学生借助计算器等工具进行探索、猜测、验证,并用自己的语言清楚地表达.3.注意运用类比的方法,使学生清楚新旧知识的区别和联系.七年级时,学生已经学习过有理数的有关概念和运算,本章将学习实数的有关概念及运算.在这些概念、运算律、运算法则的教学中,应加强类比教学,通过新旧知识的类比、对比,认识新旧知识的区别和联系,促进知识系统的构建与完善.如实数的相反数、绝对值等概念是完全类比有理数建立起来的,运算律和运算法则也是通过类比得出的.1认识无理数2课时2平方根2课时3立方根1课时4估算1课时5用计算器开方1课时6实数1课时7二次根式3课时回顾与思考1课时1认识无理数1.通过拼图活动,感受无理数关系到的实际背景和引入的必要性.2.借助计算器探索无理数,并从中体会无限逼近思想.3.会判断一个数是不是无理数.1.在探究的过程中使学生感受到数的扩张,积累解决数学问题的经验和方法.2.在探索的过程中体会无理数的产生过程,积累解决数学问题的方法和经验.1.通过现实中的实例,让学生认识到无理数与实际生活是紧密联系的,数学是来源于实践又应用于实践的.2.通过“再创造”的过程,体会数学发现的方法和乐趣.【重点】理解无理数的概念.【难点】判断一个数是不是无理数.第课时感受无理数产生的实际背景和引入的必要性.经历动手拼图过程,发展动手能力和探索精神.通过现实中的实例,让学生认识到无理数与实际生活是紧密联系的,数学是来源于实践又应用于实践的.【重点】感受无理数产生的背景.【难点】会判断一个数是不是无理数.【教师准备】两张边长为1的正方形纸片,多媒体课件.【学生准备】两张边长为1的正方形纸片,复习有理数的运算法则及勾股定理有关知识.导入一:七年级的时候,我们学习了有理数,知道了整数和分数统称为有理数,考虑下面的问题:(1)一个整数的平方一定是整数吗?(2)一个分数的平方一定是分数吗?[设计意图]做必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理,为后续环节的进行起了很好的铺垫作用.导入二:一个等腰直角三角形的直角边长为1,那么它的斜边长等于多少?利用勾股定理计算一下.【总结】我们在小学学了非负数,在七年级发现数不够用了,引入了负数,即把小学学过的正数、零扩充到有理数的范围,有理数包括整数和分数,那么有理数范围是否能满足我们实际生活的需要呢?1.已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.把边长为1的两个小正方形,通过剪、拼,设法拼成一个大正方形,你会吗?出示教材P21图2 - 1.图2 - 1是两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.问题1拼成后的正方形是什么样的呢?问题2拼成后的大正方形面积是多少?问题3若新的大正方形边长为a,a2=2,则:①a可能是整数吗?②a可能是分数吗?【总结】没有两个相等的整数的积等于2,也没有两个相等的分数的积等于2,因此a不可能是有理数.[设计意图]选取客观存在的“无理数”实例,让学生深刻感受“数不够思路一(1)如图所示,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,b满足什么条件?(3)b是有理数吗?【问题解答】(1)由勾股定理可知,直角三角形的斜边的平方为5,所以正方形的面积是5.(2) b2=5.(3)没有一个整数或分数的平方为5,也就是没有一个有理数的平方为5,所以b不是有理数.思路二在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段.【问题解答】构造直角三角形,利用勾股定理可得,长度为有理数的线段有AB,EF.长度不是有理数的线段有CD,GH,MN.[设计意图]创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣,让学生感受到无理数产生的过程,确[知识拓展]正方形网格中的线段既可以表示有理数,也可以表示有理数之外的数.数轴上的点可以表示有理数,也可以表示有理数之外的数.比如正方形OCBA的对角线长度就不是有理数,数轴上的点P表示的就是这个非有理数.网格上长方形(包括正方形)的对角线的长度都不一定是有理数.通过生活中的实例,证实了确实存在不是有理数的数.1.在直角三角形中两个直角边长分别为2和3,则斜边的长()A.是有理数B.不是有理数C.不确定D.4答案:B2.下列面积的正方形,边长不是有理数的是()A.16B.25C.2D.4答案:C3.在右面的正方形网格中,按照要求连接格点的线段:长度是有理数的线段为,长度不是有理数的线段为.答案:略第1课时1.拼接正方形.2.做一做.3.a,b存在,但不是有理数.一、教材作业【必做题】教材第21页随堂练习及教材第22页习题2.1第1题.【选做题】教材第22页习题2.1第2题.二、课后作业【基础巩固】1.在正方形网格中,每个小正方形的边长为1,则网格上的ΔABC中,边长不是有理数的线段有,在图中再画一条边长不是有理数的线段.【能力提升】2.在任意两个有理数之间都有无数个有理数.假设a,b是两个有理数,且a<b,在a,b两数之间插入一个数为.【拓展探究】3.把下列小数化成分数.(1)0.6;(2)0.7·;(3)0.3·4·.4.你会在下面的正方形网格(每个小正方形面积为1)中画出面积为10的正方形吗?试一试.【答案与解析】1.AB,BC,AC 略(解析:AB2=42+12=17,BC2=22+32=13,AC2=22+42=20.)2.a+a2(解析:答案不唯一,如插入a和b正中间的数.)3.解析:(1)0.6=35; (2)设0.7·=x,则10x=7.7·,∴9x=7,从而x=79;(3)设0.3·4·=x,则100x=34.3·4·,∴99x=34,从而x=3499.解:(1)0.6=35. (2) 0.7·=79. (3) 0.3·4·=3499.4.略大量事实证明,与生活贴得越近的东西就越容易引起学生的浓厚兴趣,更能激发学生学习的积极性.为此,本课时通过拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆质疑.在教学过程中,没有刻意安排一些环节,帮助理解能力差的学生加深对“新数”的理解.设计更多的实例让理解能力差的学生较好地理解“新数”.为进一步学习“新数”,即第二课时的教学埋下伏笔.随堂练习(教材第21页)解:因为等边三角形中BC边上的高平分BC,所以h2=22-12=3,所以h不可能是整数,也不可能是分数.习题2.1(教材第22页)1.解:答案不唯一.如图(1)所示,线段AB,AD,AE,DE,BD,BC的长度都是有理数;线段AC,CE,BE的长度都不是有理数.2.解:答案不唯一.如图(2)所示的是几个符合要求的直角三角形.一个正方形木块的面积为8平方厘米,那么它的边长满足什么条件?可能是整数吗?可能是分数吗?解:它的边长的平方为8,没有整数的平方为8,所以边长不可能为整数,也没有一个分数的平方为8,所以边长不可能为分数.第课时掌握无理数的概念;能用所学定义正确判断所给数的属性.借助计算器探索无理数是无限不循环小数,从中体会无限逼近的思想.在掌握估算方法的过程中,发展学生的数感和估算能力.【重点】 能用所学定义正确判断所给数的属性. 【难点】 无理数概念的建立.【教师准备】 计算器、立方体、多媒体课件. 【学生准备】 计算器、复习有理数的分类.导入:前面我们学习了有理数,有理数是如何分类的呢? 1.有理数是如何分类的?【问题解决】有理数{整数(如-1,0,2,3,…)分数(如13,-25,911,0.5,…)2.除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如a 2=2,b 2=5中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.[设计意图] 通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它们的真面目.一、数的小数表示面积为2的正方形的边长a究竟是多少呢?(1)如图所示,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a的整数部分是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索.(3)小明将他的探索过程整理如下,你的结果呢?边长a面积S1<a<2 1<S<41.4<a<1.5 1.96<S<2.251.41<a<1.42 1.9881<S<2.01641.414<a<1.415 1.999396<S<2.0022251.4142<a<1.4143 1.99996164<S<2.00024449【思考】a的范围在哪两个数之间?左面的边长中,前面的数值和后面的数值相比,哪个更接近正方形的实际边长?【归纳总结】a是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a=1.41421356…,它是一个无限不循环小数.【做一做】(1)请大家用上面的方法估计面积为5的正方形的边长b 的值(结果精确到0.1),并用计算器验证你的估计.(2)如果结果精确到0.01呢?(提示:精确到0.1,b≈2.2,精确到0.01,b≈2.24)同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c=1.25992105…,它也是一个无限不循环小数.[设计意图]让学生有充分的时间进行思考和交流,逐渐缩小范围,借助计算器探索出a=1.41421356…,b=2.2360679…,c=1.25992105…是无限不循环小数的过程,体会无限逼近的思想.二、有理数的小数表示,明确无理数的概念思路一请同学们以学习小组的形式活动.【议一议】把下列各数表示成小数,你发现了什么?3,4 5,59,-845,211.【答案】3=3.0,45=0.8,59=0.5·,-845=-0.17·,211=0.1·8·.分数化成小数,最终此小数的形式有哪几种情况?思路二回忆小学我们学过的计算圆的周长和面积的时候,用到的π取多少?(3.14)它是确切的值吗?(不是,是近似值)那π是有理数吗?(不是)并且,我们还知道,利用计算机,现在π已经算到几亿分位,但是还是没有算出来.当然,π也不能化为分数的形式,所以π不是有理数,那π是什么数呢?【探究结论】分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.【强调】像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数称为无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数)【想一想】你能找到其他的无理数吗?[设计意图]通过学生的活动与探究,得出无理数的概念,通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必要性,建立了无理数的概念.三、例题讲解下列各数中,哪些是有理数?哪些是无理数?3.14,-43, 0.5·7·,0.1010001000001…(相邻两个1之间0的个数逐次加2).解:有理数有:3.14,-43,0.5·7·;无理数有:0.1010001000001…(相邻两个1之间0的个数逐次加2).【强调】1.无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.任何一个有理数都可以化成分数a a的形式(q ≠0,p ,q 为整数且互质),而无理数不能. [设计意图] 通过例题的讲解,让学生充分理解无理数、有理数的概念、区别,感受数的分类.[知识拓展] 确定x 2=a (a ≥0)中正数x 的近似值的方法: 1.确定正数x 的整数部分.根据平方的定义,把x 夹在两个连续的正整数之间,确定其整数部分.例如:求x 2=5中的正数x 的整数部分,因为22<5<32,即22<x 2<32,所以2<x <3,因此x 的整数部分为2.2.确定x 的小数部分十分位上的数字.(1)将这两个整数平方和的平均数与a 比较,预测十分位上数字的取值范围,如两个整数2和3的平方和的平均数为22+322=6.5>5,所以x 的十分位上的数字一定比3小,不妨设x ≈2.2.(2)设误差为k (k 必为一个纯小数,且k 可能为负数),则x =2.2+k ,所以(2.2+k )2=5,所以4.84+4.4k +k 2=5,因为k 是小数,所以k 2很小,把它舍去,所以4.84+4.4k =5,所以k ≈0.036,所以x =2.2+k ≈2.2+0.036=2.236.实际估算中,整数部分的数字容易估计,十分位上的数字也可以采用试验的方法进行估计,即2.12=4.41,2.22=4.84,2.32=5.29,因为4.84<5<5.29,所以2.22<x 2<2.32,所以2.2<x <2.3,所以十分位上的数字为2.数{有理数:有限小数或无限循环小数{整数分数无理数:无限不循环小数1.下列说法中正确的是 ( ) A .无限小数都是无理数 B .有限小数是无理数 C .无理数都是无限小数 D .有理数是有限小数 答案:C2.以下各正方形的边长是无理数的是 ( )A.面积为25的正方形B.面积为425的正方形C.面积为8的正方形D.面积为1.44的正方形解析:52=25,(25)2=425,(1.2)2=1.44.故选C.3.一个直角三角形两条直角边的长分别是3和5,则斜边长a是有理数吗?解:由勾股定理得: a2=32+52,即a2=34.因为不存在有理数的平方等于34,所以a不是有理数.4.已知-34,5,-1.4·2·,π,3.1416,23,0,42,(-1)2n ,-1.4242242224…(相邻两个4之间2的个数逐次加1).(1)写出所有有理数;(2)写出所有无理数.解:(1)有理数:-34,5,-1.4·2·,3.1416,23,0,42,(-1)2n.(2)无理数:π,-1.4242242224…(相邻两个4之间2的个数逐次加1).第2课时1.数的小数表示.2.有理数的小数表示,明确无理数的概念.3.例题讲解.一、教材作业【必做题】教材第24页随堂练习.【选做题】教材第25页习题2.2第2,4题.二、课后作业【基础巩固】1.面积为3的正方形的边长为x,则x()A.1<x<2B.2<x<3C.3<x<4D.4<x<52.一个正三角形的边长是4,高为h,则h是()A.整数B.分数C.有限小数D.无理数【能力提升】3.在直角三角形中,若两条直角边的长分别是2和3,则斜边长的平方是,则斜边长是数.【拓展探究】4.设半径为a的圆的面积为20 π.(1)a是有理数吗?说说你的理由;(2)估计a的值(精确到十分位,并利用计算器验证你的估计);(3)如果精确到百分位呢?5.在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?【答案与解析】1.A(解析:12=1,22=4.)2.D(解析:由勾股定理,得h2=42-22=12,没有整数或分数的平方等于12,所以h为无理数.)3.13无理(解析:由勾股定理,可得斜边的平方为13,没有整数或分数的平方为13,所以是无理数.)4.解:(1)∵πa2=20π,∴a2=20.a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数. (2)a≈4.5. (3)a≈4.47.5.解析:1.72=2.89,1.73=2.9929.解:(1)1.7米. (2)1.73米.本节课借助寻找正方形边长这一“现实生活中的实例”,让学生通过估算、借助计算器进行探索、讨论等途径,体会数学学习的乐趣,体会无限逼近的数学思想,得到无理数的概念.对基础较薄弱的学生和班级,这一探索过程所需时间较长,会影响后面环节的进行.知识分类整理环节,学生自主整理和接受会有一定困难,若学生学习例题后再进行知识分类整理可能会更好.感知过程是学生理解无理数这一抽象概念所必需的,所以绝对不能淡化.随堂练习(教材第24页)解:有理数有:0.4583,3.7·,-17,18.无理数有:-π.习题2.2(教材第25页)1.解:-559180,3.97·,-234.10101010…(相邻两个1之间有1个0)是有理数,0.12345678910111213…(小数部分由相继的正整数组成)是无理数.2.提示:(1)x不是有理数. (2)x≈3.2. (3)x≈3.16.3.(1)✕(2)a(3)✕(4)✕4.解:5a ,π-1,3.4141141114…(相邻两个4之间1的个数逐次加1)等,答案不唯一.由于本节的重点之一是让学生经历借助计算器探索无理数是无限不循环小数的过程,因此,要重视教材创设(或相同类型)的问题,针对内容应该花较多的时间,教师应积极引导,让学生有充足的时间借助计算器进行思考和交流,循序渐进地缩小范围,体会无限逼近的思想.本节渗透了用有理数近似地表示无理数和用有理数逼近无理数的数学思想,通过探索,学生容易理解“无限”,但对“不循环”一般不会有清楚的认识,只有逐步渗透理解,教学中不必多说.“逼近”思想可以借用中央电视台的“幸运52”的猜商品的价格游戏进行解释.为进一步让学生理解无理数的概念,应强调“无限不循环小数”与“无限循环小数”的联系和区别,前者不能化为分数,后者可以化为分数,但如何化成分数,教师不必深入讲解.鼓励学生自学教材中的“读一读”,了解无理数产生的历史背景和人类的科学精神,特别是对学有余力的学生,在教师引导下,可阅读“边长为1的正方形的对角线的长是无理数”的严格证明.一根长为5米的电线杆竖立于地面,为保证它的安全,要用三根钢丝把它固定,要求每根钢丝一头拉着电线杆的最上端,一头系在离电线杆3米远的地面木桩上,则每根钢丝的长要满足什么条件?它是有理数吗?大概是多长?〔解析〕每根钢丝的长要满足它的平方等于52+32,它不是有理数,大概是5.8米.解:由勾股定理,得钢丝长的平方等于52+32=34,但是找不到一个整数的平方是34,也找不到一个分数的平方是34,所以,它不是有理数,5.82=33.64,接近于34,所以大概为5.8米.2平方根1.了解数的算术平方根、平方根的概念,会用根号表示一个数的算术平方根和平方根.2.了解开方与平方是互逆运算,会利用平方运算求某些非负数的算术平方根和平方根.通过教学过程的参与,培养学生学习的主动性,提高数学表达和运算能力.1.通过与“加法的逆运算是减法、乘法的逆运算是除法”作类比,让学生体会平方和开方互为逆运算的同时,领会数学中处处蕴含着辩证法.2.使学生通过开方运算的学习,解决实际生活中的一些具体问题.【重点】1.数的算术平方根、平方根的概念,会用根号表示一个数的算术平方根和平方根.2.(√a)2=a(a≥0)的得出和应用.【难点】1.利用这个互逆的关系求某些非负数的算术平方根和平方根.2.(√a)2=a(a≥0)和√a2=|a|的区别和联系.第课时1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.了解一个正数的算术平方根与平方是互逆的运算,会利用这个互逆的关系求某些非负数的算术平方根.在合作交流等活动中,培养合作精神和创新精神.积极参与教学活动,发展对数学的好奇心和求知欲.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 实数
6.实数(二)
一、教材分析
实数(第2课时)是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》
第6节内容.本节内容分为3个课时,本节是第2课时.本课时用类比的方法,引入实数的运算法则,运算律等,并利用这些运算法则、运算率进行有关运算,解决有关实际问题.
二、学情分析
七年级上学期已学习了有理数的加、减、乘、除、乘方运算,本学期又学习了有理数的平方根、立方根.这些都为本课时学习实数的运算法则、运算率提供了知识基础。

当然,毕竟是一个新的运算,学生有一个熟悉的过程,运算的熟练程度尚有一定的差距,在本节课及下节课的学习中,应针对学生的基础情况,控制上课速度和题目的难度.
三、目标分析
1.教学目标
●知识与技能目标
(1)了解有理数的运算法则在实数范围内仍然适用.
(2)用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围进行正确计算.
(3)正确运用公式:
b a b a ⋅=⋅(a ≥0,b ≥0) b
a b a
=(a ≥0, b >0) 这两个公式,实际上是二次根式内容中的两个公式,但这里不必向学生提出二次根式这个概念.
●过程与方法目标
(1)通过具体数值的运算,发现规律,归纳总结出规律.
(2)能用类比的方法解决问题,用已有知识去探索新知识.
●情感与态度目标
由实例得出两条运算法则,培养学生归纳、合作、交流的意识,提高数学素养.
2.教学重点
(1)用类比的方法,引入实数的运算法则、运算律,能在实数范围内正确运算.
(2)发现规律:
b a b a ⋅=⋅(a ≥0,b ≥0)
b
a b a =(a ≥0, b >0) 3.教学难点
(1)类比的学习方法.
(2)发现规律的过程.
4.教学方法
(1)探索——交流法.
(2)课前准备:教材、课件、电脑.电脑软件:Word ,Powerpoint .
四、教学过程
本节课设计了六个教学环节:
第一环节:复习引入;
第二环节:知识探究;
第三环节:知识巩固;
第四环节:知识拓展;
第五环节:课时小结;
第六环节:作业布置.
第一环节:复习引入
问题1 :有理数中学过哪些运算及运算律?
答:加、减、乘、除、乘方,加法(乘法)交换律、结合律,分配律.
问题2:实数包含哪些数?
答:有理数,无理数.
问题3:有理数中的运算法则、运算律等在实数范围内能继续使用?
答:这是我们本节课要解决的新问题.
意图:通过问题,回顾旧知,为导出新知打好基础。

第二环节:知识探究
(一) 内容:引导学生探究出有关运算法则和运算率,并利用这些运算法则或运算解决简
单的问题。

具体过程如下:
1、探索:要回答上面提出的问题,因为实数包括有理数和无理数,我们只需在无理数中验证一下运算法则及运算律是否成立.
用计算器可验证:3223+=+, (加法交换律)
2332⋅=⋅, (乘法交换律)
3)21
2(321
23=⋅⋅=⋅⋅ , (乘法结合律)
353)32(3332=+=+, (分配律)
2、明晰: 以上说明有理数的运算法则与运算律在实数范围内仍然适用.
3、巩固:
例1 计算:
(1)3332-; (2)21
2231
3⋅+⋅; (3)2)52(.
解:(1)3332-=3)32(-=3-;
(2)21
2231
3⋅+⋅=1+2=3;
(3)2)52(=22)5(2⨯=54⨯=20.
意图:通过具体数据的验证,使学生明确:有理数中的法则、运算律在实数范围内仍然适用.
(二) 内容:通过探究得出b a b a ⋅=
⋅,b
a b a =。

具体过程如下:
(1)94⨯= ,94⨯= ; 2516⨯= ,2516⨯= ;
94
= ,94= ; 2516= ,25
16= . (2)用计算器计算:
76⨯= ,76⨯= ;76
= ,7
6= . 问题1:观察上面的结果你可得出什么结论?
问题2:从你上面得出的结论,发现了什么规律?能用字母表示这个规律吗?
问题3:其中的字母a ,b 有限制条件吗?
意图:最终归纳出b a b a ⋅=⋅(a ≥0,b ≥0),b
a b a
=(a ≥0, b >0). 说明:公式中字母a ≥0,b ≥0(或b >0)这一条件是公式的一部分,不应忽略.
第三环节:知识巩固
例2 化简
(1)5312-⨯; (2)23
6⨯; (3)2)15(-;
(4))12)(12(-+; (5))82(23-⋅.
解:(1)5312-⨯=5312-⨯=536-=6-5=1;
(2)23
6⨯=23
6⨯=218=2
18=9=3;
(3)2)15(-=221152)5(+⋅⋅-=1525+-=526-;
(4))12)(12(-+=221)2(-=2-1=1;
(5))82(23-⋅=82)2(3⨯⋅-⨯=166-=46⨯-=-24.
练习:
化简:(1)2095⨯; (2)8
612⨯; (3)2)323(-; (4)2)132(-; (5))32)(31(-+.
解:(1)2095⨯=2095⨯=49=2
3; (2)8
6
12⨯=8612⨯=872=872=9=3; (3)2)32
3(-=22)32
(32
32)3(+⋅⋅-=3443+-=3
1; (4)2)132(-=2211322)32(+⋅⋅-=13412+-=3413-;
(5))32)(31(-+=2)3(3232-+-=33232-+-=31+-.
意图:巩固新知,提高能力.
第四环节:知识拓展
说明:这部分根据学生的实际情况进行取舍,程度好的班级可选用,基础不好的班级舍去. 练习:
﹡1.化简:(1)250580⨯-⨯; (2))25)(51(-+;
(3)2)31
3(-; (4)1040
5104+; (5))82(2+.
解:(1)250580⨯-⨯=250580⨯-⨯=100400-=1020-=10;
(2))25)(51(-+=52)5(252-+-=52525-+-=53-;
(3)2)31
3(-=22)3
1(31
32)3(+⋅⋅-=3123+-=34; (4)1040
5104+=1040
51010
4+=1040510104⨯+⨯=454+=254⨯+=14;
(5))82(2+=8222⋅+⋅=8222⨯+⨯=164+=42+=6. ﹡2.一个直角三角形的两条直角边的长分别是cm 5和cm 45,求这个直角三角形的面积.
解:S =
45521⨯⨯=45521⨯⨯=22521=152
1⨯=7.5cm 2. 第五环节:课堂小结
本节课主要内容:
(1)在实数范围内,有理数的运算法则及运算律仍然成立,能正确运用.
(2)掌握并会运用公式:b a b a ⋅=⋅(a ≥0,b ≥0),b
a b a
=(a ≥0,b >0). (3)理解本节课中用过的数学方法:类比,找规律,归纳总结.
第六环节:课后作业
(1)习题 2.9 1,2,
(2)补充作业:计算:
(1)1127⋅; (2))32(276-⋅; (3)18385⨯; (4)10156⋅⋅;
(5)6.34.6⨯; (6)2
332⨯; (7)3)312(⋅+. 答案:(1)28;(2)-108;(3)180;(4)30;(5)4.8;(6)1;(7)9.
五、教学反思
1.关注类比,提出重点
本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系.
2.对运算技能要求恰当定位
根据新课标精神,对学生的评价不能过分要求技巧,应关注学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否依据算理正确地进行计算,能否确认结果的合理性等等,对于较复杂的实数运算,应关注学生是否会使用计算器进行运算.因此,注意对运算技能要求作恰当的定位,特别是在开始运算的第一课时,不要提高要求。

3.分层教学
本节课的教学设计中考虑了学生的层次不同,对知识深度和广度的要求也有所不同,因此,增加了知识拓展的内容,供层次高一些的学生及班级选用.。

相关文档
最新文档