3.3.3 简单线性规划问题
高中数学 3.3.3 简单的线性规划问题(第1课时)教案 必修5

3.3.3 简单的线性规划问题第1课时简单的线性规划问题(教师用书独具)●三维目标1.知识与技能(1)从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;(2)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念,会根据条件建立线性目标函数;(3)了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合、等价转化的数学思想.2.过程与方法(1)本节课是以二元一次不等式(组)表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决;(2)考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性,同时,借助计算机的直观演示可使教学更富趣味性和生动性.3.情感、态度与价值观(1)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新;(2)渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣.●重点、难点重点:线性规划问题的图解法,寻求线性规划问题的最优解.难点:利用图解法求最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法,将实际问题数学化,代数问题几何化.解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化.(教师用书独具)●教学建议从内容上看,简单的线性规划问题是在学习了不等式、直线方程的基础上展开的,它是对二元一次不等式的深化和再认识、再理解.它是用数学知识解决实际问题,属于数学建模,是初等数学中较抽象的,对学生要求较高,又是必须予以掌握的内容.考虑到学生的认知水平和理解能力,建议教师可以通过激励学生探究入手,讲练结合,培养学生对本节内容的学习兴趣,培养学生数形结合的意识,让学生体味数学的工具性作用.另外,教师还可借助计算机直观演示利用图解法求最优解的过程,增强教学的趣味性和生动性.●教学流程创设问题情境,引导学生了解线性约束条件、线性目标函数、可行域、线性规划问题等概念.⇒结合教材让学生掌握线性规划问题的图解法.⇒通过例1及其变式训练使学生巩固掌握利用图解法求最优解的步骤.⇒通过例2及其变式训练使学生掌握利用线性规划研究字母参数的方法.⇒通过例3及其变式训练使学生掌握求非线性目标函数的最值的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双达达标,巩固所学知识,并进行反馈矫正.(对应学生用书第56页)课标解读1.了解目标函数、约束条件、可行域、最优解等基本概念.2.掌握线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)可行域约束条件所表示的平面区域,称为可行域.线性规划求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题,上述只含两个变量的简单线性规划问题可用图解法解决.(对应学生用书第56页)线性规划问题设z =3x +5y ,式中变量x 、y 满足条件⎩⎪⎨⎪⎧x +2y ≥3,7x +10y ≥17,x ≥0,y ≥0.求z的最小值.【思路探究】【自主解答】 画出约束条件表示的点(x ,y )的可行域, 如图所示的阴影部分(包括边界直线).把z =3x +5y 变形为y =-35x +z 5,得到斜率为-35,在y 轴上的截距为z5,随z 变化的一族平行直线.作直线l :3x +5y =0,把直线向右上方平行移至l 1的位置时,直线经过可行域上的点M ,此时l 1:3x +5y -z =0的纵截距最小,同时z =3x +5y 取最小值.解方程组⎩⎪⎨⎪⎧x +2y =3,7x +10y =17,得M (1,1).故当x =1,y =1时,z min =8.1.由本例可以看出,解线性规划问题时,一定要注意最优解的对应点是最大值点,还是最小值点.对于目标函数z =ax +by ,当b >0时,直线截距最大时,z 有最大值,截距最小时,z 有最小值;当b <0时,则相反.2.图解法是解决线性规划问题的有效方法,其关键是利用z 的几何意义求解.平移直线ax +by =0时,看它经过哪个点(哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,最优解一般是在可行域的边界取得.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为多少.【解】 作可行域如图所示,解⎩⎪⎨⎪⎧x -y +2=0,x +y -8=0得⎩⎪⎨⎪⎧x =3,y =5,∴A (3,5).解⎩⎪⎨⎪⎧x +y -8=0,x -5y +10=0得⎩⎪⎨⎪⎧x =5,y =3,∴B (5,3).平移直线3x -4y =z 可知,直线过A 点时,z 取最小值,过B 点时,z 取最大值. ∴z min =3×3-4×5=-11,z max =3×5-4×3=3.利用线性规划求字母参数的值(或范围)已知x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y ≤25,x ≥1,设z =ax +y (a >0),若当z 取最大值时,对应的点有无数多个,求a 的值.【思路探究】【自主解答】 作出可行域如图所示.由⎩⎪⎨⎪⎧3x +5y =25,x -4y +3=0,得⎩⎪⎨⎪⎧x =5,y =2,∴点A 的坐标为(5,2).由⎩⎪⎨⎪⎧x =1,3x +5y =25,得⎩⎪⎨⎪⎧x =1,y =4.4,∴点C 的坐标为C (1,4.4).当直线z =ax +y (a >0)平行于直线AC ,且直线经过线段AC 上任意一点时,z 均取得最大值,此时有无数多点使z 取得最大值,而k AC =-35,∴-a =-35,即a =35.1.本题中,z 取最值时对应的点有无数多个,故这无数多个对应点构成平面区域的一段边界.2.解线性规划问题时一般要结合图形(平面区域)及目标函数的几何意义解题.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.【解析】 作出可行域,让目标函数所表示的直线过定点,观察斜率的范围,构建不等式求参数范围.如图所示,约束条件所表示的平面区域为三角形,目标函数z =ax +2y ,即y =-a 2x +z 2仅在点(1,0)处取得最小值,故其斜率应满足-1<-a 2<2,即-4<a <2.故填(-4,2).【答案】 (-4,2)求非线性目标函数的最值已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(1)求u =x 2+y 2的最大值和最小值; (2)求z =yx +5的最大值和最小值. 【思路探究】【自主解答】 画出不等式组所表示的平面区域,如图所示.(1)∵u =x 2+y 2,∴u 为点(x ,y )到原点(0,0)的距离,结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.由⎩⎪⎨⎪⎧7x -5y -23=0,4x +y +10=0得点B 的坐标为(-1,-6),∴(x 2+y 2)max =(-1)2+(-6)2=37,(x 2+y 2)min =0. (2)z =yx +5=y -0x --5,所以求z 的最大值和最小值,即是求可行域内的点(x ,y )与点(-5,0)连线斜率的最大值和最小值.设点M 的坐标为(-5,0),由⎩⎪⎨⎪⎧x +7y -11=0,4x +y +10=0得点C 的坐标为(-3,2),由(1)知点B 的坐标为(-1,-6),∴k max =k MC =2-0-3--5=1,k min =k MB =-6-0-1--5=-32,∴yx +5的最大值是1,最小值是-32. 1.本题中,(1)x 2+y 2是平面区域内的点(x ,y )到原点的距离的平方;(2)y x +5=y -0x --5可看成平面区域内的点(x ,y )与点(-5,0)连线的斜率.2.解决此类问题,应先准确作出线性约束条件表示的平面区域,然后弄清非线性目标函数的几何意义.已知x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0.(1)求z =x 2+y 2+2x -2y +2的最小值; (2)求z =|x +2y -4|的最大值. 【解】 (1)作出可行域,如图所示, ∵z =(x +12+y -12)2,∴z 可看作是可行域内任意一点(x ,y )到点M (-1,1)的距离的平方. 由图可知z min 等于原点到直线x +y -4=0的距离的平方, ∴z min =(|-4|2)2=8.(2)∵z =|x +2y -4|=5·|x +2y -4|5, ∴z 可看作是可行域内任意一点(x ,y )到直线x +2y -4=0的距离的5倍. 由图可知点C 到直线x +2y -4=0的距离最大.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点C (7,9),∴z max =|7+2×9-4|5×5=21.(对应学生用书第58页) 直线的倾斜程度判断不准致误已知⎩⎪⎨⎪⎧11x +4y ≤44,7x +5y ≤35,6x +7y ≤42,x ≥0,y ≥0,求z =x +y 的最大值.【错解】 作出可行域,如图所示.作出直线l 0:x +y =0,将它移至点B ,则点B 的坐标是可行域中的最优解,它使z 达到最大值.解方程组⎩⎪⎨⎪⎧11x +4y =44,7x +5y =35,得点B 的坐标为(8027,7727).所以z max =8027+7727=15727.【错因分析】 将直线l 0向上移动时,最后离开可行域的点不是点B 而是点A ,这是由于直线倾斜程度不准确引起的,由于三条边界直线的斜率依次是-67,-75,-114,而目标函数z =x +y 的斜率为-1,它夹在-67与-75之间,故经过点B 时,直线x +y =z 必在点A 的下方,即点B 不是向上平移直线时最后离开可行域的点,而是点A .【防范措施】 解决线性规划问题时,可行域一定要准确,关键点的位置不能画错,若数据比较大,不易画图,也可用斜率分析法确定关键点或取得最值点.【正解】 作出二元一次不等式组所表示的平面区域如上图.作出直线l ′0:x +y =0,将它向上平移,当它经过点A 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧7x +5y =35,6x +7y =42,得⎩⎪⎨⎪⎧x =3519,y =8419,故z max =3519+8419=119191.基础知识: (1)可行域; (2)线性规划. 2.基本技能: (1)解线性规划问题;(2)利用线性规划求字母参数的值(或范围); (3)求非线性目标函数的最值. 3.思想方法: (1)数形结合思想; (2)函数思想; (3)转化思想.(对应学生用书第58页)1.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则目标函数z =x +2y 的最小值为________.【解析】 画出不等式组表示的平面区域,由图可知目标函数在点(3,-3)处取得最小值-3.【答案】 -3图3-3-72.给出平面区域(包含边界)如图3-3-7所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无数多个,则a 的值为________.【解析】 由题意知-a =k AC =-35,∴a =35.【答案】 353.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2<0,x >1,x +y -7<0,则yx的取值范围是________.【解析】 目标函数y x 是可行域上的动点(x ,y )与原点连线的斜率,最小值是k OC =95,最大值是k AO =6,又可行域边界取不到,∴95<yx<6.【答案】 (95,6)4.已知x 、y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,求z =4x -3y 的最值.【解】 原不等式组表示的平面区域如图所示: 其中A (4,1)、B (-1,-6)、C (-3,2). 作与4x -3y =0平行的直线l :4x -3y =t , 即y =43x -t3,则当l 过C 点时,t 最小; 当l 过B 点时,t 最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.(对应学生用书第97页)一、填空题1.(2013·微山高二检测)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,y ≤x ,y ≥-2,则z =3x +y 的最大值为________.【解析】 不等式组表示的平面区域如图所示:把z =3x +y 变形为y =-3x +z 得到斜率为-3,在y 轴截距为z 的一族平行直线,由图当直线l :y =-3x +z 过可行域内一点M 时,在y 轴截距最大,z 也最大.由⎩⎪⎨⎪⎧x +y =1,y =-2,∴⎩⎪⎨⎪⎧x =3,y =-2,即M (3,-2).∴当x =3,y =-2时,z max =3×3+(-2)=7. 【答案】 72.(2013·苏州高二检测)变量x ,y 满足⎩⎪⎨⎪⎧2x +y ≥12,2x +9y ≥36,2x +3y ≥24,x ≥0,y ≥0,则使得z =3x +2y 的值最小的(x ,y )是________.【解析】 不等式组表示的平面区域如图所示:把z =3x +2y 变形为y =-32x +z 2,作与直线l 0:y =-32x 平行的直线l ,显然当l 经过可行域内点M 时在y 轴上截距最小,z 也最小.由⎩⎪⎨⎪⎧2x +y =12,2x +3y =24,∴⎩⎪⎨⎪⎧x =3,y =6,即M (3,6)时,z =3x +2y 的值最小. 【答案】 (3,6)3.设z =2y -2x +4,式中的x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z 的取值范围是________.【解析】 作出满足不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域(如图所示),作直线2y -2x =0,并将其平移,由图象可知当直线经过点A (0,2)时,z max =2×2-2×0+4=8; 当直线经过点B (1,1)时,z min =2×1-2×1+4=4.所以z 的取值范围是[4,8]. 【答案】 [4,8]4.(2013·连云港检测)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx的最大值是________.【解析】 不等式组表示的平面区域如图所示: 又y x =y -0x -0表示过平面区域内一点(x ,y )与原点(0,0)的直线的斜率,由图知(x ,y )在平面区域内A 点处时直线斜率最大.由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0得⎩⎪⎨⎪⎧x =1,y =32,∴A (1,32),∴y x 的最大值为32.【答案】 325.(2013·无锡检测)二元一次方程组⎩⎪⎨⎪⎧x <0,y <0,x +y +4>0表示的平面区域内,使得x +2y 取得最小值的整点坐标为________.【解析】 不等式组表示的平面区域如图所示: ∵平面区域不包括边界,∴平面区域内的整点共有(-1,-1),(-1,-2),(-2,-1)三个. 代入检验知,整点为(-1,-2)时x +2y 取得最小值. 【答案】 (-1,-2)6.已知⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,且u =x 2+y 2-4x -4y +8,则u 的最小值为________.【解析】 不等式组表示的平面区域如图所示,由已知得(x -2)2+(y -2)2=(u )2,则(u )min =|2+2-1|1+1=32,u min =92.【答案】 927.已知变量x ,y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z =ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为________.【解析】 由题设知可行域为如图所示的矩形,要使目标函数z =ax +y 在点(3,1)处取得最大值,结合图形可知a >1.【答案】 (1,+∞)8.如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为________.【解析】 首先作出不等式组表示的平面区域和曲线x 2+(y +2)2=1,如图所示,从而可知点P 到Q 的距离最小值是可行域上的点到(0,-2)的最小值减去圆的半径1,由图可知|PQ |min =12+-22-1=5-1。
3.3.3简单的线性规划问题(1)

我的记录空间:
3.3.3简单的线性规划问题(1)
一、学习目标
1.理解线性规划的基本思想;
2.掌握根据约束条件求目标函数的最值。
教学重点、难点:根据约束条件求目标函数的最值
二、课前自学
1. 在生活、生产中,经常会遇到资源利用、人力调配、生产安排的等问题,本节课就学习此方面的应用。
2.问题:在约束条件410432000
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩下,如何求目标函数2P x y =+的最大值?
分析:(1)作出约束条件所表示的平面区域-----可行域
(2)分析目标函数2P x y =+的几何意义。
(3)求出目标函数2P x y =+的最大值-----线性规划问题
三、问题探究
例1.设,x y 满足约束条件41043200
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩
(1)求当,x y 分别为多少时,目标函数2z x y =-取得最值,并求出最值;
(2)求22z x y =+的最大值。
我的记录空间: 归纳:求z ax by =+22(0)a b +≠的最值方法。
例2.已知变量,x y 满足约束条件1422
x y x y ≤+≤⎧⎨-≤-≤⎩。
若目标函数
(0)z ax y a =+>仅在点(3,1)处取得最大值,求a 的取值范围;
变题:若目标函数(0)z ax y a =+>取得最大值的点有无数个,求a 的取值
范围;
四、反馈小结
反馈:必修五P83 练习1,2,3
小结:。
江苏省泰兴市第一高级中学苏教版必修五数学《3.3.3 简单的线性规划问题(1)》教学设计

3.3。
3简单的线性规划问题(1)江苏省泰兴市第一高级中学陈燕教学目标:1.让学生了解线性规划的意义,以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念.2.让学生掌握线性规划的图解法,并会用图解法求线性目标函数的最大值与最小值.教学重点:用图解法求线性规划问题的最优解.教学难点:对用图解法求解简单线性规划问题的最优解这一方法的理解和掌握.教学方法:1.在学生的独立探究和师生的双边活动中完成简单的线性规划的数学理论的构建,在实践中掌握求解简单的线性规划问题的方法—-图解法.2.渗透数形结合的思想,培养分析问题、解决问题的能力.教学过程:一、问题情境1.情境:我们先考察生产中遇到的一个问题:(投影)某工厂生产甲、乙两种产品,生产1t甲种产品需要A种原料4t 、B 种原料12t,产生的利润为2万元;生产1t 乙种产品需要A 种原料1t 、B 种原料9t ,产生的利润为1万元.现有库存A 种原料10t ,B 种原料60t ,问如何安排才能使利润最大?为理解题意,可以将已知数据整理成下表:(投影)x 、y ,根据题意,A 、B 两种原料分别不得超过10t 和60t ,即41012960x y x y +≤⎧⎨+≤⎩,,,即4104320x y x y +≤⎧⎨+≤⎩,..这是一个二元一次不等式组,此外,产量不可能是负数,所以0,0≥≥y x ③于是上述问题转化为如下的一个数学问题:在约束条件410432000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,,,.④下,求出x ,y ,使利润(万元)y x P +=2达到最大.2.问题:上述问题如何解决? 二、学生活动①①让学生探究解决这个问题分几个步骤;②让学生分组讨论:如何在不等式组确定的区域中找到y=2取P+x得最大值的数对(x,y);③由学生整理解决这个问题的思路.(投影)首先,作出约束条件所表示的区域.其次,考虑yP+=2变x=2的几何意义,将yxP+形为P=2,它表示斜率为-2,在y轴上截距为P-y+x的一条直线.平移直线P34=x与20+yx的-xy+=2,当它经过两直线104=+y交点A(1.25,5)时,直线在y轴上的截距P最大.因此,当5x=2取得最大值5.7x时,yP+=y25,.1=+⨯,即甲、乙两2=525.1种产品分别生产1.25t和5t时,可获得最大利润7。
第一部分 第三章 3.3 第二课时 简单的线性规划问题

5.某公司租赁甲、乙两种设备生产A、B两类产品,甲种设 备每天能生产A类产品5件和B类产品10件,乙种设备每 天能生产A类产品6件和B类产品20件.已知设备甲每天 的租赁费为200元,设备乙每天的租赁费为300元,现该 公司至少要生产A类产品50件,B类产品140件,所需租 赁费最少为__________元.
3.3
第 三 章
二元 一次 不等 式组
第二 课时
简单
不 等 式
与简 单的 线性 规划
的线 性规 划问 题
问题
理解教材新知 把握热点考向 应用创新演练
考点一 考点二 考点三
返回
返回
第二课时 简单的线性规划问题 返回
返回
现在是信息时代,广告可以给公司带来效益.某公 司计划在甲、乙两个电视台做总时间不超过300分钟的 广告,广告总费用不超过9万元,甲、乙两个电视台的 收费标准分别为500元/分钟和200元/分钟. 问题1:设在甲、乙两个电视台做广告的时间分别为x分 钟,y分钟,试ห้องสมุดไป่ตู้出满足条件的不等关系.
答案:9
返回
2.在如下图所示的可行域内(阴影部分且包括边界), 目标函数z=x-y,则使z取得最小值的点的坐标 为____________.
解析:对直线y=x+b进行平移,注意b越大,z越 小故,四个点中,过点A(1,1)时 z取最小值0. 答案:(1,1)
返回
返回
[例 2]
0≤x≤1 (2011·苏 北 四 市 三 调 )在 约 束 条 件 0≤y≤2 2y-x≥1
返回
[一点通] 解答线性规划应用题的一般步骤: (1)审题——仔细阅读,对关键部分进行“精读”,准 确理解题意,明确有哪些限制条件,起关键作用的变量 有哪些,由于线性规划应用题中的量较多,为了理顺题 目中量与量之间的关系,有时可借助表格来理顺. (2)转化——设元.写出约束条件和目标函数,从而 将实际问题转化为数学上的线性规划问题. (3)求解——解这个纯数学的线性规划问题. (4)作答——就应用题提出的问题作出回答.
江苏省靖江市第一高级中学高中数学必修五苏教版课件:3.3.3 简单的线性规划问题(2)

一、问题情景
某校办工厂有方木料90m3,五合板600m2,正准备为外校新生加工 新桌椅和书橱出售.已知生产每张书桌需要方木料0.1m3,五合板2m2 ,生产每个书橱需要方木料0.2m3,五合板1m2,出售一张书桌可获 利润80元,出售一张书橱可获利润120元.
(1)假设你是工厂的生产科长,请你按要求设计出工厂的生产方案。 方案一:若只生产书桌,用完五合板,可生产书桌300张,可获得利 润80×300=24000元,但方木料没有用完. 方案二:若只生产书橱,用完方木料,可生产450张书橱,可获得利 润120×450=54000元,但五合板没有用完.
学段
初中 高中
班级学生数 配备教师数
45
2
40
3
硬件建设 (万元)
26/班 54/班
教师年薪 (万元)
2/人 2/人
分别用数学关系式和图形表示上述限制条件.若根据有关部门的规 定,初中每人每年可收学费1600元,高中每人每年可收学费2700元.因 生源和环境等条件限制,办学规模以20至30个班为宜(含20个与30个) 那么开设初中班和高中班多少个?每年收费的学费总额最多?
xN
y N
目标函数为: z 80x 120y
(3)如果你是厂长,为使工厂原料充分利用,问怎么安排能 够使资源最大限度的利用,且可获得最大利润? 方案三、生产书桌100张,书橱400张,有最大利润为56000元.
二、线性规划在实际中的应用
线性规划的理论和方法主要在两类问题中得到应用,
一是在人力、物力、资金等资源一定的条件下,如何使用它们来完 成最多的任务;
二是给定一项任务,如何合理安排和规划,能以最少的人力、 物力、资金等资源来完成该项任务.
数学:3.3.3《线性规划的实际应用》课件(新人教A版必修5)

线性规划的实际应用
解线性规划应用问题的一般步骤:
1、理清题意,列出表格; 2、设好变元,列出线性约束条件(不 等式组)与 目标函数; 3、准确作图; 4、根据题设精度计算。
线性规划的实际应用
例1 某纺纱厂生产甲、乙两种棉纱,已知生产甲 种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生 产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每 1吨甲种棉纱的利润是600元,每1吨乙种棉纱的 利润是900元,工厂在生产这两种棉纱的计划中 要求消耗一级子棉不超过300吨、二级子棉不超 过250吨.甲、乙两种棉纱应各生产多少(精确到 吨),能使利润总额最大? 乙种棉纱 资源限额 产品 甲种棉纱
复习二元一次不等式表示的平面区域
y 90 在平面直角坐标系中,以二 80 结论:二元一次不 元一次方程x+y-1=0的解为坐 70 x+y-1>0 标的点的集合{(x,y)|x+y-1=0} 等式ax+by+c>0在平面 1 60 是经过点(0,1)和(1,0)的一 直角坐标系中表示直线 50 东部 条直线 l, 那么以二元一次不等 ax+by+c=0某一侧所有 西部 40 1 O x 式x+y-1>0的解为坐标的点的 北部 点组成的平面区域。不 30 集 合 { ( x , y ) | x + y - 1 > 0 } 是 x+y-1<0 等式 ax+by+c<0表示的 20 什么图形? 是另一侧的平面区域。 10 x+y-1=0
新课标人教版课件系列
《高中数学》
必修5
3.3.3《线性规划的 实际应用》
审校:王伟
教学目标
高中数学 同步教学 简单的线性规划问题

x (1)
2
率的 2 倍,
因为 kQA= 7 ,kQB= 3 ,所以 z 的取值范围是[ 3 , 7 ].
48
42
方法技巧 与二元一次不等式(组)表示的平面区域有关的非线性目标函数 的最值问题的求解,一般要结合给定代数式的几何意义来完成.
常 见 代 数 式 的 几 何 意 义 :(1) x2 y2 表 示 点 (x,y) 与 原 点 (0,0) 的 距
4.给定下列命题:在线性规划中,
①最优解指的是使目标函数取得最大值的变量x或y的值;
②最优解指的是目标函数的最大值或最小值;
③最优解指的是使目标函数取得最大值或最小值的可行域;
④最优解指的是使目标函数取得最大值或最小值的可行解.
其中正确命题的序号是
.
解析:因为最优解是使目标函数取得最大值或最小值的可行解,即满足 线性约束条件的解(x,y),它是一个有序实数对,所以①②③均错,④正确. 故填④. 答案:④
变式探究:在本例的约束条件下,求z=x2+y2+2x的最大值与最小值.
解:z=x2+y2+2x=(x+1)2+y2-1 表示可行域内任意一点(x,y)与点 D(-1,0)距离的平方减去 1,
如图所示,过 D 作 AB 的垂线 DP,垂足为 P,所以|DP|= | 1 0 4 | = 5 = 5 2 ,
(2)简单线性规划问题的解法 在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤 可概括为“画、移、求、答”,即: ① 画 : 在 平 面 直 角 坐 标 系 中 , 画 出 可 行 域 和 直 线 ax+by=0( 目 标 函 数 为 z=ax+by); ②移:平行移动直线ax+by=0,确定使z=ax+by取得最大值或最小值的点; ③求:求出使z取得最大值或最小值的点的坐标(解方程组)及z的最大值或 最小值; ④答:给出正确答案.
人教a版必修5学案:3.3二元一次不等式(组)与简单的线性规划问题(含答案)

3.3 二元一次不等式(组)与简单的线性规划问题材拓展1.二元一次不等式(组)表示平面区域(1)直角坐标平面内的一条直线Ax +By +C =0把整个坐标平面分成三部分,即直线两侧的点集和直线上的点集.(2)若点P 1(x 1,y 1)与P 2(x 2,y 2)在直线l :Ax +By +C =0的同侧(或异侧),则Ax 1+By 1+C 与Ax 2+By 2+C 同号(或异号).(3)二元一次不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.2.画二元一次不等式表示的平面区域常 采用“直线定界,特殊点定域”的方法(1)直线定界,即若不等式不含等号,应把直线画成虚线;含有等号,把直线画成实线. (2)特殊点定域,即在直线Ax +By +C =0的某一侧取一个特殊点(x 0,y 0)作为测试点代入不等式检验,若满足不等式,则表示的区域就是包括这个点的这一侧,否则就表示直线的另一侧.特别地,当C ≠0时,常把原点作为测试点.当C =0时,常把点(1,0)或点(0,1)作为测试点.3.补充判定二元一次不等式表示的区域 的一种方法先证一个结论已知点P (x 1,y 1)不在直线l :Ax +By +C =0 (B ≠0)上,证明: (1)P 在l 上方的充要条件是B (Ax 1+By 1+C )>0; (2)P 在l 下方的充要条件是B (Ax 1+By 1+C )<0. 证明 (1)∵B ≠0,∴直线方程化为y =-A B x -CB,∵P (x 1,y 1)在直线上方,∴对同一个横坐标x 1,直线上点的纵坐标小于y 1,即y 1>-A B x 1-CB.(*)∵B 2>0,∴两端乘以B 2,(*)等价于B 2y 1>(-Ax 1-C )B , 即B (Ax 1+By 1+C )>0.(2)同理,由点P 在l 下方,可得y 1<-A B x 1-CB,从而得B 2y 1<(-Ax 1-C )B ,移项整理为B (Ax 1+By 1+C )<0. ∵上述解答过程可逆,∴P 在l 上方⇔B (Ax 1+By 1+C )>0, P 在l 下方⇔B (Ax 1+By 1+C )<0. 从而得出下列结论:(1)B >0时,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0上方的平面区域(不包括直线),而Ax +By +C <0表示直线Ax +By +C =0下方的平面区域(不包括直线).(2)B <0时,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0下方的区域(不包括直线),而二元一次不等式Ax +By +C <0表示直线Ax +By +C =0上方的平面区域(不包括直线).(3)B =0且A >0时,Ax +C >0表示直线Ax +C =0右方的平面区域(不包括直线),Ax +C <0表示直线Ax +C =0左方的平面区域(不包括直线).(4)B =0且A <0时,Ax +C >0表示直线Ax +C =0左方的平面区域(不包括直线),Ax +C <0表示直线Ax +C =0右方的平面区域(不包括直线).法突破一、二元一次不等式组表示的平面区域方法链接:只要准确找出每个不等式所表示的平面区域,然后取出它们的重叠部分,就可以得到二元一次不等式组所表示的平面区域.例1 在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1 C.12 D.14 解析答案 B二、平面区域所表示的二元一次不等式(组)方法链接:由平面区域确定不等式时,我们可以选用特殊点进行判断,把特殊点代入直线方程Ax +By +C =0,根据代数式Ax +By +C 的符号写出对应的不等式,根据是否包含边界来调整符号.例2 如图所示,四条直线x +y -2=0,x -y -1=0,x +2y +2=0,3x -y +3=0围成一个四边形,则这个四边形的内部区域(不包括边界)可用不等式组____________表示.解析 (0,0)点在平面区域内,(0,0)点和平面区域在直线x +y -2=0的同侧,把(0,0)代入到x +y -2,得0+0-2<0,所以直线x +y -2=0对应的不等式为x +y -2<0,同理可得到其他三个相应的不等式为x +2y +2>0,3x -y +3>0,x -y -1<0, 则可得所求不等式组为三、和平面区域有关的非线性问题方法链接:若目标函数为线性时,目标函数的几何意义与直线的截距有关.若目标函数为形如z =y -bx -a,可考虑(a ,b )与(x ,y )两点连线的斜率.若目标函数为形如z =(x -a )2+(y -b )2,可考虑(x ,y )与(a ,b )两点距离的平方. 例3 (2009·山东济宁模拟)已知点P (x ,y )满足点Q (x ,y )在圆(x +2)2+(y +2)2=1上,则|PQ |的最大值与最小值为( )A .6,3B .6,2C .5,3D .5,2解析可行域如图阴影部分,设|PQ |=d ,则由图中圆心C (-2,-2)到直线4x +3y -1=0的距离最小,则到点A 距离最大.由得(-2,3). ∴d max =|CA |+1=5+1=6,d min =|-8-6-1|5-1=2.答案 B四、简单的线性规划问题方法链接:线性规划问题最后都能转化为求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb的最值间接求出z的最值.例4 某家具公司制作木质的书桌和椅子两种家具,需要木工和漆工两道工序,已知木工平均四个小时做一把椅子,八个小时做一张书桌,该公司每星期木工最多有8 000个工作时;漆工平均两小时漆一把椅子,一个小时漆一张书桌,该公司每星期漆工最多有1 300个工作时,又已知制作一把椅子和一张书桌的利润分别是15元和20元,根据以上条件,怎样安排生产能获得最大利润?解 依题意设每星期生产x 把椅子,y 张书桌, 那么利润p =15x +20y .其中x ,y 满足限制条件{ 4x +8y ≤x +y ≤x ≥0,x ∈N *y ≥0,y ∈N *. 即点(x ,y )的允许区域为图中阴影部分,它们的边界分别为4x +8y =8 000(即AB ),2x +y =1 300(即BC ),x =0(即OA )和y =0(即OC ).对于某一个确定的p =p 0满足p 0=15x +20y ,且点(x ,y )属于阴影部分的解x ,y 就是一个能获得p 0元利润的生产方案.对于不同的p ,p =15x +20y 表示一组斜率为-34的平行线,且p 越大,相应的直线位置越高;p 越小,相应的直线位置越低.按题意,要求p 的最大值,需把直线p =15x +20y 尽量地往上平移,又考虑到x ,y 的允许范围,当直线通过B 点时,处在这组平行线的最高位置,此时p 取最大值.由{ 4x +8y =8 00x +y =1 300,得B (200,900), 当x =200,y =900时,p 取最大值, 即p max =15×200+20×900=21 000,即生产200把椅子、900张书桌可获得最大利润21 000元.区突破1.忽略截距与目标函数值的关系而致错 例1 设E 为平面上以A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界),求z =4x -3y 的最大值与最小值.[错解]把目标函数z =4x -3y 化为y =43x -13z .根据条件画出图形如图所示,当动直线y =43x -13z 通过点C 时,z 取最大值;当动直线y =43x -13z 通过点B 时,z 取最小值.∴z min =4×(-1)-3×(-6)=14; z max =4×(-3)-3×2=-18.[点拨] 直线y =43x -13z 的截距是-13z ,当截距-13z 最大即过点C 时,目标函数值z 最小;而当截距-13z 最小即过点B 时,目标函数值z 最大.此处容易出错.[正解] 把目标函数z =4x -3y 化为y =43x -13z .当动直线y =43x -13z 通过点B 时,z 取最大值;当动直线y =43x -13z 通过点C 时,z 取最小值.∴z max =4×(-1)-3×(-6)=14; z min =4×(-3)-3×2=-18.2.最优整数解判断不准而致错 例2 设变量x ,y 满足条件求S =5x +4y 的最大值.[错解] 依约束条件画出可行域如图所示,如先不考虑x 、y 为整数的条件,则当直线5x +4y =S 过点A ⎝⎛⎭⎫95,2310时,S =5x +4y 取最大值,S max =18 15.因为x 、y 为整数,所以当直线5x +4y =t 平行移动时,从点A 起通过的可行域中的整点是C (1,2),此时S max =13.[点拨] 上述错误是把C (1,2)作为可行域内唯一整点,其实还有一个整点B (2,1),此时S =14才是最大值.[正解] 依据已知条件作出图形如图所示,因为B (2,1)也是可行域内的整点,由此得S B =2×5+1×4=14,由于14>13,故S max =14.温馨点评 求最优整数解时,要结合可行域,对所有可能的整数解逐一检验,不要漏掉解.题多解例 某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有() A.5种B.6种C.7种D.8种解析方法一由题意知,按买磁盘盒数多少可分三类:买4盒磁盘时,只有1种选购方式;买3盒磁盘时,有买3片或4片软件两种选购方式;买2盒磁盘时,可买3片、4片、5片或6片软件,有4种选购方式,故共有1+2+4=7(种)不同的选购方式.方法二先买软件3片,磁盘2盒,共需320元,还有180元可用,按不再买磁盘,再买1盒磁盘、再买两盒磁盘三类,仿方法一可知选C.方法三设购买软件x片,磁盘y盒.则,画出线性约束条件表示的平面区域,如图所示.落在阴影部分(含边界)区域的整点有(3,2),(3,3),(3,4),(4,2),(4,3),(5,2),(6,2)共7个整点.答案 C题赏析1.(2011·浙江)设实数x,y满足不等式组{x+2y-5>0,x+y-7>0,x≥0,y≥0,且x,y为整数,则3x+4y的最小值是()A.14 B.16C.17 D.19解析作出可行域,如图中阴影部分所示,点(3,1)不在可行域内,利用网格易得点(4,1)符合条件,故3x+4y的最小值是3×4+4×1=16.答案 B2.(2009·烟台调研)若x,y满足约束条件{x+y≥x-y≥-x-y≤2,目标函数z =ax+2y仅在点(1,0)处取得最小值,则a的取值范围是()A.(-1,2) B.(-4,2) C.(-4,0] D.(-2,4)解析作出可行域如图所示,直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,即-4<a <2. 答案 B赏析 本题考查线性规划的基本知识,要利用好数形结合.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3.3 简单线性规划问题
教学目标:
1.理解线性规划问题的有关概念
2.掌握简单的二元线性规划问题的求解方法.
3.能将有关的实际问题抽象为简单的二元线性规划问题. 教学重点:
简单二元线性规划问题的图解法. 教学过程: 一.问题情境
某工厂生产甲、乙两种产品,生产1吨甲种产品需要A 种原料4吨、B 种原料12吨,产生的利润为2万元;生产1吨乙种产品需要A 种原料1吨、B 种原料9吨,产生的利润为1万元.现有库存A 种原料10吨、B 种原料60吨,如何安排生产才能使利润最大?
为了理解题意,我们可以将已知数据整理成下表:
设计划生产甲,乙两种产品的吨数分别为x ,y ,根据题意,A ,B 两种原料分别不得超过10吨和60吨,所以上述问题转化为:
在约束条件⎩
⎨⎧4x +y ≤10,4x +3y ≤20,
x ≥0,y ≥0
下,求出x ,y 使利润P =2x +y 达到最大.
约束条件⎩
⎨⎧4x +y ≤10,4x +3y ≤20,
x ≥0,
y ≥0
可以表示平面区域(如图)
x ,y 取什么值时,P =2x +y 会达到最大呢? x ,y 取不同的值,P 是不是一定不同? P =2x +y 可以表示什么?
对于动直线,P 有没有几何意义?
P =2x +y 变形为y =-2x +P ,它表示斜率为-2,纵截距为P 的动直线,
动直线y =-2x +P 必须经过平面区域. 作直线l 0:y =-2x .
作与l 0平行的动直线l :y =-2x +P ,P ∈R . 从图上可以看出:当l 在l 0的右上方时,直线l 往右平移时,P
随着增大,在经过不等式组所表示的公共区域内的点且平行于l 的直线中,当直线l :y =-2x +P 经过两直线4x +y =10与4x +3y =20的 交 点A (1.25,5)时,直线l 在y 轴上的截距P 最大.
因此,当x =1.25,y =5时,目标函数取得最大值2×1.25+5=7.5,即甲、乙两种产品分别生产1.25吨和5吨时,可获得最大利润7.5万元.
A
B C 0
l l l
二.数学理论
(1)线性约束条件
在上述问题中,不等式组是一组变量x ,y 的约束条件,这组约束条件都是关于x ,y 的一次不等式,故又称线性约束条件.
(2)线性目标函数
关于x ,y 的一次式P =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.
(3)线性规划问题: 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
(4)可行域和最优解
约束条件所表示的平面区域叫做可行域.
使目标函数取得最大或最小值的解叫线性规划问题的最优解.
在上面的引例中,可行域是图中的阴影部分表示的四边形区域,其中A (1.25,5)使目标函数取得最大值,这个解就是这个问题的一个最优解.
线性规划是一种重要的优化模型,生产实际中有许多问题都可以归结为线性规划问题. 三.数学应用
一、在可行域中寻找最优解
例1 确定可行域
⎪⎨⎪⎧x -y +3≥0,x +y -5≤0,
2x -y -4≤0,x ≥0, 求z 的最大值.
解1 作出可行域(如图)
因为y x z
2+=,所以221z
x y +-=.
作直线l :221z
x y +-=.由⎩⎨⎧-=-=+,
3,5y x y x 得点A (1,4).
当直线l 过点A 时,2
z
取得最大值,这时z 取得最大值, 所以z max =1+2×4=9.
解2 作出可行域(如图)
因为y x z +=,所以z x y +-=.
作直线l :z x y +-=.由⎩
⎨⎧-=-=+,3,
5y x y x 得点A (1,4).
当点),(y x 在线段AB 上移动时,z 取得最大值. 所以z max =1+4=5.
结论:
1、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得.
2、求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义:在y 轴上的截距或其相反数.
解线性规划问题的步骤:
(1)画:画出线性约束条件所表示的可行域;
(2)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;
(3)求:通过解方程组求出最优解;
(4)答:作出答案.
例2. 投资生产A 产品时,每生产一百吨需要资金200万元,需场地200m2,可获利润300万元;投资生产B 产品时,每生产一百米需要资金300万元,需场地100m2,可获利润200万元.现某单位可使用资金1400万元,场地900m2,问:应作怎样的组合投资,可使获利最大?
分析:这是一个二元线性规划问题,求解之前,先将题中的数据整理成下表:
解:设生产A 产品x 百吨,生产B 产品y 百米,利润为S 百万元,
则约束条件为⎩
⎨⎧2x +3y ≤14,2x +y ≤9,
x ≥0,y ≥0
目标函数为S =3x +2y .
将目标函数S =3x +2y 变形为
y =-32x +S 2.
这是斜率为-3
2
,随S 变化的一族直线.
S 2是直线在y 轴上的截距,当S
2
最大时,S 最大,但直线要与可行域相交. 如图,使3x +2y 取得最大值的(x ,y )是两直线2x +y =9与2x +3y =14的交点(3.25,2.5),此时S =14.75.
答:生产A 产品325吨,生产B 产品250m时,获利最大,且最大利润为1475万元.
备用题:
某运输公司向某地区运送物资,每天至少运送180吨.该公司有8辆载重为6吨的A 型卡车与4辆载重为10吨的B 型卡车,有10名驾驶员.每辆卡车每天往返次数为A 型车4次,B 型车3次.每辆卡车每天往返的成本费A 型车为320元,B 型车为504元.试为该公司设计调配车辆方案,使公司花费的成本最低
解 设每天调出A 型车x 辆,B 型车y 辆,公司花费成本z 元,
则约束条件为⎩
⎪⎨⎪⎧x +y ≤10,4x +5y ≥30,
0≤x ≤8,0≤y ≤4,x ,y ∈Z.
目标函数:z =320x +504y . 作出可行域(如图),
问题:(5,2)和(8,0)哪个是最优解,该如何确定?
当直线320x +504y =z 经过直线4x +5y =30与x 轴的交点时,z有最小值,由于该点不是整点,故不是最优解.
由图可知,经过可行域内的整点(8,0),即x =8,y =0时,z min =2560. 答 公司每天调出A 型车8辆时,花费的成本最低.
例4.要将两种大小不同的钢板截成A、B、C
三种规格,每张钢板可同时截得三种规格
的小钢板的块数如下表所示:
27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?
解:设需截第一种钢板x 张,第二种钢板y 张,则⎪⎪⎪⎩⎪
⎪⎪⎨⎧∈≥≥≥+≥+≥+.
,,0,0,273,182,152Z y x y x y x y x y x
作出可行域(如右图):(阴影部分)
目标函数为y x z +=.
作出一组平行直线x +y =t ,其中经过可行域内
的点且和原点距离最近的直线,经过直线x +3y =27
和直线2x +y =15的交点A (5
39
,518)
,直线方程为x +y =
557. 由于539516和都不是整数,而最优解(x ,y )中,x ,y 必须都是整数,可行域内点(5
39,518)
不是最优解.
经过可行域内的整点且与原点距离最近的直线是x +y =12,经过的整点是B (3,9)和C (4,8),它们都是最优解.
答:要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种:第一种截法是截第一种钢板3张,第二种钢板9张;第二种截法是截第一种钢板4张,第二种钢板8
张,两种方法都最少要截两种钢板共12张. [说明] 在例题中,线性规划问题的最优解(
5
39
,518)不是实际问题的最优解,应注意到具有实际意义的x ,y 应满足x ∈N ,y ∈N .故最优解应是整点坐标.
例:在约束条件⎩⎪⎨⎪⎧2x +5y ≥10,
2x -3y ≥-6,2x +y ≤10.下,
求z =x 2+y 2
的最大值和最小值. z max
=25
0=
z inx =4
例:已知⎩⎪⎨⎪⎧x -4y +3≤0,
3x +5y -25≤0,x ≥1.
求目标函数z =y
x
的最值.
z min =25,z max =225
.。