山东省济宁市学而优教育咨询有限公司高中数学周练(11)(扫描版,无答案)新人教A版必修5

合集下载

山东省济宁市学而优教育咨询有限公司高中数学测试题1新人教A版必修5

山东省济宁市学而优教育咨询有限公司高中数学测试题1新人教A版必修5

山东省济宁市学而优教育咨询有限公司高中数学测试题1 新人教A 版必修5第Ⅰ卷 (共60分)一、选择题(本大题共12小题,每小题5分,满分60分;每小题给出的四个选项中只有一项是符合题目要求的.) 1.若a ,b ∈R ,且ab >0,则下列不等式恒成立的是( ).A .a 2+b 2>2abB .a +b ≥2abC.1a +1b>2abD.b a +ab≥22. 数列{}n a 的通项公式11++=n n a n ,则该数列的前( )项之和等于9。

A .98 B .99 C .96 D .973.设变量x ,y 满足约束条件⎝ ⎛x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( ).A .⎣⎢⎡⎦⎥⎤-32,6 B.⎣⎢⎡⎦⎥⎤-32,-1 C .[-1,6]D.⎣⎢⎡⎦⎥⎤-6,324. 下列命题中为真命题的是( )A .命题“若x >y ,则x >|y |”的逆命题B .命题“若x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题aD .命题“若x 2>0,则x >1”的逆否命题5.如果数列{a n }的前n 项和S n =32a n -3,那么这个数列的通项公式是( )A .a n =2(n 2+n +1) B .a n =3·2nC .a n =3n +1D .a n =2·3n6.3x >是113x <的 ( ) A .必要不充分条件 B.充要条件C. 充分不必要条件D. 既非充分又非必要条件7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a cos A =b sin B ,则sin A cos A +cos 2B 等于( ). A .-12 B.12 C .-1 D .18.下列函数中,当x 取正数时,最小值为2 的是 ( )A. 4y x x =+B.1lg lg y x x=+C. y =223y x x =-+9已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞) C.⎝ ⎛⎭⎪⎫13,12D.⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞10.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( ) A.73B.37C.43D.3411.在ABC ∆中,角,,A B C 所对边的长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )12 D. 12-12. 数列112,314,518,7116,…的前n 项和S n 为( ).A .n 2+1-12n -1B .n 2+2-12nC .n 2+1-12nD .n 2+2-12n -1第Ⅱ卷二.填空题: 本大题共4小题,每小题4分,满分16分.13.已知a >0,b >0,且a +2b =1.则1a +1b的最小值为______14.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C = . 15.在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_____。

山东省济宁市学而优教育咨询有限公司高中数学必修4巩固练习:111 任意角

山东省济宁市学而优教育咨询有限公司高中数学必修4巩固练习:111 任意角

任意角1.下列命题中,正确的是()[解析]锐角是第一象限角,但第一象限角不一定是锐角,因此A错误;由终边相同角的概念知C正确.2.-215°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角[答案] B[解析]由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.3.下列各组角中,终边相同的是()A.390°,690°B.-330°,750°C.480°,-420°D.3000°,-840°[答案] B4.与-457°角终边相同角的集合是()A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}[答案] C[解析]与-457°角终边相同的角是α=k·360°-457°,k∈Z,而α=k·360°+263°=(k+2)·360°+263°-720°=(k+2)·360°-457°,k∈Z.∴与-457°角终边相同角的集合是C.5.下列各角中,与60°角终边相同的角是()A.-300°B.-60°C.600°D.1380°[答案] A[解析]与60°角终边相同的角α=k·360°+60°,k∈Z,令k=-1,则α=-300°,故选A.6.将90°角的终边按顺时针方向旋转30°所得的角等于________.[答案]60°7.若α、β两角的终边互为反向延长线,且α=-120°,则β=______________.[答案]k·360°+60°,k∈Z[解析]先求出β的一个角,β=α+180°=60°.再由终边相同角的概念知:β=k·360°+60°,k∈Z.8.给出下列四个命题,其中正确的命题有()①-75°是第四象限角②225°是第三象限角③475°是第二象限角④-315°是第一象限角A.1个B.2个C.3个D.4个[答案] D[解析]由终边相同角的概念知:①②③④都正确,故选D.9、已知α与120°角的终边关于x轴对称,则α2是()A.第二或第四象限角B.第一或第三象限角C.第三或第四象限角D.第一或第四象限角[答案] A[解析]由α与120°角的终边关于x轴对称,可得α=k·360°-120°,k∈Z,∴α2=k·180°-60°,k∈Z,取k=0,1可确定α2终边在第二或第四象限.10.若角θ是第四象限角,则90°+θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角[答案] A[解析]如图所示,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.11.下列说法中,正确的是()A.第二象限的角是钝角B.第二象限的角必大于第一象限的角C.-150°是第二象限角D.-252°16′,467°44′,1187°44′是终边相同的角[答案] D[解析]第二象限的角中,除包含钝角以外,还包含与钝角相差k·360°(k ∈Z)的角,如460°是第二象限的角但不是钝角,故选项A错;460°是第二象限的角,730°是第一象限角,显然460°小于730°,故选项B错;选项C 中-150°应为第三象限角,故选项C错;选项D中三个角相差360°的整数倍,则它们的终边相同.12.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B 等于[解析]当k=-1时,α=-126°∈B;当k=0时,α=-36°∈B;当k=1时,α=54°∈B;当k=2时,α=144°∈B.13.(2011~2012·黑龙江五校联考)与-2013°终边相同的最小正角是________.[答案]147°14.(2011~2012·镇江高一检测)将分针拨快10分钟,则分针所转过的度数为________.[答案]-60°B级1.已知角β的终边在图中阴影所表示的范围内(不包括边界),那么β∈________.[答案]{α|n·180°+30°<α<n·180°+150°,n∈Z}[解析]在0°~360°范围内,终边落在阴影内的角α的取值范围为30°<α<150°与210°<α<330°,所以所有满足题意的角α的集合为{α|k·360°+30°<α<k·360°+150°,k∈Z}∪{α|k·360°+210°<α<k·360°+330°,k∈Z}={α|2k·180°+30°<α<2k·180°+150°,k∈Z}∪{α|(2k+1)180°+30°<α<(2k +1)180°+150°,k∈Z}={α|n·180°+30°<α<n·180°+150°,n∈Z}.2.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OM上;(2)终边落在直线OM上;(3)终边落在阴影区域内(含边界).[解析](1)终边落在射线OM上的角的集合为A={α|α=45°+k·360°,k∈Z}.(2)终边落在射线OM反向延长线上的角的集合为B={α|α=225°+k·360°,k∈Z},则终边落在直线OM上的角的集合为A∪B={α|α=45°+k·360°,k∈Z}∪{α|α=225°+k·360°,k∈Z} ={α|α=45°+2k·180°,k∈Z}∪{α|α=45°+(2k+1)·180°,k∈Z} ={α|α=45°+n·180°,n∈Z}.(3)同理,得终边落在直线ON上的角的集合为{β|β=60°+n·180°,n∈Z},故终边落在阴影区域内(含边界)的角的集合为{α|45°+n·180°≤α≤60°+n·180°,n∈Z}.3.如图,已知直线l1:y=33x及直线l2:y=-3x,请表示出终边落在直线l1或l2上的角.[解析]由题意知,终边落在直线l1上的角的集合为M1={α|α=30°+k 1·360°,k 1∈Z }∪{α|α=210°+k 2·360°,k 2∈Z }={α|α=30°+k ·180°,k ∈Z };终边落在直线l 2上的角的集合为M 2={α|α=120°+k 1·360°,k 1∈Z }∪{α|α=300°+k 2·360°,k 2∈Z }={α|α=120°+k ·180°,k ∈Z }.所以终边落在直线l 1或l 2上的角的集合为M =M 1∪M 2={α|α=30°+k ·180°,k ∈Z }∪{α|α=120°+k ·180°,k ∈Z }={α|α=30°+2k ·90°,k ∈Z }∪{α|α=30°+(2k +1)·90°,k ∈Z }={α|α=30°+n ·90°,n ∈Z }.4.在角的集合{α|α=k ·90°+45°,k ∈Z }中, (1)有几种终边不相同的角?(2)若-360°<α<360°,则α共有多少个?[解析] (1)在给定的角的集合中,终边不相同的角共有四种,分别是与45°,135°,-135°,-45°终边相同的角.(2)令-360°<k ·90°+45°<360°,得-92<k <72.又∵k ∈Z ,∴k =-4,-3,-2,-1,0,1,2,3. ∴满足条件的角共有8个.。

山东省济宁市学而优教育咨询有限公司高中数学测试题10新人教A版必修5

山东省济宁市学而优教育咨询有限公司高中数学测试题10新人教A版必修5

山东省济宁市学而优教育咨询有限公司高中数学测试题10 新人教A 版必修5第Ⅰ卷(共50分)一、选择题(本大题共10小题,每小题5分,共50分)1.在ABC ∆中, 已知060,34,4===B b a ,则角A 的度数为 ( ) A . 030 B .045 C .060 D .090 2.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .101 D . 102 3.已知0x >,函数4y x x =+的最小值是 ( ) A .5 B .4 C .8 D .6 4、各项均为正数的等比数列{}n a 的前n 项和为Sn ,若10s =2,30s =14,则40s 等于 A .80 B .26 C .30 D .16 5.不等式13()()022x x +-≥的解集是 ( )A. 13{|}22x x -≤≤B. 13{|}22x x x ≤-≥或C. 13{|}22x x -<<D. 13{|}22x x x <->或6.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为 ( )A . 5 B. 3 C. 7 D. -8 7.不等式20(0)ax bx c a ++<≠的解集为R ,那么 ( ) A. 0,0a <∆< B. 0,0a <∆≤ C. 0,0a >∆≥ D. 0,0a >∆> 8.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )A .21B .23C.1D.39. 等差数列{}n a 的前m 项和为20,前2m 项和为70,则它的前3m 的和为( )A. 130B. 150C. 170D. 21010.在等比数列}{n a 中,公比q=2,且30303212=⋅⋅⋅⋅a a a a ,则30963a a a a ⋅⋅⋅⋅ 等于( ) A.102 B.202 C 162 D 152 第Ⅱ卷(共100分)二、填空题(本大题共5小题,每小题5分,共25分)11.若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为;数列{}n na 中数值最小的项是第项.12. 在ABC ∆中,33a =,2b =,150C ︒=,则c = __________. 13.若不等式02>++b x ax 的解为,2131<<-x 则=a ,=b . 14.定义一种新的运算“*”对任意正整数n 满足下列两个条件:(1)111=*),1(21)1)(2(*+=*+n n 则=*12006____________15.若对于一切正实数x 不等式xx 224+>a 恒成立,则实数a 的取值范围是三、解答题(本大题共6小题,共75分.解答应写文字说明,证明过程或演算步骤.)16.(本小题满分12分)已知等比数列{}n a 中,45,106431=+=+a a a a ,求其第4项及前5项和.17.(本小题满分12分)求下列不等式的解集:(1)2610x x --≥ (2) 21582≥+-x x x18.(本小题满分12分)如图,货轮在海上以35n mile/h 的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为︒152的方向航行.为了确定船位,在B 点处观测到灯塔A 的方位角为︒122.半小时后,货轮到达C 点处,观测到灯塔A 的方位角为︒32.求此时货轮与灯塔之间的距离.19.(本小题满分12分)已知等比数列{}13232423,2,n a a a a a a a +=+满足且是的等差中项. (I )求数列{}n a 的通项公式;(II )若212l ,,n n n n n n b a og a S b b b S =+=++⋅⋅⋅+求.20.(本小题满分13分)数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N . (Ⅰ)求数列{}n a 的通项n a ; (Ⅱ)求数列{}n na 的前n 项和n T .21.(本小题满分14分)某造纸厂拟建一座平 面图形为矩形且面积为162平方米的 三级污水处理池,池的深度一定(平面图如图所示), 如果池四周围墙建造单价为400元/米,中间两道隔 墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低,并求 出最低总造价.AC B 北 北152o32 o122o【一】选择题(本大题共10小题,每小题5分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 答案ACBCACABBB【二】填空题(本大题共5小题,每小题5分,共25分,11、13题第一空3分,第二空2分) 11. 211n -3 12. 713.=a -6 ,=b 1 14 4011 15. a<24 16.解:设公比为q , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1分由已知得 ⎪⎩⎪⎨⎧=+=+45105131211q a q a q a a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 3分 即⎪⎩⎪⎨⎧=+=+ 45)1(①10)1(23121 q q a q a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 5分 ②÷①得 21,813==q q 即 , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 7分 将21=q 代入①得 81=a , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 8分 1)21(83314=⨯==∴q a a , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 10分231211)21(181)1(5515=-⎥⎦⎤⎢⎣⎡-⨯=--=q q a s ┄┄┄┄┄┄┄┄┄┄ 12分17.解:(1)方程0162=--x x 的两解为31,2121-==x x ,根据函数图像可知原不等式2610x x --≥的解为}3121|{-≤≥x x x 或 ┄┄┄┄┄ 7分 (2)解:原不等式等价于:0158301720158301720215822222≤+-+-⇔≥+--+-⇔≥-+-x x x x x x x x x x x3250)5)(3()52)(6(<≤⇔≤----⇔x x x x x 或65≤<x ∴原不等式的解集为]6,5()3,25[ ┄┄┄┄ 14分18.在△ABC 中,∠B=152o-122o=30o,∠C=180o-152o+32o=60o,∠A=180o-30o-60o=90o,┄┄┄┄┄(4分) BC =235,┄┄┄┄┄(6分) ②∴AC=235sin30o=435.┄┄┄┄┄(12分) 答:船与灯塔间的距离为435n mile .19.20、解:(Ⅰ)12n n a S +=,12n n n S S S +∴-=,13n nS S +∴=. 又111S a ==,∴数列{}n S 是首项为1,公比为3的等比数列,1*3()n n S n -=∈N .当2n ≥时,21223(2)n n n a S n --==≥,21132n n n a n -=⎧∴=⎨2⎩, ,,≥.………………… 5分 (Ⅱ)12323n n T a a a na =++++,………………………6分当1n =时,11T =;………………………7分 当2n ≥时,0121436323n n T n -=++++,…………①12133436323n n T n -=++++,………………………②………………………9分-①②得:12212242(333)23n n n T n ---=-+++++-213(13)222313n n n ---=+--11(12)3n n -=-+-.………………………12分1113(2)22n n T n n -⎛⎫∴=+- ⎪⎝⎭≥.………………………13分 又111T a ==也满足上式,1*113()22n n T n n -⎛⎫∴=+-∈ ⎪⎝⎭N . ………14分 21.解:(1)设污水处理池的宽为x 米,则长为米. 则总造价,当且仅当x=(x >0),即x=10时取等号.∴当长为16.2 米,宽为10 米时总造价最低,最低总造价为38 880 元.(2)由限制条件知,∴10≤x ≤16设g(x)=x+.g (x )在上是增函数,∴当x=10时(此时=16), g(x)有最小值,即f(x)有最小值.∴当长为16 米,宽为10米时,总造价最低.。

山东省济宁市学而优教育咨询有限公司高中数学测试题10 新人教A版必修5

山东省济宁市学而优教育咨询有限公司高中数学测试题10 新人教A版必修5

山东省济宁市学而优教育咨询有限公司高中数学测试题10 新人教A 版必修5第Ⅰ卷(共50分)一、选择题(本大题共10小题,每小题5分,共50分)1.在ABC ∆中, 已知060,34,4===B b a ,则角A 的度数为 ( )A . 030B .045C .060D .090 2.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .101 D . 102 3.已知0x >,函数4y x x=+的最小值是 ( ) A .5 B .4 C .8 D .6 4、各项均为正数的等比数列{}n a 的前n 项和为Sn ,若10s =2,30s =14,则40s 等于 A .80 B .26 C .30 D .16 5.不等式13()()022x x +-≥的解集是 ( )A. 13{|}22x x -≤≤B. 13{|}22x x x ≤-≥或C. 13{|}22x x -<<D. 13{|}22x x x <->或6.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为 ( )A . 5 B. 3 C. 7 D. -8 7.不等式20(0)ax bx c a ++<≠的解集为R ,那么 ( ) A. 0,0a <∆< B. 0,0a <∆≤ C. 0,0a >∆≥ D. 0,0a >∆> 8.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )A .21B .23C.1D.39. 等差数列{}n a 的前m 项和为20,前2m 项和为70,则它的前3m 的和为( )A. 130B. 150C. 170D. 21010.在等比数列}{n a 中,公比q=2,且30303212=⋅⋅⋅⋅a a a a Λ,则30963a a a a ⋅⋅⋅⋅Λ等于( )A.102B.202 C 162 D 152 第Ⅱ卷(共100分)二、填空题(本大题共5小题,每小题5分,共25分)11.若数列{}n a 的前n 项和210(123)n S n n n =-=L ,,,,则此数列的通项公式为;数列{}n na 中数值最小的项是第 项.12. 在ABC ∆中,33a =,2b =,150C ︒=,则c = __________.13.若不等式02>++b x ax 的解为,2131<<-x 则=a ,=b . 14.定义一种新的运算“*”对任意正整数n 满足下列两个条件:(1)111=*),1(21)1)(2(*+=*+n n 则=*12006____________15.若对于一切正实数x 不等式xx 224+>a 恒成立,则实数a 的取值范围是三、解答题(本大题共6小题,共75分.解答应写文字说明,证明过程或演算步骤.)16.(本小题满分12分)已知等比数列{}n a 中,45,106431=+=+a a a a ,求其第4项及前5项和.17.(本小题满分12分)求下列不等式的解集:(1)2610x x --≥ (2) 21582≥+-x x x18.(本小题满分12分)如图,货轮在海上以35n mile/h 的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为︒152的方向航行.为了确定船位,在B 点处观测到灯塔A 的方位角为︒122.半小时后,货轮到达C 点处,观测到灯塔A 的方位角为︒32.求此时货轮与灯塔之间的距离.19.(本小题满分12分)已知等比数列{}13232423,2,n a a a a a a a +=+满足且是的等差中项. (I )求数列{}n a 的通项公式;(II )若212l ,,n n n n n n b a og a S b b b S =+=++⋅⋅⋅+求.20.(本小题满分13分)数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N .(Ⅰ)求数列{}n a 的通项n a ; (Ⅱ)求数列{}n na 的前n 项和n T .21.(本小题满分14分)某造纸厂拟建一座平 面图形为矩形且面积为162平方米的 三级污水处理池,池的深度一定(平面图如图所示), 如果池四周围墙建造单价为400元/米,中间两道隔 墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低,并求 出最低总造价.AB 北 北152o32 o122o【一】选择题(本大题共10小题,每小题5分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 答案ACBCACABBB分) 11. 211n -3 12. 713.=a -6 ,=b 1 14 4011 15. a<24 16.解:设公比为q , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1分由已知得 ⎪⎩⎪⎨⎧=+=+45105131211q a q a q a a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 3分 即⎪⎩⎪⎨⎧=+=+ 45)1(①10)1(23121ΛΛΛΛΛq q a q a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 5分 ②÷①得 21,813==q q 即 , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 7分 将21=q 代入①得 81=a , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 8分 1)21(83314=⨯==∴q a a , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 10分231211)21(181)1(5515=-⎥⎦⎤⎢⎣⎡-⨯=--=q q a s ┄┄┄┄┄┄┄┄┄┄ 12分 17.解:(1)方程0162=--x x 的两解为31,2121-==x x ,根据函数图像可知原不等式2610x x --≥的解为}3121|{-≤≥x x x 或 ┄┄┄┄┄ 7分 (2)解:原不等式等价于:0158301720158301720215822222≤+-+-⇔≥+--+-⇔≥-+-x x x x x x x x x x x3250)5)(3()52)(6(<≤⇔≤----⇔x x x x x 或65≤<x ∴原不等式的解集为]6,5()3,25[Y ┄┄┄┄ 14分18.在△ABC 中,∠B=152o-122o=30o,∠C=180o-152o+32o=60o,∠A=180o-30o-60o=90o,┄┄┄┄┄(4分) BC =235,┄┄┄┄┄(6分) ②∴AC=235sin30o=435.┄┄┄┄┄(12分)答:船与灯塔间的距离为435n mile.19.20、解:(Ⅰ)12n na S+=Q,12n n nS S S+∴-=,13nnSS+∴=.又111S a==Q,∴数列{}n S是首项为1,公比为3的等比数列,1*3()nnS n-=∈N.当2n≥时,21223(2)nn na S n--==g≥,21132n nnan-=⎧∴=⎨2⎩g,,,≥.………………… 5分(Ⅱ)12323n nT a a a na=++++L,………………………6分当1n=时,11T=;………………………7分当2n≥时,0121436323nnT n-=++++g g L g,…………①12133436323nnT n-=++++g g L g,………………………②………………………9分-①②得:12212242(333)23n nnT n---=-+++++-L g213(13)222313n n n ---=+--g g11(12)3n n -=-+-g .………………………12分1113(2)22n n T n n -⎛⎫∴=+- ⎪⎝⎭≥.………………………13分 又111T a ==Q 也满足上式,1*113()22n n T n n -⎛⎫∴=+-∈ ⎪⎝⎭N . ………14分 21.解:(1)设污水处理池的宽为x 米,则长为米.则总造价,当且仅当x=(x>0),即x=10时取等号.∴当长为16.2 米,宽为10 米时总造价最低,最低总造价为38 880 元. (2)由限制条件知,∴10≤x≤16设g(x)=x+.g(x)在上是增函数,∴当x=10时(此时=16), g(x)有最小值,即f(x)有最小值.∴当长为16 米,宽为10米时,总造价最低.。

山东省济宁市学而优教育咨询有限公司高中数学测试题9新人教A版必修5

山东省济宁市学而优教育咨询有限公司高中数学测试题9新人教A版必修5

山东省济宁市学而优教育咨询有限公司高中数学测试题9 新人教A 版必修5第Ⅰ卷(共60分)一、选择题(本题共12小题,每题5分,共60分)1.在ABC ∆中,c b a 、、分别为三个内角C B A 、、所对的边,设向量),(),,(a c b a c c b +=--=,若向量⊥,则角A 的大小为 ( )A.6π B. 3π C. 2π D. 32π2.已知各项不为零的等差数列{}n a 满足22712220a a a -+=,数列{}n b 是等比数列,且77b a =,则311b b 等于( )A. 16B.8C.4D.2 3.下列命题中正确的是A .若a b >,则ac bc > B.若a b >,c d >,则a c b d ->- C.若0ab >,a b >,则11a b < D.若a b >,c d >,则a b c d> 4.设n S 是等差数列{}n a 的前n 项和,且494,4a a =-=,则 A.57S S = B.56S S = C.56S S < D.67S S = 5.若不等式210kx kx -+>对任意x R ∈都成立,则k 的取值范围是 A.(0,4) B.[)0,4 C.(0,)+∞ D.[)0,+∞ 6.实数,x y 满足条件020250x x y x y ≥⎧⎪-+≤⎨⎪+-≤⎩,则z x y =+的最大值是A.2B.4C.5D.6 7.在ABC ∆中,60A =,5a =,6b =,那么满足条件的ABC ∆ A .有一个解 B .有两个解 C .无解D .不能确定8.若等差数列{}n a 与等比数列{},n b 满足1333241,,20a a b b b b ==-=,则{}n a 前5项的和5S 为 A.5B.10C.20D.409.下列函数中,最小值为4的是A .4y x x =+B.4sin (0)sin y x x xπ=+<< C .343x x y -=+⋅ D.3log 4log 3x y x =+10.等比数列{}n a 的前n 项和为n S ,且41a ,22a ,3a 成等差数列.若1a =1,则8S = A.8B.255C.63D.328011.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且3222=-+bc c b ,54cos =B ,3=a ,则边c 的值为 A.537 B.335 C.527 D.325 12.已知等差数列{}n a 中,有011011<+a a ,且该数列的前n 项和n S 有最大值,则使得0n S >成立的n 的最大值为A .11B .19C . 20D .21第Ⅱ卷(共90分)二、填空题(本题共4小题,每题4分,共16分) 13.不等式112x <的解集是 14.设0,0a b >>3a与3b的等比中项,则11a b+的最小值为____________. 15.有以下四个命题:①对于任意实数c b a 、、,bc ac c b a >≠>则若,0,; ②设n S 是等差数列}{n a 的前n 项和,若1062a a a ++为一个确定的常数,则11S 也是一个确定的常数; ③在三角形ABC ∆中,若B A sin sin >,恒有B A >; ④对于任意正实数x ,若0sin >x ,xx y sin 2sin +=,则y 的最小值 为22.其中正确..命题的是_______________(把正确的答案题号填在横线上) 16.钝角三角形的三边长分别为,1,2a a a ++,该三角形的最大角不超过120,则a 的取值范围是________.三、解答题(本大题共6小题,共74分.解答应写文字说明,证明过程或演算步骤.) 17.(本小题满分12分)解关于x 的不等式2(1)0()x x m m m R +-->∈.18.(本小题满分12分)在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=,sin 2sin B A =,求ABC △的面积.(12分)19、(本小题满分12分)已知函数()2cos 2cos ,f x x x x x R =-∈.(I )求函数()f x 的最小正周期和最小值;(II )ABC ∆中,A,B,C 的对边分别为a,b,c,已知()1,sin 2sin c f C B A ===,求a,b 的值.20、(本小题满分12分)已知数列{}n a 的前n 项和n S 与n a 满足1()n n S a n N +=-∈. (1)求数列{}n a 的通项公式; (2)求数列{}n n a ⋅的前n 项和n T .21.(本小题满分12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:)0(160039202>++=υυυυy 。

山东省济宁市学而优教育咨询有限公司高二数学测试题11

山东省济宁市学而优教育咨询有限公司高二数学测试题11

第Ⅰ卷(共50分)一、选择题(每小题5分,共50分) 1ABC ∆中,2a=,b =3B π=,则sin A 的值是( )A .12 B.2 C.2 D .12或22.已知1,,,a b c ,4成等比数列,则实数b 为( ) A .4 B .2- C .2± D .2 3.在等差数列{}n a 中,若3692120a a a ++=,则11S 等于( )A .330B .340C .360D .380 4.在△ABC 中,角A,B,C 的对应边分别为,,a b c若222a c b +-=,则角B 的值为( )A .6πB .3πC .6π或56πD .3π或23π5.在ABC ∆中,已知2sin cos sin A B C =,那么ABC ∆一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 61+1-的等比中项是( )A .1B .1-C .1±D .127. 已知{}n a 是等差数列,451555a S ==,,则过点34(3,),(4,)P a Q a 的直线斜率为( )A .4 B.C .-4 D .- 8. △ABC 中,已知,2,60a x bB ︒===,如果△ABC 有两组解,则x 的取值范围( )A .2x>B .2x <C.2x <<D .2x <≤9.已知各项均为正数的等比数列{}n a 的首项13a =,前三项的和为21,则345a a a ++=( )A .33B .72C .189D . 8410.已知数列{}n a 满足112(0)2121(1)2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,若157a =,则2014a 的值为( )A .67B .57C .37D .17第Ⅱ卷(共100分)二、填空题(本大题共5小题,每小题5分,共25分) 11. 在△ABC 中,若∠A:∠B:∠C=1:2:3,则::a b c =.12.在等比数列{}n a 中,若110,a a 是方程23260x x --=的两根则47a a ⋅=______13.在ABC ∆中,已知2a =,120A =︒,则sin sin a b A B+=+.14.已知数列{}n a 的前n 项和32n n S =+,求n a =_______。

山东省济宁市学而优教育咨询有限公司高中数学周练(24)

山东省济宁市学而优教育咨询有限公司高中数学周练(24)

山东省济宁市学而优教育咨询有限公司高中数学周练(24)(无答案)新人教A 版必修5一、选择题(共10题,每题5分,共50分)1.下列语句是命题的是( ▲ )A .这是一幢大楼B .0.5是整数C .指数函数是增函数吗?D .x >52.θ是任意实数,则方程4sin 22=+θy x 的曲线不可能是 ( ▲ )A .椭圆B .双曲线C .抛物线D .圆3.下列命题中正确的是( ▲ )①“若x 2+y 2≠0,则x ,y 不全为零”的否命题; ②“等腰三角形都相似”的逆命题;③“若m>0,则方程x 2+x -m=0有实根”的逆命题; ④“若x -123是有理数,则x 是无理数”的逆否命题A .①④B .①③④C .②③④ D.①②③ 4.已知P 是双曲线22219x y a -=上一点,双曲线的一条渐近线方程为320x y -=,F 1,F 2分别是双曲线的左右焦点,若|PF 1|=5,则|PF 2|等于( ▲ )A . 1或9B . 5C . 9D . 135. 设A 、B 两点的坐标分别为(-1,0),(1,0),条件甲:0>⋅BC AC ; 条件乙:点C 的坐标是方程x 24 + y 23 =1 (y ≠0)的解. 则甲是乙的( ▲ ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 6. 设双曲线以椭圆221259x y +=长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ▲ )A.2±B.43±C.12±D.34± 7. 命题“对任意的x R ∈,3210x x -+≤”的否定是( ▲ )A .不存在x R ∈,3210x x -+≤B .存在x R ∈,3210x x -+≤C .对任意的x R ∈,3210x x -+>D .存在x R ∈,3210x x -+>8. 若直线1-=kx y 与双曲线422=-y x 始终有公共点,则k 的取值范围是( ▲ ) A .[]1,1- B .5⎡-⎢⎣⎦ C .55⎡⎢⎣⎦ D .以上都不对9. 如图,1F 和2F 分别是双曲线)0,0(12222>>=-b a b y a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为( ▲ )A. 3B.5C.25 D. 31+ 10.离心率为黄金比512-的椭圆称为“优美椭圆”.设22221(0)x y a b a b+=>>是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个顶点,则FBA ∠等于( ▲ ) A.60o B.75o C.90o D.120o第Ⅱ卷 (共100分)二、填空题(每题5分,共25分) 11.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是___▲____ 12. P 是双曲线2214x y -=上的一点,12F F ,是双曲线的两个焦点,且123F PF π∠=,则12F PF ∆ 的面积是___▲____13. 已知经过抛物线24y x =焦点F 的直线与抛物线相交于A ,B 两点,若A ,B 两点的横坐标之和为3,则AB =___▲____ 14. 已知由双曲线22194x y -=右支上的点M 和左右焦点12F F 构成三角形,则∆M 12F F 的内切圆与边12F F 的切点坐标是 ▲ 15. 设双曲线22221(0,0)x y a b a b-=>>的离心率[2,2]e ∈,则两条渐近线夹角的正弦值的取值范围是▲三、解答题(本大题共6小题,共74分.解答应写文字说明,证明过程或演算步骤.)16.(本小题满分12分) 设命题:431p x -≤,命题2:(21)(1)0q x a x a a -+++≤,若p ⌝是q ⌝的必要非充分条件,求实数a 的取值范围.17.(本小题满分12分)(1)已知椭圆的长轴是短轴的3倍,且过点(30)A ,,并且以坐标轴为对称轴,求椭圆的标准方程.(2)设双曲线与椭圆1362722=+y x 有共同的焦点,且与椭圆相交,在第一象限的交点A 的纵坐标为4,求此双曲线的方程.18.(本小题满分12分)已知直线:2l y x m =+和椭圆22:14x C y +=. (1)m 为何值时,l 和C 相交、相切、相离;(2)m 为何值时,l 被C 所截线段长为2017.19.(本小题满分12分)直线y = kx -2与抛物线22y x =相交于A ,B 两点,O 为坐标原点.⑴若k = 1,求证:OA ⊥OB ;⑵求弦AB 中点M 的轨迹方程.20.(本小题满分13分)已知椭圆22221(0)x y C a b a b +=>>:的离心率为6,短轴一个端点到右焦点的距离为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于AB ,两点,坐标原点O 到直线l 的距离为3,求AOB △面积的最大值.21.(本小题满分14分)已知M(-3,0)﹑N(3,0),P 为坐标平面上的动点,且直线PM 与直线PN 的斜率之积为常数m(m ≥-1,m ≠0).(1)求P 点的轨迹方程并讨论轨迹是什么曲线?(2)若59m =-, P 点的轨迹为曲线C,过点Q(2,0)斜率为1k 的直线1l 与曲线C 交于不同的两点A ﹑B,AB 中点为R,直线OR(O 为坐标原点)的斜率为2k ,求证12k k 为定值;(3)在(2)的条件下,设QB AQ λ=u u u r u u u r ,且[2,3]λ∈,求1l 在y 轴上的截距的变化范。

山东省济宁市学而优教育咨询有限公司高中数学周练(22)(无答案)新人教A版必修5

山东省济宁市学而优教育咨询有限公司高中数学周练(22)(无答案)新人教A版必修5

山东省济宁市学而优教育咨询有限公司高中数学周练(22)(无答案)新人教A 版必修5一、选择题(每题5分,共60分)1、下列语句:①正整数不是质数就是合数;②当;10-≠>x x 时,③|x+1|>1;④地球是太阳系的行星。

其中不是命题的个数是 ( ) A.1 B.2 C.3 D.42、若 a b >, 则下列正确的是 ( )A .22a b > B .ac bc > C .22ac bc > D .a c b c ->- 3、不等式x x 452>-的解集为( )(A )(-5,1) (B )(-1,5) (C )(-∞,-5)∪(1,+∞) (D )(-∞,-1)∪(5,+∞)4、若0<a <1,则不等式(x -a )(x -a1)<0的解是 ( ) A. x >a 1或x <a B. a <x <a 1 C. a 1<x <a D. x <a1或>x a5、已知集合}21|{},|{<<=<=x x B a x x A ,且R B C A R =⋃)(,则实数a 的取值范围是( ) A .1a ≤B .1a <C .2a ≥D .2a >6、对R b a ∈∀,, 若1=+b a ,则ba33+的最小值是( )A .18B .32C . 6D .36 7、在ABC ∆中,a,b,c 分别是C B ∠∠∠、、A 所对应的边,︒=∠90C ,则cba +的取值范围是( ) A .(1,2) B .)2,1( C .]2,1( D .]2,1[8、四个不相等的正数a,b,c,d 成等差数列,则( ) A .bc d a >+2 B .bc d a <+2 C .bc da =+2D .bc d a ≤+29、表示如图中阴影部分所示平面区域的不等式组是( )A .⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x B .⎪⎩⎪⎨⎧≥-+≥--≤-+0623063201232y x y x y x C . ⎪⎩⎪⎨⎧≤-+≤--≤-+0623063201232y x y x y x D .⎪⎩⎪⎨⎧≥-+≤--≥-+0623063201232y x y x y x10、设原命题:若a+b ≥2,则a,b 中至少有一个不小于1.则原命题与其逆命题的真假情况是( )A .原命题真,逆命题假B .原命题假,逆命题真C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题11、a,b,c 都是实数,那么“b 2=a·c ”是“a,b ,c 成等比数列”的 ( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 12、命题22220(,)0(,)p a b a b R q a b a b R +<∈+≥∈:,:.下列结论正确的是( ) A. ”“q p ∨为真 B. ”“q p ∧为真 C. ”“p ⌝为假 D. ”“q ⌝为真第Ⅱ卷二、填空题(每题4分,共16分)则y x z -=2的取值范围是________.13、已知实数y x 、满足14、对命题“a a Z a ≠∈∀2,使得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档