信号的采样与恢复实验注意事项
实验六 信号的抽样与恢复

2、模拟信号的加入
用短线将“信号A组”输出1KHZ正弦信号与“PAM抽样定理”模 块的信号输入X端相连。 3、信号采样的PAM序列观察 在“PAM抽样定理”模块的输出端可测量到输入信号的采样序列, 用示波器比较采样序列与原始信号的关系、及采样序列与采样冲 击串之间的关系
4、PAM信号的恢复
用短线将“PAM抽样定理”模块输出端的采样序列与“无源与有源 滤波器”单元 的“八阶切比雪夫低通滤波器“的输入 端相连。在 滤波器的输出端可测量出恢复出的模拟信号,用示波器比校恢复出 的信号与原始信号的关系与差别。
f s (t )
n
f (nT ) (t nT )
s s
c h(t ) Sa ( c t )
f (t ) f s (t ) * h(t )
c f (nTs ) Sa[ c (t nTs )] n
f s (t )
Fs ( )
0
5、用短线连接”PAM抽样定理“模块的A与C端,重复上述实验。 [实验思考] 在实验中,采样冲击串不是理想的冲击函数,通过这样的冲击序 列采样的采样信号频谱的形状是怎样的?
h0(t)=u(t)- u(t-TS) 显然令fs(t)通过此系统即可在输出端产生 fs0(t)波形,因此可以得: 因为fs(t)是抽样 信号(幅度大小 不同的冲激).而 fs0(t)是阶梯. 冲激与矩形乘得 阶梯
1 F n s Fs () n Ts
5 - 62
c 0
c
F ( )
相 乘
0
t
m 0
m
(一)抽样定理
的范围,则信号 f t 可用等间隔的抽样值来 惟一地表示。 1 1 m 2π f m , 其抽样间隔必须不大于 ,即Ts 2 fm 2 fm 或者说最低抽样率为 2 f m。
实验-信号的采样与恢复

实验三 信号的采样与恢复一、实验目的1、了解电信号的采样方法与过程以及信号恢复的方法。
2、验证抽样定理。
3、理解信号的抽样及抽样定理以及抽样信号的频谱分析;掌握和理解信号抽样以及信号重建的原理,验证抽样定理。
二、实验设备1、信号与系统实验箱(参考型号:TKSS —B 型)2、双踪示波器三、实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。
抽样信号)(t f s 可以看成连续信号)(t f 和一组开关函数)(t s 的乘积。
)(t s 是一组周期性的窄脉冲,如下图所示。
s T 为抽样周期,其倒数s s T f /1=称抽样频率。
图1 矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于抽样频率s f 及其谐波频率s f 2、s f 3┅┅。
当抽样信号是周期性窄脉冲时,平移后的频率幅度按x x /sin 规律衰减。
抽样信号的频谱是原信号频谱的周期延拓,它占有的频带要比原信号频谱宽得多。
2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。
只要用一截止频率等于原信号的频谱中最高频率n f 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。
3、但原信号得以恢复的条件是B f s 2≥,其中s f 为抽样频率,B 为原信号占有的频带宽度。
而B f 2min =为最低抽样频率又称“奈奎斯特抽样频率”。
当B f s 2<时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的,因此即使B f s 2=,恢复后的信号失真还中难免的。
下图画出了当抽样频率B f s 2>(不混叠时)及B f s 2<(混叠时)两种情况下冲激抽样信号的频谱。
信号与系统实验四-信号的采样及恢复

实验四 信号的采样及恢复一、实验目的1、加深理解连续时间信号离散化过程中的数学概念和物理概念;2、掌握对连续时间信号进行抽样和恢复的基本方法;3、通过实验验证抽样定理。
二、实验内容1、为了观察连续信号时域抽样时,抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进行抽样,试画出抽样后序列的波形,并分析产生不同波形的原因,提出改进措施。
(1))102cos()(1t t x ⨯=π(2))502cos()(2t t x ⨯=π (3))1002cos()(3t t x ⨯=π2、产生幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘出波形。
3、对连续信号)4cos()(t t x π=进行抽样以得到离散序列,并进行重建。
(1)生成信号)(t x ,时间t=0:0.001:4,画出)(t x 的波形。
(2)以10=sam f Hz 对信号进行抽样,画出在10≤≤t 范围内的抽样序列)(k x ;利用抽样内插函数)/1()(sam r f T T t Sa t h =⎪⎭⎫⎝⎛=π恢复连续信号,画出重建信号)(t x r 的波形。
)(t x 与)(t x r 是否相同,为什么? (3)将抽样频率改为3=sam f Hz ,重做(2)。
4、利用MATLAB 编程实现采样函数Sa 的采样与重构。
三、实验仪器及环境计算机1台,MATLAB7.0软件。
四、实验原理对连续时间信号进行抽样可获得离散时间信号,其原理如图8-1。
采样信号)()()(t s t f t f s ∙=,)(t s 是周期为s T 的冲激函数序列,即)()()(∑∞-∞=-==n sT nT t t t s sδδ则该过程为理想冲激抽样。
其中s T 称为采样周期,ss T f 1=称为抽样频率, ss s T f ππω22==称为抽样角频率。
实验九信号的采样与恢复

第4页
实验九 信号的采样与恢复
一、实验目的
(1)掌握电信号的采样和恢复的实验电路。 (2)通过本实验,加深学生对采样定理的理解。 二、实验设备
序号
型号
备注
1 DJK01 电源控制屏
该控制屏包含”三相电源输
出”等几个模块
2 DJK15 控制理论实验挂箱 或 DJK16 控制理论实验挂箱
3 双踪慢扫描示波器
三、实验原理
(2)为使所选的f(t)信号经频率为fs的周期脉冲采样后,希望 通过滤波器后信号的失真小,则采样频率和低通滤波器的截止频 率应各取多少,试设计一满足上述要求的低通滤波器。
(3)将(2)计算求得的 f(t)和 s(t)送至采样器,观察采样 后的正弦波的波形。
(4)改变采样频率如fS=4B,和fS<2B,再用示波器观察恢复后的 信号,并比较失真度。 五、思考题
第2页
即使用图 9-3 所示的理想滤波器,也不能获得原有的f(t)信号。 图 9-4 为信号采样的实验电路图。
图 9-4
(2)信号的恢复 为了实验对被检对象的有效控制,必须把所得的离散信号恢 复为相应的连续信号。工程上常用的低通滤波器是零阶保持器, 它的传递函数为
G
h
(s)
=
1
− e −Ts S
或近似地表示为
这就是香农采样定理,它表示采样角频率ωs(或采样频率fs) 若能满足式(3),则采样后的离散信号fS(t)信号就会有连续信号 f(t)的全部信息,如把fs(t)信号送至具有图 9-3 所示特性的理想 滤波器输入端,则其输出就是原有的连续信号f(t)。
采样定理实验注意事项

采样定理实验注意事项要选择合适的采样频率。
采样频率是指在采样过程中,对连续时间信号进行采样的次数。
采样频率越高,得到的样本数就越多,从而可以更准确地还原原始信号。
但是,过高的采样频率会导致信号失真,因此需要根据实际情况选择合适的采样频率。
一般来说,采样频率应该大于等于信号最高频率的两倍。
要注意保持信号的同步性。
在进行采样定理实验时,需要将被采样信号与参考信号同时输入到示波器中进行观察。
为了保证两个信号的同步性,我们需要使用同步电路或者同步信号源来产生同步信号。
此外,还需要注意保持两个信号的时间基准一致,以确保测量结果的准确性。
第三,要注意避免干扰和噪声的影响。
在进行采样定理实验时,可能会遇到各种干扰和噪声,例如电磁干扰、热噪声等。
这些干扰和噪声会影响到测量结果的准确性,因此需要采取相应的措施来减少它们的影响。
例如,可以使用屏蔽罩、滤波器等设备来隔离外部干扰;同时,还可以采用低噪声放大器等器件来增强信号的信噪比。
第四,要注意保护仪器设备的安全运行。
在进行采样定理实验时,需要使用一些精密的仪器设备,例如示波器、多用表等。
这些仪器设备的正常运行对于实验结果的准确性至关重要。
因此,在使用这些设备时,需要注意保护它们的安全运行。
例如,不要过度使用电源供应器、不要随意拆卸或更换元器件等。
要认真记录实验数据和分析结果。
在进行采样定理实验时,需要记录下各种实验参数和测量结果,并对它们进行分析和处理。
这样可以帮助我们更好地理解信号的特征和规律,并且为后续的研究提供重要的参考依据。
进行采样定理实验需要注意多个方面的细节问题。
只有在严格遵守相关规范和操作规程的基础上,才能够获得准确可靠的实验结果。
抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告实验报告:抽样定理与信号恢复摘要:抽样定理是数字信号处理中的重要概念,它为我们提供了从连续时间上放缩成为离散时间表示的方法。
在本实验中,我们利用数字信号处理软件进行了一系列实验,以了解抽样定理的工作原理和不同采样频率对信号恢复的影响。
通过实验结果分析,我们得出结论:1. 抽样频率应大于信号带宽两倍;2. 较低的采样频率可能导致丢失重要信息;3. 采样频率高于极限频率会增加不必要的计算开销。
因此,了解抽样定理对我们使用数字信号处理工具处理不同类型信号的时候带来极大的帮助。
实验过程:1. 选择一个连续时间信号z(t)并计算其频率响应和最大频率;2. 在Matlab中选择一个采样频率,对信号进行采样,并计算采样信号的傅里叶系数;3. 选择一个重建滤波器,用于从离散时间信号中重建连续时间信号;4. 绘制信号的原始函数和重构函数,并通过对比和信号恢复误差评价重建质量。
实验结果:我们采样一个频率为5Hz的正弦波,即sq(t) = sin(2 pi 5 t)。
我们选择了三个采样频率,分别是10Hz、8Hz和6Hz。
在Matlab中运行解析和比较函数,我们得出了信号的重构函数和重构误差。
当采样频率为10Hz时,与原始信号相比,重构过程中出现了一点振荡。
这是因为重构滤波器的阶数没有达到最优值。
当采样频率降低到8Hz时,出现了更明显的振荡。
这是因为采样频率在8Hz以下不能捕捉到5Hz正弦波的一个完整波形。
进一步降低采样频率到6Hz,我们观察到信号完全失真,根本无法恢复原始信号。
结论:本实验证明了抽样定理在数字信号处理中的重要性。
对于任何采样频率低于极限的情况,都可能导致信号发生失真。
因此,理解抽样定理可以帮助我们更好地从连续时间中得到数字表示的方法。
实验六抽样定理与信号恢复(有数据)

实验六抽样定理与信号恢复一、实验目的1、观察离散信号频谱,了解其频谱特点。
2、验证抽样定理并恢复原信号。
二、实验仪器1、双踪示波器 1台2、信号源及频率计模块S2 1块3、抽样定理及滤波器模块S3 1块三、实验原理1、离散信号不仅可从离散信号源获得,而且也可从连续信号抽样获得。
抽样信号 Fs (t)=F(t)·S(t)。
其中F(t)为连续信号(例如三角波),S(t)是周期为Ts的矩形窄脉冲。
Ts又称抽样间隔,Fs=1Ts称抽样频率,Fs(t)为抽样信号波形。
F(t)、S(t)、Fs(t)波形如图6-1。
图6-1 连续信号抽样过程将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,实验原理电路如图6-2所示。
2、连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱()[]∑∞+-∞=-⋅=m s m ωωj F )2τs m ω(a S T A τω)j (s F 它包含了原信号频谱以及重复周期为fs (f s =ωs /2л)、幅度按A τT Sa (m ωs τ/2)规律变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。
因此,抽样信号占有的频带比原信号频带宽得多。
以三角波被矩形脉冲抽样为例。
三角波的频谱:F (j ω)=π∑∑∞-∞=∞-∞=-=-k k k k k E k A )(4)(121ωωσπωωσ 抽样信号的频谱:Fs (j ω)= 取三角波的有效带宽为31ω,其抽样信号频谱如图6-3所示。
F(t)连续信号F s (t)F'(t)LPFs(t)开关信号)ω()ω(s s a m k m k m S k E T A --∙∑∞-∞=-∞=12214ωωστπτ图6-2 信号抽样实验原理图图6-3 抽样信号频谱图如果离散信号是由周期连续信号抽样而得,则其频谱的测量与周期连续信号方法相同,但应注意频谱的周期性延拓。
3、抽样信号在一定条件下可以恢复出原信号,其条件是fs ≥2f B ,其中fs 为抽样频率,f B 为原信号占有频带宽度。
实验一:抽样定理-信号的取样与恢复

实验一:抽样定理-信号的取样与恢复实验目的和要求1.加深对抽样定理-信号的取样与恢复的感观认识和理解。
2.搭建抽样定理-信号的取样与恢复仿真系统。
实验内容1.搭建抽样定理-信号的取样与恢复仿真系统。
2.分析信号流程及特性。
3.思考信号抽样恢复无失真的条件。
主要实验仪器与器材1.安装有System View软件的计算机实验指导抽样定理实际的宏观物理过程都是连续变化的,物理量的空间分布也是连续变化的。
在今天的数字时代,连续变化的物理量要用它的一些离散分布的采样值来表示,而且这些采样值的表达方式也是离散的这些离散的数字表示的物理量的含义或者说包含的信息量与原先的连续变化的物理量是否相同?是否可以由这些抽样值准确恢复一个连续的原函数?抽样是把时间上连续的模拟信号变成一系列时间上离散的抽样值的过程。
能否由此样值序列重建原信号,是抽样定理要回答的问题。
抽样定理的大意是,如果对一个频带有限的时间连续的模拟信号抽样,当抽样速率达到一定数值时,那么根据它的抽样值就能重建原信号。
也就是说,若要传输模拟信号,不一定要传输模拟信号本身,只需传输按抽样定理得到的抽样值即可。
因此,抽样定理是模拟信号数字化的理论依据。
低通抽样定理根据信号是低通型的还是带通型的,抽样定理分低通抽样定理和带通抽样定理;根据用来抽样的脉冲序列是等间隔的还是非等间隔的,又分均匀抽样定理和非均匀抽样;根据抽样的脉冲序列是冲击序列还是非冲击序列,又可分理想抽样和实际抽样。
本实验以低通型抽样为例。
一个频带限制在(0, fH)赫内的时间连续信号m(t),如果以Ts≤1/(2fH)秒的间隔对它进行等间隔(均匀)抽样,则m(t)将被所得到的抽样值完全确定。
此定理告诉我们:若m(t)的频谱在某一角频率ωH以上为零,则m(t)中的全部信息完全包含在其间隔不大于1/(2fH)秒的均匀抽样序列里。
换句话说,在信号最高频率分量的每一个周期内起码应抽样两次。
或者说,抽样速率fs(每秒内的抽样点数)应不小于2fH,若抽样速率fs<2fH,则会产生失真,这种失真叫混叠失真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号的采样与恢复实验注意事项
1. 实验前应确认所需的信号源和采样设备正常工作,以确保实验结果的准确性。
2. 在采样过程中要注意采样频率的选择,采样频率应满足奈奎斯特采样定理,即采样频率应大于信号的最高频率的两倍。
3. 在采样时,应记录下采样间隔和采样点数,以便后续的数据分析和信号恢复处理。
4. 为了保证采样的准确性,需要尽量避免信号与噪声的干扰。
可以采取一些减小噪声的措施,如使用滤波器对信号进行预处理。
5. 实验中可以尝试不同的采样频率和采样点数,观察采样结果的差异,并对比恢复后的信号与原始信号的差异。
6. 在恢复信号时,可以利用插值等方法对采样数据进行处理,以恢复原始信号。
7. 实验结束后,应及时保存实验数据和实验结果,以备后续分析和报告使用。
8. 在实验过程中,应注意安全和操作规范,避免在实验室中发生意外或损坏设备。