采样与保持实验的实验报告
信号采样与保持实验心得

信号采样与保持实验心得
信号采样与保持实验是电子信息类专业中非常重要的基础实验之一。
我的一些心得如下:
1. 实验前要充分理解采样定理的概念及其应用。
采样定理指出采样频率要高于信号最高频率的2倍才能完全保存信号,否则将导致采样失真。
2. 实验时要注意选择合适的采样频率、采样时间和采样周期。
要根据信号频率和波形等特点进行合理的参数选择,以保证正确的采样结果。
3. 在采集信号前,要进行预处理操作。
这通常包括滤波、放大等。
预处理的目的是为了使信号更容易被采样。
4. 在实验中要熟练掌握示波器、函数发生器等仪器的使用方法。
要注意仪器的精度和测量范围,以及必要的校准操作。
5. 在实验中要注意保证实验环境的稳定性,避免电磁干扰等因素的影响,以保证采样结果的准确性和可重复性。
总之,信号采样与保持实验是一项需认真对待的实验,需要在多次实验中不断积累经验,通过实践加深对理论知识的理解。
实验一采样与保持

常州大学信息数理学院计算机控制系统实验报告第一次实验实验名称采样与保持专业自动化142实验组别姓名徐亮学号14417228同实验者李国梁、王凯翔记录实验时间2017 年06 月11 日成绩审阅教师一、实验目的(1)了解模拟信号到计算机控制的离散信号的转换—采样过程。
(2)了解判断采样/保持控制系统稳定性的充要条件。
(3)了解采样周期 T 对系统的稳定性的影响。
(4)掌握控制系统处于临界稳定状态时的采样周期 T 的计算。
(5)观察和分析采样/保持控制系统在不同采样周期 T 时的瞬态响应曲线。
二、实验原理及说明采样实验采样实验框图如图所示。
计算机通过模/数转换模块以一定的采样周期对B9 单元产生的正弦波信号采样,并通过上位机显示。
在不同采样周期下,观察比较输入及输出的波形(失真程度)。
图采样实验框图计算机编程实现以不同采样周期对正弦波采样,调节信号发生器(B5)单元的调宽旋钮,并以此作为A/D 采样周期T。
改变T 的值,观察不同采样周期下输出波形与输入波形相比的复原程度(或失真度)。
对模拟信号采样首先要确定采样间隔。
采样频率越高,采样点数越密,所得离散信号就越逼近于原信号。
采样频率过低,采样点间隔过远,则离散信号不足以反映原有信号波形特征,无法使信号复原,。
合理的采样间隔应该是即不会造成信号混淆又不过度增加计算机的工作量。
采样时,首先要保证能反映信号的全貌,对瞬态信号应包括整个瞬态过程;信号采样要有足够的长度,这不但是为了保证信号的完整,而且是为了保证有较好的频率分辨率。
在信号分析中,采样点数N 一般选为2m 的倍数,使用较多的有512、1024、2048、4096 等。
采样保持器实验线性连续系统的稳定性的分析是根据闭环系统特征方程的根在S 平面上的位置来进行的。
如果特征方程的根都在左半S 平面,即特征根都具有负实部,则系统稳定。
采样/保持控制系统的稳定性分析是建立在Z 变换的基础之上,因此必须在Z 平面上分析。
水样的采集和保存

1.本方法适用于现场测定水体的透明度。
2.塞氏盘使用时间较长后,白漆颜色会逐渐变黄,须重新涂漆。
3.测定水体透明度时,测定者视力必须正常。
4.测定水体透明度时,应选择晴朗的天气进行。
水体浊度的测定
浊度是由水中含有的泥沙、粘土、有机物、无机物、浮游生物等悬浮物质造成的。水体浑浊会影响阳光的透射,影响水生动植物的生长。
先排放2~3分钟,让积存的杂质流去,然后用瓶、桶等采集。
表3-1-1-1常用的水样保存方法
二、水样的保存
1.冷藏或冷冻。
其作用是抑制微生物活动,减慢物理挥发和化学反应速度。
2.加入化学试剂。
加入酸或碱调节pH值,能使一些化学成分在水样中保持稳定;加入生物抑制剂,可抑制微生物的氧化还原作用;加入氧化剂或还原剂,可使一些待测成分转化为稳定的化学物质,而且不干扰以后的分析测定。
本实验观察水体富营养化造成的污染。
工具与材料
量筒,鱼缸,塑料板,量杯。
水藻,含氮、磷的肥料(化肥等)。
活动过程
1.用量筒给3只鱼缸内加入等量的水,并分别编号a、b、c。
2.在a号鱼缸中用量杯加入一定量的肥料,b号缸内加入肥料的数量为a号缸内加入量的一半,C号缸内不加肥料(图3-1-3-1)。
3.在3只鱼缸内放入相同数量的水藻,盖上塑料板,放在有阳光照射的地方。
一、水样的采集
1.采集表层水。
用桶、瓶等容器直接采取。一般将容器沉至水下0.3~0.5米处采集。
2.采集深层水。
将带有重锤的具塞采样器(图3-1-1-1)沉入水中,达到所需深度后(从拉伸的绳子标度上看出),拉伸瓶口塞子上连接的细绳,打开瓶塞,待水样充满后提出来。
3.采集自来水或带抽水设备的地下水(井水)。
实验二采样保持电路检测

熟悉采样与采样定理,熟悉采样保持电路的工作原理与测试方法。
实验原理、电路
采样:每隔一定时间间隔T逐点采入模拟信号的瞬时值的过程,其中T为采样周期。
展开采样开关场效应管说明文件2N4391.PDF,对场效应管特性进行分析说明。
采样/保持电路如下:
实验步骤:
(1)、依上图在PROTEUS下构建实验电路;
(2)、在信号输入端U2第3脚上,接入标准50Hz、1V信号正弦波输入信号,在采样/保持控制端D1(—)端接入—12V、400Hz、50%占空比的采样信号;
(3)、分别将仿真示波器A通道接到U2第3脚输入信号处,B通道接采样保持输出端U1第6脚,C通道接采样/保持控制信号上。开启仿真运行,观察输出波形与采样/保持控制信号、输入正弦信号的变化关系,注意观察其波形中的采样跟踪部分与保持部分。并绘出对应波形;(如下图)
(6)、完成实验报告。
课后分析
(4)、改变输入信号的频率由20Hz~1KHz,观察采样样点的变化,验证采样定理;
当输入信号频率为100Hz时,测得输出波形入信号频率为300Hz时,测得输出波形如下:
(5)、分别改变采样控制信号的幅度与频率,重复上述内容。改变保持电容C1的大小,观察波形中采样过程的斜顶、保持过程的平顶发生变化的情况;
汕头职业技术学院教师教案
授课题目
测控技术实验二:模拟信号的采样与保持检测
授课形式
仿真实验
授课时间
2012/11/13
节数
2
章节
4.1.3
授课者
余阿陵
授课系、班级
应用电子1001
教学条件
智能仪器设计基础(李泓,清华大学出版社)教材,教学教案,多媒体教室、多媒体电子教案结合黑板板书教学、PROTEUS仿真环境
自动控制原理实验报告

自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1.熟悉并掌握TD-ACC+(TD-ACS)设备的使用方法及各典型环节模拟控制电路的构成方法。
2.熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。
对比差异、分析原因。
3.了解参数变化对典型环节动态特性的影响。
二.实验设备PC机一台,TD-ACC+(TD-ACS)实验系统一套。
三.实验内容1.比例环节2.积分环节3.比例积分环节4.惯性环节5.比例微分环节6.比例积分微分环节四、实验感想在本次实验后,我了解了典型环节的时域响应方面的知识,并且通过实践,实现了时域响应相关的操作,感受到了实验成功的喜悦。
实验二、线性系统的矫正一、目的要求1.掌握系统校正的方法,重点了解串联校正。
2.根据期望的时域性能指标推导出二阶系统的串联校正环节的传递函数二、仪器设备PC 机一台,TD-ACC+(或 TD-ACS)教学实验系统一套。
三、原理简述所谓校正就是指在使系统特性发生变接方式,可分为:馈回路之内采用的测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3.串联校正环节的理论推导四、实验现象分析校正前:校正后:校正前:校正后:六、实验心得次实验让我进一步熟悉了TD-ACC+实验系统的使用,进一步学习了虚拟仪器,更加深入地学习了自动控制原理,更加牢固地掌握了相关理论知识,激发了我理论学习的兴趣。
实验三、线性系统的频率响应分析一、实验目的1.掌握波特图的绘制方法及由波特图来确定系统开环传函。
2.掌握实验方法测量系统的波特图。
二、实验设备PC机一台,TD-ACC+系列教学实验系统一套。
三、实验原理及内容(一)实验原理1.频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(ω由0变至∞)而变化的特性。
频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。
计算机控制实验报告

.《计算机控制技术》实验报告班级:学号:姓名:信息工程学院2016-2017-2实验1:D/A转换实验实验名称:D/A转换实验一.实验目的学习D/A转换器原理及接口方式,并掌握TLC7528芯片的使用。
二.实验原理TLC7528芯片,它是8位、并行、两路、电压型输出数模转换器。
会将数字信号转换成模拟信号。
三.实验容本实验输入信号:8位数字信号本实验输出信号:锯齿波模拟信号本实验数/模转换器:TLC7528输出电路预期实验结果:在虚拟示波器中显示数字信号转换成功的锯齿波模拟信号的波形图。
四.实验结果及分析记录实验结果如下:结果分析:为什么会出现这样的实验结果?请用理论分析这一现象。
D/A就是将数字量转化为模拟量,然后通过虚拟示波器显示出来,表现为电压的变化。
1.实验2:采样与保持实验实验名称:信号采样与保持一.实验目的1.熟悉信号的采样与保持过程2.学习和掌握采样定理3.学习用直线插值法和二次曲线插值法还原信号二.实验原理香农(采样) 定理:若对于一个具有有限频谱(|W|<Wmax)的连续信号f (t)进行采样,当采样频率满足Ws≥2Wmax 时,则采样函数f*(t) 能无失真地恢复到原来的连续信号f(t)。
Wmax 为信号的最高频率,Ws 为采样频率。
三.实验容本实验输入信号:正弦波模拟信号本实验输出信号:正弦波数字信号本实验采样信号:方波预期实验结果:1.在模拟示波器中成功显示采样与保持的正弦波信号。
2.成功在模拟示波器中还原输入的正弦波信号。
四.实验结果及分析记录实验结果如下:零阶保持增大采样周期失真3.直线采值二次曲线结果分析:为什么会出现这样的实验结果?请用理论分析这一现象。
实验3:数字滤波实验实验名称:数字滤波一.实验目的1.学习和掌握一阶惯性滤波2.学习和掌握四点加权滤波二.实验原理一般现场环境比较恶劣,干扰源比较多,消除和抑制干扰的方法主要有模拟滤波和数字滤波两种。
由于数字滤波方法成本低、可靠性高、无阻抗匹配、灵活方便等特点,被广泛应用,下面是一个典型数字滤波的方框图:三.实验容本实验输入信号:正弦信号干扰信号本实验输出信号:正弦波模拟量本实验采样信号:周期为5ms的方波本实验被控对象:预期实验结果:输入为带有毛刺的正弦波,经过滤波后,输出为正弦波信号四.实验结果及分析记录实验结果如下:5.结果分析:不同采样周期对实验结果的影响,使用理论分析这一结果。
空气中微生物的测定实验报告

空气中微生物的测定实验报告本实验旨在测定空气中微生物的数量及种类,探究影响空气质量的因素,并采取相应的预防措施,保证工作场所和生活环境的卫生安全。
一、实验方法1.1 采样器准备准备采样器,将采样器杆插入采样器中心孔内,调整均衡压力,将收集微生物的借腔安装于采样器杆顶部,并使其紧密固定。
1.2 环境样本采集每个采样点进行三次采样,取样位置应保持固定,并在同一时间段进行采集。
1.3 样本处理将收集到的样本传送到实验室,放置在恒温箱内,保持25℃恒温72小时。
每24小时将培养基旋转45度以均匀涂布,并保持培养箱湿度适中。
1.4 微生物分类鉴定与计数于72小时后将培养基取出,用称量器进行称量,计算出微生物的数量,并进行分类鉴定。
二、结果与分析在实验中,对于不同环境样本采集了三次,并将结果取平均值。
结果表明,空气中微生物的数量与环境因素密切相关。
在工厂产生的空气中,微生物数量较高,尤其是在生产车间、食品加工车间和卫生间等空间中,微生物数量更为显著。
而在更干燥、通风良好的办公室和教学楼内,微生物数量较低。
根据鉴定,空气中微生物主要包括真菌、细菌和病毒等。
细菌是空气中最常见的微生物,包括葡萄球菌、耳塞子菌、链球菌等。
此外,还能够检测到黄曲霉、毛霉以及酵母等真菌。
三、结论与建议通过实验结果可得知,维护空气干净的重要性,特别是在工业和生产领域。
对于空气中的微生物,建议加强通风措施,增加房间内过滤空气的方式,定期清洗空调过滤器和通风系统,并且尽可能地避免有机质的堆积。
对于员工应进行健康教育,增强自我卫生防护意识,勤洗手,保持房间干净,预防各种疾病的发生。
此外,空气中微生物数量的变化还与季节、气候条件密切相关,因此,建议每季度进行一次空气微生物测量,及时发现问题并采取相应的防护和治理措施。
这样,才能确保我们的工作和生活场所都能成为一个安全健康的环境。
采样保持实验内容

采样保持实验
使用Simulink建立系统模型,用零阶保持器描述回路的采样功能和D/A转换器的保持功能,模拟在不同的采样周期情况下,输出波形。
一、实验目的与要求
1. 了解数/模转换器的零阶保持器作用
2. 验证零阶保持器在控制系统中的作用
3. 验证采样周期对系统稳定性的影响。
二、仿真软硬件环境
PC机、MATLAB7.0
三、实验原理
用零阶保持器描述回路的采样功能和D/A转换器的保持功能。
四、实验内容
画出SIMLINK仿真结构图,在单位阶跃信号输入情况下进行仿真实验。
四、实验要求
记录采样周期T(ms)分别为10,20,30,40时的R、C波形
五、动手操作
六、实验思考题
1. 在微机控制系统中采样周期T的选择应注意哪些方面?
2. 若模拟量在A/D转换时变化较大,是否需要加保持器?为什么?
3. D/A转换器为什么会具有零阶保持器的作用?
4. 计算机控制系统模拟量输出通道中若无零阶保持器会出现什么问题?
5. 系统的平滑性与什么有关?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
采样与保持实验的实验报告
实验报告
实验目的:
1.理解采样与保持电路的基本原理;
2.掌握采样与保持电路的实验测量方法;
3.分析采样与保持电路的性能参数。
实验器材:
1.信号发生器;
2.采样与保持电路;
3.示波器;
4.电阻、电容等元件。
实验原理:
实验步骤:
1.搭建采样与保持电路,按实验电路图连接电路。
2.信号发生器产生频率为f的正弦信号,并连接到采样与保持电路的输入端。
3.示波器连接到采样与保持电路的输出端,用于观察信号波形。
4.调节信号发生器的频率和幅度,记录不同条件下的实验数据。
5.分析记录的数据,计算采样与保持电路的性能参数。
实验结果与分析:
1.随着信号发生器频率的增加,示波器观察到的信号波形频率也增加,说明采样与保持电路能够实现对高频信号的采样和保持。
2.在一定范围内,信号发生器的幅度增加,示波器观察到的信号幅度
也增加,但当信号发生器的幅度超过一定值后,示波器观察到的信号幅度
保持不变,说明采样与保持电路有一定的动态范围限制。
3.改变采样与保持电路的控制开关状态,可以观察到信号波形的变化。
当控制开关打开时,示波器观察到的信号波形与输入信号一致;当控制开
关关闭时,示波器观察到的信号波形保持不变,即保持信号的幅值。
实验总结:
本实验通过搭建采样与保持电路,观察和分析了不同条件下的信号波形,探究了采样与保持电路的工作原理和性能参数。
实验结果表明,采样
与保持电路适用于高频信号的采样和保持,并有一定的动态范围限制。
在
实际应用中,需要根据信号的特性和要求来选择合适的采样与保持电路,
并进行优化设计,以达到更好的效果。
1.《电子电路实验指导书》;
2.《电子技术实验指导书》。