八年级数学上册复习(实用5篇)

合集下载

【新】人教版八年级数学上册 期中复习-提高篇(分类知识点+练习题)

【新】人教版八年级数学上册 期中复习-提高篇(分类知识点+练习题)

PDCBA八年级上册期中复习—提高篇一、三角形中的线段和角 1.三角形三边间的关系定理及推论:三角形任意两边之和大于第三边;三角形任意两边之差小于第三边。

即:设三角形的两边的长为a 、b ,则第三边的长c 的取值范围是||||b a c b a +<<-。

2. 三角形的高、中线、角平分线(垂心,重心,内心)3. 三角形的外角和为 360°.性质:三角形的一个外角等于与它不相邻的两个内角的和.4.多边形的线段和角:n 边形一共有 条对角线.n 边形的内角和为 .5.多边形的外角和定理:多边形的外角和等于 .复习题组一1.在△ABC 中,AC=5,中线AD=4,则边AB 的取值范围是( )A .1<AB<9B .3<AB<13C .5<AB<13D .9<AB<132.如图,AB > AC ,点P 为ΔABC 的角平分线AD 上一点,则下列说法正确的是( ) A . AB – AC > PB – PC B . AB – AC < PB – PC C . AB – AC = PB – PC D . 无法确定3、如图10,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E 作EF ∥AC 交AB 于F ,则( ) A 、AF=2BF B 、AF=BF C 、AF>BF D 、AF<BF4. 在△ABC 中,AB=AC,AD 是中线,△ABC 的周长为34cm,△ABD 的周长为30cm, 求AD 的长.5. 如图所示,在△ABC 中,∠A=α,△ABC 的内角平分线或外角平分线交于点P, 且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.(1)PCBA(2)PCBA(3)PCBA6.(1)某多边形的内角和与外角和的总和为2 160°,求此多边形的边数;(2)某多边形的每一个内角都等于150°,求这个多边形的内角和.7.(1)如图①∠1+∠2与∠B +∠C 有什么关系?为什么?(2)把图①△ABC 沿DE 折叠,得到图②,填空:∠1+∠2_______∠B +∠C(填“>”“<”“=”),当∠A =40°时,∠B +∠C +∠1+∠2=__________________(3)如图③,是由图①的△ABC 沿DE 折叠得到的,如果∠A =30°,则x +y =360°-(∠B +∠C +∠1+∠2)=360°- = , 猜想∠BDA +∠CEA 与∠A 的关系为C二、轴对称与等腰三角形 1. 线段垂直平分线的性质定义:过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,又叫线段的中垂线 性质:线段垂直平分线上的点与这条线段两个端点的距离 . 判定:与一条线段两个端点距离相等的点,在这条线段的 上. 2.定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

八年级上册数学期中复习资料(人教版)

八年级上册数学期中复习资料(人教版)

八年级上册数学期中复习资料(人教版)
1 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
2 定理1 关于某条直线对称的两个图形是全等形
3 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
4 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
5 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
6 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c
7 勾股定理的逆定理如果三角形的三边长a、b、c 有关系a+b=c,那么这个三角形是直角三角形
8 定理四边形的内角和等于360deg;
9 四边形的外角和等于360deg;
10 多边形内角和定理 n边形的内角的和等于
(n-2)×180deg;
欢迎大家去阅读由小编为大家提供的八年级上册数学期中复习资料,大家好好去品味了吗?希望能够帮助到大
家,加油哦!
15-16年初二数学上册期中复习知识点辅导初二上册数学学习指导:整式的乘法与因式分解。

八年级数学上册期末复习资料

八年级数学上册期末复习资料

初二上册数学全册.第十一章全等三角形综合复习1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。

知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSSHL AAS SAS ASAAAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。

. 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。

求证:ACF BDE ∆≅∆。

知识点二:构造全等三角形 例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。

求证:21C ∠=∠+∠。

例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。

F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。

求证:AE CF=。

知识点三:常见辅助线的作法..1. 连接四边形的对角线例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。

2. 作垂线,利用角平分线的知识..例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的 平分线,它们交于点P 。

求证:BP 为MBN ∠的平分线。

例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。

求证:2AC AE =。

4. “截长补短”构造全等三角形.例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。

(完整)八年级数学上册知识点复习总结(北师大版),推荐文档

(完整)八年级数学上册知识点复习总结(北师大版),推荐文档

北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

2022-2023上海八年级数学上册期末专题复习05 函数的概念及正比例函数(考点讲解)(学生版)

2022-2023上海八年级数学上册期末专题复习05  函数的概念及正比例函数(考点讲解)(学生版)

专题05 函数的概念及正比例函数【考点剖析】 1.函数定义:在某个变化过程中有两个变量x 和y ,在变量x 的允许取值范围内,变量y 随x 的变化而变化,他们之间存在确定的依赖关系,那么变量y 叫x 的函数. 函数记号:()y f x =,()f a 表示x =a 时的函数值. 设()f x 为整式,则函数()y f x =的定义域:一切实数;函数1()y f x =的定义域:满足()0f x ≠的实数;函数y ()0f x ≥的实数.函数[]0()f x 的定义域:满足()0f x ≠的实数 2.正比例函数1).正比例:如果两个变量的每一组对应值的比值是一个不等于零的常数,那么就说这两个变量成正比例.用数学式子表示两个变量x,y 成正比,就是yk x=或者y kx =,其中0k ≠。

2).正比例函数:k>0k<03.注意点(1)正比例函数y kx =中, 0k ≠,但定义域是一切实数,两者不能混淆.(2)在实际问题中,正比例函数的图形往往是一条线段,一切要根据定义域来确定线段的所在范围。

(3)正比例函数与正比例是有区别的,正比例函数一定要满足y kx =,比如: 2(1)y x =+就不是正比例函数,是一次函数,但是y 与x+1成正比例。

【典例分析】 【考点1】函数的概念1.下列各选项中分别有两个变量x 、y ,则y 不是x 的函数的是( )A .B .C .y=-2x-1D .在国内投寄到外埠质量为100g 以内的普通信函应付邮资如下表: 信件质量/x y 020x <≤2040x <≤ 4060x <≤ 6080x <≤ 80100x <≤邮资y /元 1.202.403.604.806.002.函数y 11-x 的自变量x 的取值范围是______3.在函数y =中,自变量x 的取值范围是_________.4.如果函数()11f x x =-,那么f =_____.【考点2】正比例函数的图像及性质 1.下列问题中两个变量成正比例的是( ) A .正方形面积和它的边长B .一条边确定的长方形,其周长与另一边长C .圆的面积与它的半径D .半径确定的圆中,弧长与该弧长所对圆心角的度数2.已知函数223y x k =+-是正比例函数,则常数k 的值为( ) A .2- B .0 C .2 D .2±3.下列函数中,正比例函数是( ) A .3x y = B .21y x - C .22y x = D .3y x=4.已知正比例函数34y x =-,则下列各点在该函数图象上的是( )A .()4,3-B .()4,3--C .()2,1-D .()3,4-5.在32y x a =+-中,若y 是x 的正比例函数,则常数=a ___________.6.若函数()2269y m x m =++-是关于x 的正比例函数,则m 的值为_____________.7.已知正比例函数m y mx =∣∣,它的图象除原点外都在第二、四象限内,则m 的值为____.8.已知y 是x 的正比例函数,当2x =-时,8y =.求y 关于x 的函数表达式,以及当3x =时的函数值.9.已知3y 与21x -成正比例,且当1x =时,6y =. (1)求y 与x 之间的函数解析式.(2)已知点(,)P m n 在该函数的图像上,且4m n -=,求点P 的坐标.10.已知正比例函数过点(42)-,A ,点P 在正比例函数图像上,又(04)B ,且10ABPS =,求点P 的坐标.【课后练习】1.下列各图象中,不能表示y 是x 的函数的是( )A .B .C .D .2.函数()032x y x -=+-的自变量x 的取值范围是___________3.已知函数1()1f x x=+,则3)f = .4.下列问题中,两个变量之间成正比例关系的是( ) A .圆的面积S (cm 2)与它的半径r (cm )之间的关系B .某水池有水15m 3,现打开进水管进水,进水速度为5m 3/h ,xh 后这个水池有水y m 3C .三角形面积一定时,它的底边a (cm )和底边上的高h (cm )之间的关系D .汽车以60km/h 的速度匀速行驶,行驶路程y 与行驶时间x 之间的关系5.下列变化过程中,y 是x 的正比例函数是( )A .某村共有5210m 耕地,该村人均占有耕地y (单位:2m )随该村人数x (单位:人)的变化而变化B .一天内,温岭市气温y (单位:℃)随时间x (单位:时)的变化而变化C .汽车油箱内的存油y (单位:升)随行驶时间x (单位:时)的变化而变化D .某人一年总收入y (单位:元)随年内平均月收入x (单位:元)的变化而变化6.下列变量之间关系中,一个变量是另一个变量的正比例函数的是( ) A .正方形的周长C 随着边长x 的变化而变化 B .正方形的面积S 随着边长x 的变化而变化C .面积为20的三角形的一边a 随着这边上的高h 的变化而变化D .水箱以0.5L /min 的流量往外放水,水箱中的剩水量VL 随着放水时间t min 的变化而变化7.若()224y m x m =-+-是y 关于x 的正比例函数,求该正比例函数的解析式.8.正比例函数y=ax 中,y 随x 的增大而增大,则直线()1y a x =--经过( ) A .第一、三象限 B .第二、三象限 C .第二、四象限 D .第三、四象限9.如果一个正比例函数的图象经过不同象限的两点A (3,m )、B (n ,﹣2),那么一定有( ) A .m >0,n >0B .m >0,n <0C .m <0,n >0D .m <0,n <010.已知正比例函数y =kx 的图象经过点(2,﹣4),(1,1y ),(﹣1,2y ),那么1y 与2y 的大小关系是( ) A .1y <2y B .1y =2y C .1y >2yD .无法确定11.正比例函数(1)y k x =+图像经过点(1,-1),那么k =__________.12.已知正比例函数()0y kx k =≠的图象经过第一、三象限,且经过点(k ,k +2),则k =________.13.若正比例函数()1y m x =-的图象从左到右逐渐上升,则m 的取值范围是___________________14.已知正比例函数y=kx 图像经过点(2,-4),求: (1)这个函数的解析式;(2)判断点A (2,-1)是否在这个函数图像上;(3)图像上两点()11,B x y ,()22,C x y ,如果12x x >,比较1y ,2y 的大小.15.已知y 与x-1成正比例,且当x= 3时,y= 4. (1)求y 与x 之间的函数解析式; (2)当x= -1时,求y 的值.16.如图,已知正比例函数y =kx 的图像经过点A ,点A 在第四象限,过点A 作AH ⊥x 轴,垂足为H ,点A 的横坐标为4,且△AOH 的面积为8(1)求正比例函数的解析式.(2)在x 轴上能否找到一点P ,使△AOP 的面积为10?若存在,求点P 的坐标;若不存在,请说明理由.17.已知:如图,直线2y x =上有一点()2,P a ,直线()01y kx k =<<上有一点(),2Q b .(1)求点P 和点Q 的坐标(其中点Q 的坐标用含k 的代数式表示).(2)过点P 分别作PA y ⊥轴,PB x ⊥轴,过点Q 分别作QC x ⊥轴,如果OPQ △的面积等于BPQ 的面积的两倍,请求出k 的值.(3)在(2)的条件下,在直线OQ 上是否存在点D ,使12OCD S =△如果存在,请求出点D 的坐标;如果不存在,请说明理由.。

2023最新-八年级数学上册教案【优秀5篇】

2023最新-八年级数学上册教案【优秀5篇】

八年级数学上册教案【优秀5篇】作为一位优秀的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。

我们应该怎么写教案呢?以下是人见人爱的分享的5篇《八年级数学上册教案》,如果能帮助到亲,我们的一切努力都是值得的。

人教版八年级上数学教案篇一一、教学目的:1、掌握菱形概念,知道菱形与平行四边形的关系。

2、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积。

3、通过运用菱形知识解决具体问题,提高分析能力和观察能力。

4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。

二、重点、难点1、教学重点:菱形的性质1、2.2、教学难点:菱形的性质及菱形知识的综合应用。

三、课堂引入1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2、(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念。

菱形定义:有一组邻边相等的平行四边形叫做菱形。

【强调】菱形(1)是平行四边形;(2)一组邻边相等。

让学生举一些日常生活中所见到过的菱形的例子。

四、例习题分析例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:∠四边形ABCD是菱形,∠ CB=CD,CA平分∠BCD.∠∠BCE=∠DCE.又CE=CE,∠∠BCE∠∠COB(SAS)。

∠∠CBE=∠CDE.∠ 在菱形ABCD中,AB∠CD,∠∠AFD=∠FDC∠ ∠AFD=∠CBE.例2(教材P108例2)略五、随堂练习1、若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为。

2、已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积。

3、已知菱形ABCD的周长为20cm,且相邻两内角之比是1∠2,求菱形的对角线的长和面积。

八年级上册数学第三单元复习要点(精选9篇)

八年级上册数学第三单元复习要点(精选9篇)

八年级上册数学第三单元复习要点〔精选9篇〕篇1:八年级上册数学第三单元复习要点平移:在平面内,将一个图形沿某个方向挪动一定间隔,这样的图形运动称为平移。

平移的根本性质:经过平移,对应线段、对应角分别相等;对应点所连的线段平行且相等。

旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这个定点叫旋转中心,转动的角度叫旋转角。

旋转的性质:旋转后的图形与原图形的大小和形状一样;旋转前后两个图形的对应点到旋转中心的间隔相等;对应点到旋转中心的连线所成的角度彼此相等。

篇2:八年级上册数学第三单元复习要点一次函数的表达式是y=kx+b〔k≠b,k、b是常数〕,其中是x自变量,y 是因变量,读作y是x的一次函数,当x取一个值时,y有且只有一个值与x对应,假如有两个或两个以上的值与x对应,那么这个函数就不是一次函数。

一次函数表达式求解:一次函数也叫做线性函数,一般在X,Y坐标轴中用一条直线来表示,当一次函数中的一个变量的值确定的情况下,可以用一元一次方程来解答出另一个变量的值。

一次函数的表达方式一般都为y=kx+b的函数,叫做Y是X的一次函数,当常数项为零时的一次函数,可表示为y=kx 〔k≠0〕,这时的`常数k也叫比例系数。

常用来表示一次函数的方法有解析法,图像法和列表法。

一次函数的解析式一般分为点斜式,两点式,截距式。

解答一次函数的作法最简单的就是列表法,取一个满足一次函数表达式的两个点的坐标,来确定另一个未知数的值。

还有一个描点法。

一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。

通常情况下y=kx+b〔k≠0〕的图象过〔0,b〕和〔―b/k,0〕两点即可画出。

一次函数与一次方程之间的关系:一次函数、方程和不等式是初中数学的主要内容之一,也是中考的必考知识点,新课程标准把三局部的关系提到了十清楚朗化的程度。

因此,应该重视这局部内容的教学在教学中,可以从以下几个知识点进展辨析。

八年级上册数学教案(优秀5篇)

八年级上册数学教案(优秀5篇)

八年级上册数学教案〔优秀5篇〕八年级上册数学教案〔优秀5篇〕八年级上册数学教案〔优秀5篇〕1 一、教学目的:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的打破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的打破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。

因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中假如数据分布较为均匀时,比方教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,假设分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=0。

而用组中值51去乘以频数20恰好为1020≈0,即当数据分布较为平均时组中值恰好近似等于它的平均数。

所以利用组中值X频数去代替这组数据的和还是比拟合理的,而且这样做的好处是简化了计算量。

为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

三、例习题的意图分析1、教材P140探究栏目的意图。

〔1〕、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

〔2〕、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比方组、组中值及频数在表中的详细意义。

2、教材P140的考虑的意图。

〔1〕、使学生通过考虑这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题〔2〕、帮助学生理解表中所表达出来的信息,培养学生分析数据的才能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册复习(实用5篇)1.八年级数学上册复习第1篇一、复习目标落实知识点,提高学习效率,在复习中做到突出重点,把知识串成线,结成一张张小网,努力做到面向全体学生,照顾到不同层次的学生的学习需要,努力做到扎实有效,避免做无用功。

通过单元区块专题训练,让学生体验成功的快乐,激发其学习数学的兴趣;通过综合训练使学生进一步探索知识间的关系,明确内在的联系,培养学生分析问题和解决问题能力,以及计算能力。

二、复习方式总体思想:先分单元专题复习,再综合练习;单元专题复习方法:先做单元试卷,然后教师根据试卷反馈讲解,再布置作业查漏补缺;综合练习:教师及时认真批改,讲评时根据学生存在的问题及时辅导,并且给以巩固训练。

三、方法和措施:第一阶段:知识梳理形成知识网络:期末复习从27号开始,根据历年期末调研试卷命题的特点,精心选择一些新颖的、有代表性的题型编写到复习讲学稿中,前面三章花3天的时间复习结束,最后两章虽然是刚学的内容准备加强复习.主要把复习的重点放在第11章、第14章、第15章。

12月27日复习第十一章全等三角形12月28日复习第十二章轴对称1月4日复习第十三章实数1月.5日复习第十四章一次函数1月8日复习第十四章一次函数、第十五章整式的乘除与因式分解1月9日复习第十五章整式的乘除与因式分解实际操作:一节课复习,一节课检测。

一课时讲解。

第二阶段:综合训练(模拟练习)这一阶段,重点是提高学生的综合解题能力,训练学生的解题策略,加强解题指导,提高应试能力。

做法是:从市调研试卷、其他县市调研试卷、自编模拟试卷中精选几份进行训练,每份的练习要求学生独立完成,老师及时批改,重点讲评。

(本阶段从10~16号,约5天左右)四.在复习阶段要处理好两个方面的关系(1)课内与课外,讲与练的关系。

在课堂上要注意知识的全面性、系统性,面向全体学生,注意突出基础知识和基本能力,引导学生提高分析解决问题的思考方法。

切忌以讲代学,以练代学,顾高不顾低。

课外练习要精心设计、精心造题,以有理于消化所学的知识、方法,要留有思考的余地,让学生练习中提高对知识和方法的领会和掌握。

练习量要兼顾减轻学生的负担,量要适中。

(2)阶段复习与总体提高的关系。

复习分二阶段完成,但每一阶段不是孤立的,而是总体的一个环节。

在第一阶段复习中,对重要的知识点,在课堂教学与练习中要尽量体现知识间的联系,学科间的渗透、知识的应用性和时代性,有利于减轻学生复习的压力,也有利于学生的理解和掌握。

通过过程中量的积累达到质的转变的突破,以提高总体成绩。

总之,在数学期末复习中,我力求做到精选精练,指导方法,双基训练与能力提高并重。

争取让学生取得较好的成绩。

2.八年级数学上册复习第2篇期末考试到了,我们又进入了紧张的复习阶段,为了使最后的复习踏实而有效,特制定了如下复习计划:一、复习内容:第一章平方根与立方根第二章整式的乘除第三章勾股定理第四章平移与旋转第五章平行四边形的性质二、复习目标:1、整理本学期学过的知识与方法2、在自己经历过的解决问题活动中,选择一个最具有挑战问题性的问题,写下解决它的过程:包括遇到的困难、克服困难的方法与过程及所获得的体会,并选择这个问题的原因。

3、通过本学期的数学学习,让同学总结自己有哪些收获?有哪些需要改进的地方。

三、复习方法:1、强化训练这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练。

特别是整式的乘除,在复习过程中要分类型练习,重点是解题方法的正确选择同时使学生养成检查计算结果的习惯。

还有几何证明题,要通过针对性练习力争达到少失分,达到证明简练又严谨的效果。

2、加强管理严格要求根据每个学生自身情况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必须做到学一点会一点,对接受能力差的学生课后要加强辅导,及时纠正出现的错误,平时多小测多检查。

对能力较强的学生要引导他们多做课外习题,适当提高做题难度。

3、加强证明题的训练通过近阶段的学习,我发现学生对证明题掌握不牢,不会找合适的分析方法,部分学生看不懂题意,没有思路。

在今后的复习中我准备拿出一定的时间来专项练习证明题,引导学生如何弄懂题意、怎样分析、怎样写证明过程。

力争让学生把各种类型题做全并抓住其特点。

4、加强成绩不理想学生的辅导制定详细的复习计划,对他们要多表扬多鼓励,调动他们学习的积极性,利用课余时间对他们进行辅导,辅导时要有耐心,要心平气和,对不会的知识要多讲几遍,不怕麻烦,直至弄懂弄会。

四、在复习阶段要处理好两个方面的关系(1)课内与课外,讲与练的关系。

在课堂上要注意知识的全面性、系统性,面向全体学生,注意突出基础知识和基本能力,引导学生提高分析解决问题的思考方法。

切忌以讲代学,以练代学,顾高不顾低。

课外练习要精心设计、精心造题,以有理于消化所学的知识、方法,要留有思考的余地,让学生练习中提高对知识和方法的领会和掌握。

练习量要兼顾减轻学生的负担,量要适中。

(2)阶段复习与总体提高的关系。

复习分二阶段完成,但每一阶段不是孤立的,而是总体的一个环节。

在第一阶段复习中,对重要的知识点,在课堂教学与练习中要尽量体现知识间的联系,学科间的渗透、知识的应用性和时代性,有利于减轻学生复习的压力,也有利于学生的理解和掌握。

通过过程中量的积累达到质的转变的突破,以提高总体成绩。

3.八年级数学上册复习第3篇第一章一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

能使不等式成立的未知数的值,叫做不等式的解.不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集.求不等式解集的过程叫解不等式.由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组不等式组的解集:一元一次不等式组各个不等式的解集的公共局部。

等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。

)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质<1>、若a>b,则a+c>b+c;<2>、若a>b,c>0则ac>bc若c<0,则ac不等式的其他性质:反射性:若a>b,则bb,且b>c,则a>c三、解不等式的步骤:1、去分母;2、去括号;3、移项合并同类项;4、系数化为1。

四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集。

五、列一元一次不等式组解实际问题的一般步骤:(1)审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。

六、常考题型:1、求4x-67x-12的非负数解.2、已知3(x-a)=x-a+1r的解适合2(x-5)8a,求a的范围.3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。

第二章分解因式一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2±2ab+b2=(a±b)2二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形。

三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.分解因式的方法:1、提公因式法。

2、运用公式法。

第三章分式注:1°对于任意一个分式,分母都不能为零.2°分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母.3°分式的值为零含两层意思:分母不等于零;分子等于零。

(中B≠0时,分式有意义;分式中,当B=0分式无意义;当A=0且B≠0时,分式的值为零。

)常考知识点:1、分式的意义,分式的化简。

2、分式的加减乘除运算。

3、分式方程的解法和其利用分式方程解应用题。

第四章相似图形一、定义表示两个比相等的式子叫比例.假如a与b的比值和c与d的比值相等,那么或a∶b=c∶d,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项.假如选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成=,其中,线段AB、CD分别叫做这两个线段比的前项和后项.假如把表示成比值k,则=k或四条线段a,b,c,d中,假如a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.黄金分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,假如,那么称线段AB被点C黄金分割(goldensection),点C叫做线段AB的黄金分割点,AC与AB 的比叫做黄金比.其中≈引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.相似多边形:对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形:各角对应相等、各边对应成比例的两个多边形叫做相似多边形。

相似比:相似多边形对应边的比叫做相似比.二、比例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么.假如(b,d都不为0),那么、合比性质:假如,那么。

3、等比性质:假如=…=(b+d+…+n≠0),那么。

4、更比性质:若那么。

5、反比性质:若那么三、求两条线段的比时要注意的问题:(1)两条线段的长度必需用同一长度单位表示,假如单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.四、相似三角形(多边形)的性质:相似三角形对应角相等,对应边成比例,相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比。

相关文档
最新文档