五年级上册数学教案-6.3 梯形的面积|冀教版(2)
五年级数学上册教案 梯形的面积 冀教版

启发式教学
教学准备
两个梯形的卡片
课时安排
共1 课时 第 1 课时
授课时间
项目
预设教学过程
二次备课
教
学
过
程
教
学
过
程
一、复习旧知,做好铺垫。
1、提问:平行四边形的面积计算公式是什么?
2、出示图形让学生独立计算平行四边形的面积。
导语:前面我们已经学习了三角形的面积推导,今天我们继续探究梯形的面积公式的推导。
板
书
设
计
梯形的面积
平行四边形的面积= 底 × 高
梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2
课后Leabharlann 反思如果这种方法没有出现,教师可作为参与者介绍,并写出全式。
3、让学生观察两个公式,鼓励学生理解两个公式中“除以2”的实际意义。
4、出示用a、b、h分别表示梯形上底、下底和高的图形,教师说明用S表示梯形的面积,让学生写出梯形面积的字母公式。
5、试一试
先让学生说一说图中的数据各表示什么,再计算。
6、练一练
2、交流小组合作拼出的图形和推导公式的过程。
(1)先让用两个梯形推导的小组介绍。
要给学生充分交流的时间,引导学生有条理地表达:先说一说将梯形转化成了什么图形,再说拼成的图形和原来的梯形有什么关系,最后介绍小组探索出的梯形面积公式。
教师板书出来:梯形面积=(上底+下底)×高÷2。
(2)再交流用一个梯形割补的方法。
第1题,先让学生理解水渠“横截面”及有关数据,再独立完成。
第3题,机翼的平面图由两个完全一样的梯形组成,提示学生注意图形特点,灵活计算。
7、问题讨论
五年级上册数学教案-6.3 探索活动.梯形的面积|冀教版

《探索活动:梯形的面积.》教学设计一、教材分析二、学情分析小学五年级学生已经具备了较强的自主学习能力,有一定的动手操作能力。
通过之前的学习,学生已经掌握梯形的上底、下底、腰、高以及梯形的特征。
通过平行四边形以及三角形面积公式的学习,学生初步认识转化的数学思想。
小学生的思维是从具体思维过渡到抽象思维,但仍然是以具体思维为主;虽然学生初步认识转化的数学思想,但是大部分学生在学习新内容时,并不会联想到通过转化的数学思想来解决问题,这需要教师来引导。
三、教学目标(一)、认知目标:在实际情境中,认识计算梯形面积的必要性,懂得求梯形面积的条件,认识并掌握梯形的面积公式。
(二)、过程目标:通过具体剪拼操作活动以及观察,让学生体会转化的数学思想,并能理解梯形面积公式的推导过程,即培养学生动手操作能力、观察能力以及利用已有的知识和经验解决新问题的能力;(三)、情感目标:通过具体剪拼操作活动,调动学生学习的主动性,并加强学生学习的成功体验;通过小组合作学习与评价,提高学生合作探究意识以及交流能力。
四、课型 :新授课五、课时第一课时六、教学重点掌握梯形的面积公式,并运用梯形面积公式解决生活中的问题。
七、教学难点引导学生体会利用知识迁移类比规律和转化的数学思想推导出梯形面积公式的过程。
让学生体会转化的数学思想,形成思考的习惯。
八、教具、学具平行四边形、三角形、梯形若干个,小剪刀。
九、教学方法动手操作法、类比法、转化法。
十、教学过程一)复习导入(1)平行四边形的面积公式是什么?(2)想一想:我们是如何推导出平行四边形的面积公式的?(把平行四边形转化成长方形,转化后面积不变,得到平行四边形的面积公式)(3)我们常把要研究的图形运用转化的思想,转化成已学过的会计算面积的图形,就能找到所探索的图形面积的计算方法。
二)探索新知1、观察主题图(1)你得到了那些数学信息?求什么?(2)如何求梯形的面积?你把它转化成学过会计算面积的什么图形呢?2、动手操作(1)用准备好的三个梯形(两个重合,另一个和它不同)拼一拼(2)交流方法:(3)观察、思考、讨论提纲:a用两个怎样的梯形可以拼一个平行四边形?b梯形的面积与得到的平行四边形面积有什么关系?(4)交流汇报生1:我用两个梯形拼成平行四边形,一梯形面积是平行四边形面积的一半。
五年级上册数学教案-6.3 梯形的面积|冀教版 (3)

《梯形的面积》教学设计教材分析:梯形面积的计算是在学生学会梯形的特征以及学会计算平行四边形、三角形的面积的基础上进行教学的。
这部分知识是将来进一步学习计算组合图形面积和圆的面积计算的基础。
本小节内容共分为两个层次。
第一层是推导梯形面积的计算公式;第二层是应用梯形面积的计算公式计算梯形面积,解决实际问题。
梯形面积公式的推导是应用平行四边形、三角形面积公式推导的思路,利用转化思想解决新问题。
通过观察新、旧图形的内在联系得出梯形面积的计算公式,再抽象出梯形面积的字母公式。
本层次的重点是:使学生理解梯形面积公式的推导过程。
难点是:理解面积公式的推导过程.学生分析:由于学生学习了平行四边形、三角形面积的计算方法,初步了解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。
学生受思维定势的影响,很容易会利用两个完全相同的梯形转化成平行四边形的面积推导出梯形的面积公式,而用一个梯形推导出梯形的面积公式对于有的学生来说,会有一定的难度。
教学目标:1、在平行四边形、三角形面积推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式;2、会正确、较熟练的运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力;3、渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
教学重点:探索并掌握梯形的面积公式,能正确计算梯形的面积。
教学难点:理解梯形面积公式的推导过程;理解梯形面积公式中为什么要除以2的道理。
教具准备:多媒体课件。
学具准备:两个完全一样的梯形、任意梯形。
教学过程:一、复习引入充汽橡皮腿,喝油也喝水,送人又载货,奔跑快如飞。
(打一车辆)汽车王叔叔要换汽车前一块的挡风玻璃,现在我们就来看看这块挡风玻璃是什么形状的?你怎么知道是梯形?在我们确定它的形状是梯形之后,要想知道买多大的,我们就应该知道这块挡风玻璃的面积。
五年级上数学教案梯形面积(2)_冀教版

五年级上数学教案梯形面积(2)_冀教版
梯形面积
教学目标:
1、探索并掌握梯形的面积计算公式,能应用公式正确计算梯形的面积;
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重难点:
重点:梯形面积公式的理解。
难点:梯形面积公式的推导过程。
教学过程:
【导入】激情导入
前两天老师家新买了辆汽车,大家想看吗?(出示汽车的图片)它漂亮吗?它那里漂亮?引导学生说出前挡风玻璃是梯形,然后老师设置疑问,想给这块玻璃做个贴膜,同学们会计算这块玻璃形的面积吗?(大多数学生会否定)今天我们就来学习梯形的面积,相信学习完这节课你就能帮老师解决这个问题了。
板书课题:梯形面积
活动2【活动】目标感知
1、出示学习目标
(1)、探索并学会推导梯形的面积计算公式。
(2)、能应用公式正确计算梯形的面积。
2、自学课本
出示课件:学法指导
做题时注意。
活动5【讲授】课后小结
我们已经会计算长方形、正方形、平行四边形、三角形和梯形的面积,但在实际生活中,有很多图形是不规则的,那怎样计算它们的面积呢?这就是我们下节课要研究的内容,组合图形的面积,大家课下预习好下一节的内容吧。
五年级上册数学教案-6.3 梯形面积|冀教版

学生同桌合作动手操作,将平行四边形拼成长方形
全体同学研究
独立解决
执教教师
反思
3、各小组汇报探究成果,师给予适当补充。 将两个完全一样的普通梯形转化为平行四边形
4、平行四边形面积=2个梯形面积
底=上底+下底 高=高
推导公式: 平行四边形面积= 底×高
2个梯形面积= (上底+下底)× 高
梯形面积= (上底+下底)× 高 ÷ 2
四 质疑再探
用长方形面积推导出梯形的面积;
用正方形的面积推导出梯形的面积。
利用旧知识解决新问题,推导出梯形面积的计算公式。
布置动手操作要求:
1、以组为单位按步骤利用学具一起想办法推导出梯形面积计算公式,要求合理的分工、合作,操作学具要麻利。
2、学生分组动手操作推导出梯形面积的计算公式可能遇到的问题:找关系 割补法中:为什么“平行四边形的高=梯形的高÷2”学生理解起来可能出现困难。
教学
重、
难点
探究并掌握梯形的面积公式,会用公式计算梯形的面积。
教具
学具
多媒体
板书设计
梯形面积
长方形的面积=长×宽
梯形的面积=(上底+下底)÷2×高
活 动 流程
活动要求
执教教师批注
一 引入
复习已学的图形面积计算公式
师:“同学们你们都学过哪些图形的面积,是怎样计算的?”
生:长方形面积=长×宽
正方形面积=边长×边长
运用拓展教师行间巡视和学生一起探究对学生在探究过程中出现的问题进行指学生同桌合作动手操作将平行四边形拼成长方古人是怎样求图形的面积的呢
教学内容
2023年冀教版五年级数学上册《梯形面积的计算》教案(精选3篇)

2023年冀教版五年级数学上册《梯形面积的计算》教案(精选3篇)教案1:梯形面积的计算教学目标:1. 能够理解梯形的定义和特征;2. 能够计算梯形的面积;3. 能够将实际问题转化为梯形面积的计算。
教学重点:1. 梯形的定义和特征;2. 梯形面积的计算方法。
教学难点:1. 将实际问题转化为梯形面积的计算。
教学准备:1. 《梯形面积的计算》教材;2. 计算面积的小黑板。
教学过程:Step 1: 引入新内容【教师展示一张梯形图片】教师:同学们,这是一张梯形的图片,请问你们知道梯形是什么样的图形吗?有哪些特征?(学生回答)教师:非常好!那我们来学习一下梯形的定义和特征。
Step 2: 学习梯形的定义和特征【教师在黑板上写下梯形的定义】教师:梯形是由两条平行的边和两条不平行但相交的边组成的四边形。
教师:梯形又分为等腰梯形和非等腰梯形,等腰梯形的两条不平行的边相等。
教师:现在,同学们来看一下这个梯形,它是什么类型的梯形?(学生回答)教师:非常好!这是一个等腰梯形,因为它的两条不平行的边相等。
Step 3: 计算梯形的面积【教师在黑板上写下梯形面积的计算公式】教师:梯形的面积可以通过公式“面积=(上底+下底)×高÷2”来计算。
教师:那么,同学们,请你们计算一下这个等腰梯形的面积。
(学生回答)教师:非常好!这个等腰梯形的面积是xx平方单位。
Step 4: 将实际问题转化为梯形面积的计算【教师出示一道题目,并引导学生思考和解答】教师:小明家门前的花坛是梯形的形状,上底的长度是3米,下底的长度是6米,高是4米,请问花坛的面积是多少平方米?(学生回答)教师:非常好!花坛的面积是xx平方米。
Step 5: 小结【教师总结本节课的重点内容】教师:同学们,今天我们学习了梯形的定义和特征,学会了计算梯形的面积,并将实际问题转化为梯形面积的计算。
你们做得非常好!教案2:梯形面积的计算教学目标:1. 知道梯形的定义和特点;2. 掌握计算梯形面积的方法;3. 能够运用所学知识解决生活中涉及梯形的问题。
五年级上册数学教案梯形的面积冀教版

《梯形的面积》教学设计教学内容:教学目标:1.理解与掌握梯形的面积计算方法,并能正确计算梯形的面积。
2.经历梯形面积计算公式的探索过程,培养观察、比较、推理和归纳能力,渗透转化思想,发展空间观念。
3.能用梯形面积计算公式解决实际问题,感受数学和现实生活的密切联系。
教学重点:探索并掌握梯形面积的计算公式。
教学难点:运用多种方法推导梯形的面积公式,理解其推导过程。
教学过程:一、复习引入,明确学习内容1.出示梯形,引导学生回忆梯形各部分的名称。
2.揭示课题:今天这节课我们共同来研究梯形的面积。
(板书:梯形的面积)【设计意图:对梯形的各部分名称进行回顾,一方面是为了了解学生的学习基础,另一方面是为后面的新知探究环节起铺垫作用。
在此基础上揭示课题,让学生明确本节课要研究的内容。
】二、合情推理,提出研究设想1.合情推理,明确研究方向。
你觉得梯形面积的计算方法可能跟梯形的哪些要素有关?你是怎么想的?预设:上底、下底、高、腰……2.根据推测,提出研究设想。
(1)对于梯形面积的计算方法,我们该如何研究?预设1:先举例(量出梯形各部分的长度),再验证(用方格纸数一数这个梯形的面积),然后得出结论(梯形面积的计算方法),最后再研究任意梯形的面积计算方法(知其所以然)。
预设2:将任意的梯形转化成以前所学过的图形,通过寻找两者间的内在联系来解决新的问题。
预设:3:如果学生不能自主发现梯形面积计算方法的研究策略,教师要引导学生从平行四边形和三角形面积的探究方法中进行类比迁移,然后确定研究策略。
(2)探索梯形面积的计算方法,你为什么会想到用“转化”的方法?预设:因为平行四边形和三角形面积的计算方法都是运用“转化”的方法,进而探索出面积计算公式的。
【设计意图:学生对于图形面积计算方法的探究是有一定的学习经验的,所以,对于探索梯形面积计算方法的研究指向与相应设想(或方案),教师应该引领学生思考与设想,这是探究学习的一个重要环节。
(冀教版)五年级上册数学教案 梯形的面积 2

梯形的面积教学目标:1.在实际情境中,认识计算梯形面积的必要性;2.引导学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题;3.进一步培养学生的分析、综合、抽象、概括和运用转化的解决实际问题的能力;4.通过小组合作学习,培养学生合作学习的能力。
教学难点:1.运用转化的方法探究梯形的面积计算公式;2.运用梯形面积计算公式解决问题。
教学设计:一、复习准备1.复习旧知,铺垫引导师:同学们还记得我们前两天学习的平行四边形和三角形的面积计算公式吗?还记得三角形的面积是怎样推导出来的吗?生:我们把两个完全一样的三角形拼接转化成平行四边形。
师:谁可以帮我们把两个三角形拼接转化成一个平行四边形?(请一位学生上讲台转换,其他学生注意转化的过程。
)(评析:通过复习提问操作,直接唤起学生的回忆,为沟通新旧知识的联系,奠定基础。
)师:同学们对前面的知识掌握的真不错。
二、新知探索(一).呈现实际情境,感受计算梯形面积的必要性师:老师家有一块玻璃被打碎了,准备去玻璃店重新裁一块玻璃安装上,玻璃店老板说我们这店里玻璃每平方米30元,谁可以帮老师算一下,老师需要准备多少钱?玻璃的形状如下图,其中上底长30厘米,下底长50厘米,高是35厘米。
师:我们要求出玻璃一共需要多少钱,首先应该求出什么?(评析:小学中高年级的学生开始对“有用的数学”更感兴趣,此时学习素材的选取和呈现,以及学习活动的安排都应考虑到是否有利于学生在学习和生活中的应用,使学生感觉到数学就在身边,学数学是有用的、必要的。
在本课教学中,虽然学生没有亲自裁过玻璃的经验,但是现在建筑上玻璃的形状千奇百怪,出现学生所熟悉的另一种梯形不足为奇,求出它的面积,也是学生所好奇的,为生活所用。
在学习活动中,学生就自主运用学习过的方法,推导出梯形的面积。
)生:玻璃的面积,也就是梯形的面积。
师:梯形的面积到底该怎么计算呢?今天,让我们共同来研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梯形的面积
教学内容:
教学目标:
1、运用知识迁移类比规律和“转化”的数学思想,通过小组合作探索推导出梯形的面积计算公式。
2、运用梯形面积公式计算梯形面积。
3、培养操作、观察、分析、比较、概括及利用已有知识和经验解决新问题的能力。
4、通过自主探究,合作交流,体验成功,建立自信,激发学习兴趣,培养创新意识。
教学重点:理解并掌握梯形面积的计算公式,并能运用公式解决简单的实际问题。
教学难点:表达推导梯形面积的公式
教学关键:让学生在动手实践与合作交流中将梯形转化成平行四边形和三角形。
教学准备:课件、梯形若干个(两个完全一样的一般梯形、一个形状不同的一般梯形)、剪刀、三角板
教学过程
一、创设情境,提出问题
师:同学们,在我们的日常生活中,有很多人为了自己认为不公平的事吵得不可开交,今天老师也给大家带来了这样一个故事。
(老财主分地的故事)
同学们,你们想做这个聪明人吗?那就先来看看老财主的那两块地吧!
(媒体出示)师:那么怎样比出两块地的大小呢?(计算面积)(生交流)
师:老大的这块地是平行四边形我们可以计算面积(口头计算)老二的这块地是什么图形呢?
今天,我们就一起来探究解决梯形的面积计算的问题。
(板书:梯形的面积)二、动手实践,探究新知
(一)复习梯形各部分的名称
师:根据图形,你能说出梯形各部分的名称吗?(集体交流)(二)学习铺垫
师:在学习梯形之前我们还认识了什么图形?(平行四边形、三角形)
师:谁还记得我们探究平行四边形(三角形)面积时,是怎样推导出面积计算公式的?
(生交流:平行四边形是通过转化成长方形推导的;三角形的面积是通过拼成平行四边形推导的。
)
师:我们都是把它们转化为我们已经学过的图形,从而推导出它们的面积计算公式。
那么,凭借前面的学习经验,要推导梯形的面积公式,我们能否将梯形转化成我们所学过的图形,根据它们之间的联系,推导出梯形的面积公式呢?(三)合作探究
师:在你们每个小组桌上老师已经为你们准备好了很多的材料。
请你们用剪一剪、拼一拼、折一折等方法,把梯形转化成已学图形,推导出它的面积公式。
看哪个小组想的方法多,最先推导出梯形的面积公式。
(教师巡视指导)
(四)汇报交流
师:现在请各组派代表到台上来汇报
Ⅰ、转化成平行四边形
1、汇报演示由两个完全相同的梯形拼成平行四边形的过程
(1)引导学生在实物投影仪下演示交流
用两个完全一样的梯形拼成平行四边形的过程
(2)课件演示拼法
(3)是不是任意的两个梯形都可以拼成平行四边形呢?
师:那么什么样的两个梯形才能拼成一个平行四边形呢?
小结:完全相同(形状、大小都相同)的两个梯形才能拼成一个平行四边形。
(5)观察拼成的平行四边形,你发现了拼成的平行四边形和梯形间的关系吗?那你认为梯形的面积应该怎样计算呢?
(6)师生归纳出公式
(7)追问:(上底+下底)表示什么?(上底+下底)×高算得是什么?为何要除以2?(平行四边形的底;平行四边形的面积;因为是2个梯形拼成的)
2、汇报演示用一个梯形推导出梯形面积计算公式方法。
沿着梯形的高作出一条中位线,把中位线剪开,旋转,就拼成了一个平行四边形,平行四边形的底刚好是梯形的上底和下底的和,高刚好是梯形的高的一半,所以也可以推导出梯形的面积=(上底+下底)×高÷2
Ⅱ转化成三角形
(1)连接对角线,把一个梯形划分为两个三角形,其中一个三角形的底就是梯形上底,高就是梯形的高,另一个三形的底就是梯形的下底,高也是梯形的高。
两个三角形面积分别为:“上底×高÷2”及“下底×高÷2”;而三角形面积和=上底×高÷2+下底×高÷2=(上底+下底)×高÷2=梯形的面积
(2)如图演示:三角形的底就是梯形的“上底+下底”,三角形的高就是梯形的高。
Ⅲ转化成长方形
如图演示:分别沿梯形两腰中点向下底作垂线,与腰、下底正好围成两个直角三角形,把这两个三角形分别按逆时针或顺时针旋转1800角,使得原来的梯形被拼组成一个长方形。
梯形的上下底总长度,正好等于现在长方形两个长的总长度,即长方形的长=(上底+下底)÷2。
长方形的宽正好等于梯形的高。
长方形的面积= 长×宽
所以梯形的面积=[(上底+下底)÷2 ]×高
=(上底+下底)×高÷2
因此梯形的面积=(上底+下底)×高÷2
Ⅳ切割成三角形和平行四边形
把梯形切割成两块,一块是平行四边形,一块是三角形。
平行四边形的底就是原梯形的上底,三角形的底是梯形的下底与上底之差,而平行四边形和三角形的高都等于梯形的高。
所以梯形的面积
= 平行四边形的面积+三角形的面积
= 上底×高+(下底-上底)×高÷2
=(2×上底)×高÷2+(下底-上底)×高÷2
=(2×上底+下底-上底)×高÷2
=(上底+下底)×高÷2
因此梯形的面积=(上底+下底)×高÷2
3、探索、归纳梯形的面积计算公式
师:同学们介绍了各种方法,其实推导的方法还有多种多样,同学们课后还可以继续探讨。
不过,我们可以发现无论哪种推导方法得出的结论都是相同的公式。
谁来告诉大家梯形面积计算的字母公式该怎样表示呢?
生:S=(a+b)h÷2(板书)
三、实际应用、巩固练习
1、现在你能算一算到底谁得到的土地大吗?(生独立练习,师板书)
师:老财主还是非常公平的,两个兄弟得到的土地面积一样大。
其实在古代也有人和我们同学们一样聪明帮老财主解决了难题。
(简介《九章算术》古代梯形面积公式)
2、师:我们现代生活中也有很多地方需要计算梯形的面积,请你来算一算。
(1)出示篮球场的罚球区图形。
(2)出示渠道横截面。
28分米
12分米
14分米
5.8
3
.
6
m
(3)想知道下面梯形图形的面积该怎样列式计算呢?(只列式不计算)
3、判断: (1)梯形的面积是S =(a+b)h 。
( ) (2)梯形的面积是平行四边形的面积的一半。
( )
(3)两个梯形的高相等,它们的面积就相等。
( )
(4)已知一个梯形的上下底平均值是d 米,高是h 米,它的面积是“dh 平方米”( )
4、一个鱼塘的形状是梯形,它的上底长21米,下底长45米,面积是759平方米。
它的高是多少?
5、有一堆圆木,摆成下图形状,该怎样计算圆木的根数?
四、总结
师:本节你有什么收获想和大家分享?
板书设计:
梯形的面积
梯形的面积 =(上底+下底)×高÷ 2
S = ( a + b ) h ÷ 2
S =( 8 + 16 )×12÷2
= 24×12÷2
=288÷2
=144m ²
答:这个梯形的面积是144平方米。
3米
8厘米5厘米
15厘米 米。