迷宫问题实验报告

合集下载

迷宫实验报告

迷宫实验报告

迷宫实验报告迷宫实验报告引言:迷宫,作为一种古老而神秘的结构,一直以来都吸引着人们的好奇心。

在心理学领域,迷宫也被用作实验的工具,以探究人类的认知能力和行为模式。

本报告将介绍一项关于迷宫实验的研究,旨在揭示人类在解决迷宫问题时的思维方式和决策过程。

实验设计:实验采用了一座由墙壁和通道构成的迷宫结构。

迷宫的设计灵感来自于古埃及的金字塔,其复杂性和曲折性能够有效地引发参与者的困惑和挑战。

实验分为两个阶段,每个阶段都有一组参与者。

第一阶段:在第一阶段,参与者被要求在没有任何指引的情况下尽快从迷宫的入口找到出口。

他们的行走路径被记录下来,以便后续分析。

此阶段的目的是观察参与者在没有先验知识的情况下如何探索和解决迷宫问题。

第二阶段:在第二阶段,参与者被提供了一张简化的迷宫地图,其中标有入口、出口和一些关键的转折点。

他们被要求根据地图尽快找到出口。

同样,他们的行走路径被记录下来。

此阶段的目的是观察参与者在有先验知识的情况下是否能够更快地解决迷宫问题。

结果与分析:通过对参与者行走路径的分析,我们得出了一些有趣的结果。

在第一阶段中,参与者普遍表现出较为随机的行走路径,往往会反复试探不同的通道,直到找到正确的出口。

这种行为模式暗示了他们对迷宫结构的不熟悉和缺乏有效的导航策略。

然而,在第二阶段中,情况发生了变化。

参与者在获得地图后,往往能够更快地找到出口。

地图提供的关键信息帮助他们更好地规划路径,避免了盲目试探。

此外,我们还观察到参与者普遍会选择距离较短的路径,以节省时间和精力。

讨论与启示:这项实验揭示了人类在解决迷宫问题时的思维方式和决策过程。

在没有先验知识的情况下,人们往往会采取试错的策略,通过不断尝试不同的路径来找到正确的出口。

然而,一旦获得了相关信息,他们能够更快地解决问题,减少错误决策的可能性。

这一发现对于我们理解人类认知能力和决策行为具有重要意义。

在现实生活中,我们常常面临各种复杂的问题和抉择,而能够获得足够的信息和先验知识将有助于我们更好地解决这些问题。

迷宫的实验报告

迷宫的实验报告

一、实验目的1. 了解迷宫实验的基本原理和方法;2. 探究迷宫实验在心理学研究中的应用;3. 通过迷宫实验,分析被试者的认知能力和决策能力。

二、实验原理迷宫实验起源于古希腊,是一种经典的心理学实验。

实验中,被试者需要在迷宫中找到出口,以此模拟人类在面对复杂环境时的认知过程。

迷宫实验主要考察被试者的空间认知能力、决策能力、记忆能力和心理承受能力等。

三、实验方法1. 实验材料:迷宫卡片、计时器、实验指导语等;2. 实验步骤:(1)被试者随机分组,每组人数为5人;(2)主试者向被试者发放迷宫卡片,并讲解实验规则;(3)被试者按照实验指导语,在规定时间内完成迷宫;(4)记录被试者完成迷宫所需时间、走过的路径和遇到的问题;(5)对实验数据进行统计分析。

四、实验结果与分析1. 实验结果本次实验共收集有效数据100份。

根据实验结果,被试者在迷宫实验中的表现如下:(1)完成迷宫所需时间:平均值为5分钟;(2)走过的路径:大部分被试者能够顺利找到出口,但部分被试者在迷宫中迷失方向;(3)遇到的问题:被试者在迷宫中遇到的问题主要包括路径选择、记忆问题、心理压力等。

2. 实验分析(1)空间认知能力:被试者在迷宫实验中的空间认知能力整体较好,大部分被试者能够顺利找到出口。

但在迷宫中,部分被试者容易迷失方向,说明他们在空间认知方面存在一定程度的不足。

(2)决策能力:在迷宫实验中,被试者需要根据路径选择和记忆来做出决策。

实验结果显示,大部分被试者能够根据迷宫的布局和记忆做出正确的决策,但也有部分被试者在决策过程中出现失误。

(3)记忆能力:迷宫实验对被试者的记忆能力提出了较高要求。

实验结果显示,被试者在迷宫实验中的记忆能力整体较好,但部分被试者在记忆过程中出现遗忘现象。

(4)心理承受能力:在迷宫实验中,被试者需要面对复杂的环境和压力。

实验结果显示,大部分被试者能够保持冷静,但也有部分被试者在心理压力下出现焦虑、烦躁等现象。

五、结论1. 迷宫实验能够有效考察被试者的空间认知能力、决策能力、记忆能力和心理承受能力;2. 在迷宫实验中,被试者的表现受到多种因素的影响,包括个人能力、心理素质等;3. 迷宫实验在心理学研究中的应用具有重要意义,可以为相关研究提供有力支持。

迷宫问题 实验报告

迷宫问题 实验报告

迷宫问题实验报告迷宫问题实验报告引言:迷宫问题一直以来都是计算机科学领域中的研究热点之一。

迷宫是一个具有复杂结构的空间,其中包含了许多死胡同和通道,人们需要找到一条从起点到终点的最短路径。

在这个实验中,我们将通过使用不同的算法和技术来解决迷宫问题,并探讨它们的优缺点。

实验方法:我们首先建立一个虚拟的迷宫模型,使用二维数组来表示。

迷宫包含了墙壁、通道和起点终点。

我们通过设置不同的迷宫大小、起点和终点位置以及障碍物的分布来模拟不同的情况。

1. 广度优先搜索算法:广度优先搜索算法是一种常用的解决迷宫问题的算法。

它从起点开始,逐层地向外扩展搜索,直到找到终点或者遍历完所有的可达点。

在实验中,我们发现广度优先搜索算法能够找到一条最短路径,但是当迷宫规模较大时,算法的时间复杂度会急剧增加,导致搜索时间过长。

2. 深度优先搜索算法:深度优先搜索算法是另一种常用的解决迷宫问题的算法。

它从起点开始,沿着一个方向一直搜索到无法继续前进为止,然后回溯到上一个节点,选择另一个方向进行搜索。

在实验中,我们发现深度优先搜索算法能够快速找到一条路径,但是由于它的搜索策略是“深入优先”,因此无法保证找到的路径是最短路径。

3. A*算法:A*算法是一种启发式搜索算法,它综合了广度优先搜索和深度优先搜索的优点。

在实验中,我们将每个节点的代价定义为从起点到该节点的实际代价和从该节点到终点的预估代价之和。

A*算法通过优先选择代价最小的节点进行搜索,以期望找到一条最短路径。

实验结果表明,A*算法在大多数情况下能够找到最短路径,并且相对于广度优先搜索算法,它的搜索时间更短。

4. 遗传算法:除了传统的搜索算法外,我们还尝试了一种基于进化思想的遗传算法来解决迷宫问题。

遗传算法通过模拟生物进化过程中的选择、交叉和变异等操作来搜索最优解。

在实验中,我们将迷宫路径编码为一个个体,并使用适应度函数来评估每个个体的优劣。

经过多次迭代,遗传算法能够找到一条较优的路径,但是由于算法本身的复杂性,搜索时间较长。

迷宫问题_上机实验报告

迷宫问题_上机实验报告

一、实验目的1. 熟悉迷宫问题的基本概念和解决方法。

2. 掌握一种或多种迷宫求解算法。

3. 通过编程实践,提高算法设计和编程能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm三、实验内容迷宫问题是指在一个二维网格中,给定起点和终点,求解从起点到终点的路径。

本实验采用深度优先搜索(DFS)和广度优先搜索(BFS)两种算法进行迷宫求解。

1. 深度优先搜索(DFS)(1)算法原理:DFS算法是一种非确定性算法,其基本思想是沿着一个分支一直走到底,直到无法继续为止,然后回溯到上一个节点,再选择另一个分支继续走。

(2)算法步骤:a. 初始化迷宫,将起点设置为当前节点,将终点设置为目标节点。

b. 创建一个栈,将起点入栈。

c. 当栈不为空时,执行以下操作:a. 弹出栈顶元素,将其标记为已访问。

b. 判断是否为终点,如果是,则输出路径并结束算法。

c. 获取当前节点的上下左右邻居节点,如果邻居节点未被访问,则将其入栈。

d. 当栈为空时,算法结束。

(3)代码实现:```pythondef dfs(maze, start, end):stack = [start]visited = set()path = []while stack:node = stack.pop()if node == end:return path + [node]visited.add(node)for neighbor in get_neighbors(maze, node): if neighbor not in visited:stack.append(neighbor)path.append(node)return Nonedef get_neighbors(maze, node):x, y = nodeneighbors = []if x > 0 and maze[x-1][y] == 0:neighbors.append((x-1, y))if y > 0 and maze[x][y-1] == 0:neighbors.append((x, y-1))if x < len(maze)-1 and maze[x+1][y] == 0:neighbors.append((x+1, y))if y < len(maze[0])-1 and maze[x][y+1] == 0:neighbors.append((x, y+1))return neighbors```2. 广度优先搜索(BFS)(1)算法原理:BFS算法是一种确定性算法,其基本思想是从起点开始,按照一定顺序遍历所有节点,直到找到终点。

迷宫探路系统实验报告(3篇)

迷宫探路系统实验报告(3篇)

第1篇一、实验背景迷宫探路系统是一个经典的计算机科学问题,它涉及到算法设计、数据结构以及问题求解等多个方面。

本实验旨在通过设计和实现一个迷宫探路系统,让学生熟悉并掌握迷宫问题的求解方法,提高算法实现能力。

二、实验目的1. 理解迷宫问题的基本概念和求解方法。

2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)算法的原理和实现。

3. 了解A搜索算法的基本原理,并能够实现该算法解决迷宫问题。

4. 学会使用数据结构如栈、队列等来辅助迷宫问题的求解。

三、实验原理迷宫问题可以通过多种算法来解决,以下为三种常用的算法:1. 深度优先搜索(DFS):DFS算法通过递归的方式,沿着一条路径深入搜索,直到遇到死胡同,然后回溯并尝试新的路径。

DFS算法适用于迷宫的深度较深,宽度较窄的情况。

2. 广度优先搜索(BFS):BFS算法通过队列实现,每次从队列中取出一个节点,然后将其所有未访问过的邻接节点加入队列。

BFS算法适用于迷宫的宽度较宽,深度较浅的情况。

3. A搜索算法:A算法结合了DFS和BFS的优点,通过估价函数f(n) = g(n) +h(n)来评估每个节点的优先级,其中g(n)是从起始点到当前节点的实际代价,h(n)是从当前节点到目标节点的预估代价。

A算法通常能够找到最短路径。

四、实验内容1. 迷宫表示:使用二维数组表示迷宫,其中0表示通路,1表示障碍。

2. DFS算法实现:- 使用栈来存储路径。

- 访问每个节点,将其标记为已访问。

- 如果访问到出口,输出路径。

- 如果未访问到出口,回溯到上一个节点,并尝试新的路径。

3. BFS算法实现:- 使用队列来存储待访问的节点。

- 按顺序访问队列中的节点,将其标记为已访问。

- 将其所有未访问过的邻接节点加入队列。

- 如果访问到出口,输出路径。

4. A算法实现:- 使用优先队列来存储待访问的节点,按照f(n)的值进行排序。

- 访问优先队列中的节点,将其标记为已访问。

迷宫问题求解算法设计实验报告

迷宫问题求解算法设计实验报告

迷宫问题求解算法设计实验报告一、引言迷宫问题一直是计算机科学中的一个经典问题,其解决方法也一直是研究者们探讨的重点之一。

本实验旨在通过设计不同的算法,对迷宫问题进行求解,并对比不同算法的效率和优缺点。

二、算法设计1. 暴力搜索算法暴力搜索算法是最简单直接的求解迷宫问题的方法。

其基本思路是从起点开始,按照某种规则依次尝试所有可能的路径,直到找到终点或所有路径都被尝试过为止。

2. 广度优先搜索算法广度优先搜索算法也称为BFS(Breadth First Search),其基本思路是从起点开始,按照层次依次遍历每个节点,并将其相邻节点加入队列中。

当找到终点时,即可得到最短路径。

3. 深度优先搜索算法深度优先搜索算法也称为DFS(Depth First Search),其基本思路是从起点开始,沿着某一个方向走到底,再回溯到上一个节点继续向其他方向探索。

当找到终点时,即可得到一条路径。

4. A* 算法A* 算法是一种启发式搜索算法,其基本思路是综合考虑节点到起点的距离和节点到终点的距离,选择最优的路径。

具体实现中,可以使用估价函数来计算每个节点到终点的距离,并将其加入优先队列中。

三、实验过程本实验使用 Python 语言编写程序,在不同算法下对迷宫问题进行求解。

1. 数据准备首先需要准备迷宫数据,可以手动输入或从文件中读取。

本实验使用二维数组表示迷宫,其中 0 表示墙壁,1 表示路径。

起点和终点分别用 S 和 E 表示。

2. 暴力搜索算法暴力搜索算法比较简单直接,只需要按照某种规则遍历所有可能的路径即可。

具体实现中,可以使用递归函数来实现深度遍历。

3. 广度优先搜索算法广度优先搜索算法需要使用队列来存储待遍历的节点。

具体实现中,每次从队列中取出一个节点,并将其相邻节点加入队列中。

4. 深度优先搜索算法深度优先搜索算法也需要使用递归函数来实现深度遍历。

具体实现中,在回溯时需要将已经访问过的节点标记为已访问,防止重复访问。

迷宫问题实验报告doc

迷宫问题实验报告doc

迷宫问题实验报告篇一:迷宫问题实验报告武汉纺织大学数学与计算机学院数据结构课程设计报告迷宫问题求解学生姓名:学号:班级:指导老师:报告日期:一、问题描述以一个m x n的长方矩阵表示迷宫,1和0分别表示迷宫中的通路和障碍。

设计一个程序,对任意设定的迷宫,求出从入口到出口的通路,或者没有通路的结论。

二、需求分析 1、以二维数组maze[10][10]表示迷宫,数组中以元素1表示通路,0表示障碍,迷宫的大小理论上可以不限制,但现在只提供10*10大小迷宫。

2、迷宫的入口和出口需由用户自行设置。

3、以长方形矩阵的形式将迷宫及其通路输出,输出中“#”表示迷宫通路,“1”表示障碍。

4、本程序只求出一条成功的通路。

但是只要对函数进行小量的修改,就可以求出其他全部的路径。

5、程序执行命令为:(1)输入迷宫;(2)、求解迷宫;(3)、输出迷宫。

三、概要设计1、设定栈的抽象数据类型定义:ADT zhan{ 基本操作:InitStack(SqStack &S)操作结果:构造一个空栈 push(*s,*e)初始条件:栈已经存在操作结果:将e所指向的数据加入到栈s中 pop(*s,*e)初始条件:栈已经存在操作结果:若栈不为空,用e返回栈顶元素,并删除栈顶元素 getpop(*s,*e)初始条件:栈已经存在操作结果:若栈不为空,用e返回栈顶元素stackempty(*s)初始条件:栈已经存在操作结果:判断栈是否为空。

若栈为空,返回1,否则返回0 }ADT zhan 2、设定迷宫的抽象数据类型定义 ADT migong{基本操作:Status print(MazeType maze); //显示迷宫Status Pass(MazeType maze,PosType curpos); //判断当前位置是否可通Status FootPrint(MazeType &maze,PosTypecurpos);//标记当前位置已经走过Status MarkPrint(MazeType &maze,PosType curpos); //标记当前位置不可通PosType NextPos(PosType curpos,DirectiveTypedi); // 进入下一位置}ADT yanshu3、本程序包括三个模块 a、主程序模块 void main() {初始化;迷宫求解;迷宫输出; }b、栈模块——实现栈的抽象数据类型c、迷宫模块——实现迷宫的抽象数据类型四、流程图五、数据结构typedef struct //位置结构 { int row; //行位置 int col; //列位置 }PosType;typedef struct//迷宫类型{ int arr[10][10]; }MazeType;typedef struct {int step; //当前位置在路径上的"序号"PosType seat; //当前的坐标位置DirectiveType di; //往下一个坐标位置的方向}SElemType;typedef struct // 栈类型{SElemType *base; //栈的尾指针SElemType *top;//栈的头指针 int stacksize;//栈的大小}SqStack;六、调试结果和分析a) 测试结果实际程序执行过程如下图所示:篇二:迷宫实验实验报告迷宫实验一.摘要迷宫实验主要是要探讨研究一个人只靠自己的动觉,触觉和记忆获得信息的情况下,如何学会在空间中定向。

数据结构之迷宫实训报告

数据结构之迷宫实训报告

一、实训背景与目的随着计算机技术的不断发展,数据结构作为计算机科学的基础课程,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。

迷宫问题作为数据结构中的一个经典问题,不仅能够帮助学生深入理解栈和队列等数据结构,还能锻炼学生算法设计和编程能力。

本次实训旨在通过解决迷宫问题,使学生更好地掌握数据结构的相关知识,并提高实际问题的解决能力。

二、迷宫问题的描述迷宫问题可以描述为:给定一个由二维数组表示的迷宫,其中0表示通路,1表示墙壁。

迷宫的入口位于左上角(0,0),出口位于右下角(m-1,n-1)。

要求设计一个程序,找到一条从入口到出口的路径,如果不存在路径,则输出“无路可通”。

三、解决方案为了解决迷宫问题,我们采用了以下方案:1. 数据结构选择:选择栈作为主要的数据结构,用于存储路径上的节点,以便在回溯过程中找到正确的路径。

2. 算法设计:- 初始化栈,将入口节点压入栈中。

- 循环判断栈是否为空:- 如果栈为空,则表示没有找到路径,输出“无路可通”。

- 如果栈不为空,则从栈中弹出一个节点,判断其是否为出口节点:- 如果是出口节点,则输出路径并结束程序。

- 如果不是出口节点,则按照东南西北的顺序遍历其相邻的四个节点:- 如果相邻节点是通路且未被访问过,则将其压入栈中,并标记为已访问。

- 重复步骤2,直到找到出口或栈为空。

3. 迷宫的表示:使用二维数组表示迷宫,其中0表示通路,1表示墙壁。

四、程序实现以下是用C语言实现的迷宫问题解决方案:```c#include <stdio.h>#include <stdlib.h>#define MAX_SIZE 100typedef struct {int x, y;} Point;typedef struct {Point data[MAX_SIZE];int top;} Stack;void initStack(Stack s) {s->top = -1;}int isEmpty(Stack s) {return s->top == -1;}void push(Stack s, Point e) {if (s->top == MAX_SIZE - 1) {return;}s->data[++s->top] = e;}Point pop(Stack s) {if (isEmpty(s)) {Point p = {-1, -1};return p;}return s->data[s->top--];}int isExit(Point p, int m, int n) {return p.x == m - 1 && p.y == n - 1;}int isValid(int x, int y, int m, int n, int maze[][n], int visited[][n]) {return x >= 0 && x < m && y >= 0 && y < n && maze[x][y] == 0&& !visited[x][y];}void findPath(int maze[][n], int m, int n) {Stack s;initStack(&s);Point start = {0, 0};push(&s, start);int visited[m][n];for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {visited[i][j] = 0;}}while (!isEmpty(&s)) {Point p = pop(&s);if (isExit(p, m, n)) {printf("找到路径:");while (!isEmpty(&s)) {p = pop(&s);printf("(%d, %d) ", p.x, p.y);}printf("\n");return;}int directions[4][2] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}}; for (int i = 0; i < 4; i++) {int nx = p.x + directions[i][0];int ny = p.y + directions[i][1];if (isValid(nx, ny, m, n, maze, visited)) {visited[nx][ny] = 1;push(&s, (Point){nx, ny});break;}}}printf("无路可通\n");}int main() {int m, n;printf("请输入迷宫的行数和列数:");scanf("%d %d", &m, &n);int maze[m][n];printf("请输入迷宫的布局(0表示通路,1表示墙壁):\n");for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {scanf("%d", &maze[i][j]);}}findPath(maze, m, n);return 0;}```五、实训心得通过本次迷宫实训,我深刻体会到了数据结构在实际问题中的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉纺织大学数学与计算机学院数据结构课程设计报告迷宫问题求解学生姓名:学号:班级:指导老师:报告日期:一、问题描述以一个m x n的长方矩阵表示迷宫,1和0分别表示迷宫中的通路和障碍。

设计一个程序,对任意设定的迷宫,求出从入口到出口的通路,或者没有通路的结论。

二、需求分析1、以二维数组maze[10][10]表示迷宫,数组中以元素1表示通路,0表示障碍,迷宫的大小理论上可以不限制,但现在只提供10*10大小迷宫。

2、迷宫的入口和出口需由用户自行设置。

3、以长方形矩阵的形式将迷宫及其通路输出,输出中“#”表示迷宫通路,“1”表示障碍。

4、本程序只求出一条成功的通路。

但是只要对函数进行小量的修改,就可以求出其他全部的路径。

5、程序执行命令为:(1)输入迷宫;(2)、求解迷宫;(3)、输出迷宫。

三、概要设计1、设定栈的抽象数据类型定义:ADT zhan{基本操作:InitStack(SqStack &S)操作结果:构造一个空栈push(*s,*e)初始条件:栈已经存在操作结果:将e所指向的数据加入到栈s中pop(*s,*e)初始条件:栈已经存在操作结果:若栈不为空,用e返回栈顶元素,并删除栈顶元素getpop(*s,*e)初始条件:栈已经存在操作结果:若栈不为空,用e返回栈顶元素stackempty(*s)初始条件:栈已经存在操作结果:判断栈是否为空。

若栈为空,返回1,否则返回0 }ADT zhan2、设定迷宫的抽象数据类型定义ADT migong{基本操作:Status print(MazeType maze); //显示迷宫Status Pass(MazeType maze,PosType curpos); //判断当前位置是否可通Status FootPrint(MazeType &maze,PosType curpos);//标记当前位置已经走过Status MarkPrint(MazeType &maze,PosType curpos);//标记当前位置不可通PosType NextPos(PosType curpos,DirectiveTypedi);// 进入下一位置}ADT yanshu3、本程序包括三个模块a、主程序模块void main(){初始化;迷宫求解;迷宫输出;}b、栈模块——实现栈的抽象数据类型c、迷宫模块——实现迷宫的抽象数据类型四、流程图五、数据结构t ypedef struct //位置结构{int row; //行位置int col; //列位置}PosType;typedef struct //迷宫类型{int arr[10][10];}MazeType;typedef struct{int step; //当前位置在路径上的"序号"PosType seat; //当前的坐标位置DirectiveType di; //往下一个坐标位置的方向 }SElemType;typedef struct //栈类型{SElemType *base; //栈的尾指针 SElemType *top; //栈的头指针 int stacksize; //栈的大小 }SqStack;六、调试结果和分析a)测试结果实际程序执行过程如下图所示:参考文献[1] 严蔚敏、吴伟民:《数据结构(C语言版)》[M],清华大学出版社 2007年版[2] 谭浩强:《C语言设计(第三版)》[M],清华大学出版社 2005年版心得体会通过这段时间的课程设计,本人对计算机的应用,数据结构的作用以及C 语言的使用都有了更深的了解。

尤其是C语言的进步让我深刻的感受到任何所学的知识都需要实践,没有实践就无法真正理解这些知识以及掌握它们,使其成为自己的财富。

在设计此程序时,刚开始感到比较迷茫,然后一步步分析,试着写出基本的算法,思路渐渐清晰,最后完成程序。

当然也遇到不少的问题,也正是因为这些问题引发的思考给我带了收获。

在遇到描写迷宫路径的算法时,我感到有些困难,后来经过一步步分析和借鉴书本上的穷举求解的算法,最后把算法写出来。

这次课程设计让我更加深入了解很多方面的知识,如数组的运用等等。

在程序的编写中不要一味的模仿,要自己去摸索,只有带着问题反复实践,才能熟练地掌握和运用。

附录、源代码#include <stdio.h> //头文件#include <malloc.h>#include <stdlib.h>#include <string.h>#define OK 1 //宏定义#define ERROR 0#define OVERFLOW -2typedef int Status; //函数的返回值typedef int DirectiveType; //下一个通道方向 #define STACK_INIT_SIZE 500 //栈的最大值#define STACKINCREMENT 10 //增量//-----------存储结构typedef struct{int row;int col;}PosType;typedef struct{int step; //当前位置在路径上的"序号"PosType seat; //当前的坐标位置DirectiveType di; //往下一个坐标位置的方向}SElemType;typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;//栈的存储typedef struct{int arr[10][10];}MazeType;//迷宫类型//---------函数声明Status InitStack(SqStack &S);Status Pop(SqStack &S,SElemType &e);Status Push(SqStack &S,SElemType e);Status StackEmpty(SqStack S);Status MazePath(MazeType &maze,PosType start,PosType end); Status Pass(MazeType maze,PosType curpos);Status FootPrint(MazeType &maze,PosType curpos);PosType NextPos(PosType curpos,DirectiveType di);Status MarkPrint(MazeType &maze,PosType curpos);Status print(MazeType maze);void main(){PosType start,end;MazeType a;printf("请输入迷宫数据\n");for(int i=0;i<10;i++) //接受输入的迷宫数据{for(int j=0; j<10;j++){scanf("%d",&a.arr[i][j]);}}printf("请输入起始位置:行列 "); // 用户自定义起始点与终点scanf("%d%d",&start.row,&start.col);printf("请输入结束位置:行列 ");scanf("%d%d",&end.row,&end.col);if(MazePath(a,start,end)) //寻找路径print(a);elseprintf("没有找到路径\n");}Status InitStack(SqStack &S){S.base=(SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType)); // 为栈申请存储地址if(!S.base)exit(OVERFLOW);S.top=S.base;S.stacksize=STACK_INIT_SIZE;return OK;}//end InitStackStatus Pop(SqStack &S,SElemType &e){if(S.top==S.base)return ERROR;e=*(S.top-1);//如果没有这句话就会在原地打转,导致在死胡同堵死S.top--;return OK;}//end PopStatus Push(SqStack &S,SElemType e){*S.top=e;S.top++;return OK;}//end PushStatus StackEmpty(SqStack S){if(S.top==S.base)return OK;elsereturn ERROR;}//end StackEmptyStatus MazePath(MazeType &maze,PosType start,PosType end){PosType curpos;curpos=start;int curstep=1;SElemType e;SqStack S;InitStack(S);do{if(Pass(maze,curpos)) //当前位置可以通过,即未曾走过的模块{e.step=curstep;e.seat=curpos;e.di=1;FootPrint(maze,curpos);//留下足迹Push(S,e); //加入到路径栈中if(curpos.col==end.col&&curpos.row==end.row)//达到终点(出口)return OK;curpos=NextPos(curpos,1);//下一位置是当前位置的东邻curstep++;//探索下一步}//end ifelse{ //当前位置不能通过if(!StackEmpty(S)){Pop(S,e);while(e.di==4&&!StackEmpty(S)){MarkPrint(maze,e.seat);Pop(S,e);// 留下不能通过的标记,并回退一步}//end whileif(e.di<4){e.di++;// 换一个方向探索Push(S,e);curpos=NextPos(e.seat,e.di);//设定当前位置是该新方向的相邻快}//end if}//end if}//end else}while(!StackEmpty(S));//end ifprintf("\n\n");for(int i=0;i<10;i++){for(int j=0; j<10;j++){printf("%d ",maze.arr[i][j]);}printf("\n");}return ERROR;}//end MazePathStatus Pass(MazeType maze,PosType curpos){if(maze.arr[curpos.row][curpos.col]==0)//判断当前路径对应数组值是否等于0,即当前路径是否可通 return OK;elsereturn ERROR;}Status FootPrint(MazeType &maze,PosType curpos){maze.arr[curpos.row][curpos.col]=2;//为当前路径留下可以通过的标志return OK;}//end PassPosType NextPos(PosType curpos,DirectiveType di){PosType pos = curpos;switch(di){case 1:pos.col++; //向东寻找break;case 2:pos.row++; //向西寻找break;case 3:pos.col--; //向南寻找break;case 4:pos.row--; //向北寻找break;}return pos;}//end NextPosStatus MarkPrint(MazeType &maze,PosType curpos) {maze.arr[curpos.row][curpos.col]=3;//为当前路径留下不可通过的标志return OK;}//end MarkPrintStatus print(MazeType maze) //迷宫的输出显示{int i,j;printf("\n\n");for(i=0;i<10;i++){for(j=0; j<10;j++){switch(maze.arr[i][j]){case 0: printf(" ");break;case 1: printf("1 ");break;case 2: printf("# ");break;case 3: printf(" ");break;}//end swith}//end 内层forprintf("\n");}//end 外层forreturn OK;}//end print。

相关文档
最新文档