结构设计原理钢筋混凝土柱偏心受压破坏试验 ppt课件

合集下载

《偏心受压柱》课件

《偏心受压柱》课件
理的截面尺寸、配筋等参数。
节点设计
节点设计是结构设计的关键环节 ,需要考虑节点的连接方式、传
力路径和构造要求。
构造措施
根据计算结果和节点设计,采取 相应的构造措施,如加腋、加强 筋等,以提高柱的承载能力和稳
定性。
04
偏心受压柱的施工与维护
Chapter
施工工艺
基础施工
按照设计要求进行基础开挖、 排水、混凝土浇筑等作业,确 保基础稳固。
材料选择
钢材
高强度钢材能够提供良好的承载 能力和耐久性,适用于大型建筑
和重要结构。
混凝土
混凝土具有较好的抗压性能和耐久 性,适用于一般民用建筑和临时结 构。
其他材料
根据特殊需求,可以选择其他适合 的材料,如铝合金、玻璃钢等。
结构设计
计算分析
根据柱的承载要求和使用环境, 进行详细的计算和分析,确定合
《偏心受压柱》PPT课件
目录
• 偏心受压柱的基本概念 • 偏心受压柱的受力分析 • 偏心受压柱的设计与优化 • 偏心受压柱的施工与维护 • 偏心受压柱的案例分析
01
偏心受压柱的基本概念
Chapter
定义与特性
定义
偏心受压柱是指承受轴向力和弯 矩的柱子,其中轴向力偏离柱子 的中心线。
特性
偏心受压柱在承受压力时会产生 弯曲和剪切变形,其承载能力与 截面尺寸、材料强度、偏心距等 因素有关。
质量检测
对偏心受压柱的尺寸进行测量, 包括长度、直径、厚度等,确保 符合设计要求。
对柱体与其他结构或部件的连接 部位进行检查和试验,确保连接 牢固、无松动现象。
外观检测 尺寸检测 强度检测 连接检测
对偏心受压柱的外观进行检查, 包括表面平整度、无裂纹、无明 显缺陷等。

钢筋混凝土偏心受力构件承载力计算.pptx

钢筋混凝土偏心受力构件承载力计算.pptx

Nu A(N0,0)
B(Nb,Mb)
⑸如截面尺寸和材料强度保持
不变,Nu-Mu相关曲线随配 筋率的增加而向外侧增大。
C(0,M0) Mu
第16页/共43页
混凝土结构设计原理
第 7章
§7.4 偏心受压构件的破坏特征
N M=N e0
e0 N
As
As? = As
As?
压弯构件
偏心受压构
件 偏心距e0=0时,轴心受压构件
…7-2
ei e0 ea
…7-3
第4页/共43页
混凝土结构设计原理
第 7章
3 偏心距增大系数
二阶效应——轴力在结构变形和位移时产生的附加内力。
无侧移
有侧移
第5页/共43页
混凝土结构设计原理
第 7章
y px y f ?sin le
f
ei N
le
xN ei
◆ 由于侧向挠曲变形,轴向力将 N ei 产生二阶效应,引起附加弯矩。
h / 2)
f
' y
As
(h0'
as )
…7-23
As
Ne'
1 fcbh(h0 0.5h)
f
' y
(h0'
as
)
式中:
e' h / 2 as' ei
ei e0 ea
此时不考虑,ei中扣除ea。
…7-24
第29页/共43页
混凝土结构设计原理
第 7章
❖矩形截面 对称 配筋偏心受压构件正截面承载力
N
◆在未达到截面承载力极限状态 之前,侧向挠度 f 已呈不稳定
N0
发展 即柱的轴向荷载最大值发生在

钢筋混凝土结构设计原理第六章偏心受压构件承载力

钢筋混凝土结构设计原理第六章偏心受压构件承载力

第六章偏心受压构件承载力计算题1. (矩形截面大偏压)已知荷载设计值作用下的纵向压力N 600KN ,弯矩M 180KN • m,柱截面尺寸b h 300mm 600mm,a$ a$ 40mm,混凝土强度等级为 C30, f c=14.3N/mm2,钢筋用HRB335级,f y=f y=300N/mm2,b 0-550,柱的计算长度I。

3.0m,已知受压钢筋A 402mm2(£尘1&|),求:受拉钢筋截面面积A s。

2. (矩形不对称配筋大偏压)已知一偏心受压柱的轴向力设计值N = 400KN,弯矩M = 180KN- m,截面尺寸b h 300mm 500m , a s a s40mm ,计算长度 l° = 6.5m,混凝土等级为C30 ,f c=14.3N/mm 2,钢筋为 HRB335 , , f y f y300N/mm2,采用不对称配筋,求钢筋截面面积。

3. (矩形不对称配筋大偏压)已知偏心受压柱的截面尺寸为b h 300mm 400mm ,混凝土为C25级, f c=11.9N/mm 2,纵筋为HRB335级钢,f y f y300N / mm2,轴向力N,在截面长边方向的偏心距e。

200mm。

距轴向力较近的一侧配置4「16纵向钢筋A'S804mm2,另一侧配置2十20纵向钢筋A S628mm2,a s a s' 35mm,柱的计算长度1。

= 5m。

求柱的承载力N。

4. (矩形不对称小偏心受压的情况)某一矩形截面偏心受压柱的截面尺寸b h 300mm 500mm,计算长度I0 6m, a s a s 40mm,混凝土强度等级为 C30, f c=14.3N/mm2, 1 1.0 ,用 HRB335 级钢筋,f y=f y =300N/mm 2,轴心压力设计值 N = 1512KN,弯矩设计值 M = 121.4KN • m,试求所需钢筋截面面积。

偏心受压构件课件

偏心受压构件课件

si
cu
Es
(
x
/ h0i
1)
得一元三次方程
Ax3 Bx2 Cx D 0
7-20
1.当 h / h0 z b 时,取 x / h0
由7-10可钢筋应力 s
s
cu
E
s
(
h0
x
1)
求得钢
筋中的应力 。s 再将钢筋面积 、As 钢筋应力 以及s 值代x
入式(7-4)中,
0 Nd fcdbx fsd As s As
即可得所需钢筋面积 As且应满足 。 As' m inbh
当 时h / h,0 取 则钢x 筋h面积 计算式为As :
As'
Nes
)]
➢当 2as x 时bh,0
As
fcdbx
f
' sd
As'
0 Nd
f sd
➢当 x ,bh且0
时x , 2as
令 x ,2则a可s 求得
As
0 Nd es
fsd (ho as )
2)当 e0 0时.3h0
已知:b h N d M d
f cd
f sd
f sd
l0
求: As 、As'
N
2.受压破坏——小偏心受压破坏
N
产生条件: (1)偏心距很小。 (2)偏心距 (e0 较/ h小) ,或偏心距较大而受拉钢
筋较多。 (3)偏心距 (e0很/ h小) ,但离纵向压力较远一侧
钢筋数量少,而靠近纵向力N一侧钢筋较多时。 破坏特征:
一般是靠近纵向力一侧的混凝土首先达到极限 压应变而压碎,该侧的钢筋达到屈服强度,远离 纵向力一侧的钢筋不论受拉还是受压,一般达不 到屈服强度。构件的承载力取决于受压区混凝土 强度和受压钢筋强度。 破坏性质:脆性破坏。

同济大学混凝土试验大偏心受压柱试验报告

同济大学混凝土试验大偏心受压柱试验报告

《混凝土结构基本原理》试验课程作业L ENGINEERING试验报告试验课教师林峰姓名学号手机号任课教师顾祥林《混凝土结构基本原理》试验课程作业L ENGINEERING大偏心受压柱试验报告试验名称大偏心受压柱试验试验课教师林峰姓名学号手机号任课教师日期2014年11月18日1. 试验目的通过试验了解大偏心受压柱破坏的全过程,掌握测试混凝土受压构件基本性能的试验方法。

同时巩固大偏心受压柱承载力的计算方法,并通过对理论值和试验值的比较加深对混凝土基本原理的理解。

2. 试件设计2.1 材料和试件尺寸混凝土:C20钢筋:使用I 级钢筋作为箍筋,II 级钢筋作为纵筋 试件尺寸(矩形截面):b ×h ×l=120×120×870mm 详细尺寸见图1大偏心受压柱配筋图2.2 试件设计(1)试件设计的依据为减少“二阶效应”的影响,将试件设计为短柱,即控制l 0/h ≤5。

通过调整轴向力的作用位置,即偏心距e 0,使试件的破坏状态为大偏心受压破坏。

(2)试件参数如表1表1 试件参数表 试件尺寸(矩形截面) b ×h ×l=120×120×870mm 纵向钢筋(对称配筋) 412箍筋Φ6@100(2) 纵向钢筋混凝土保护层厚度 15mm 配筋图 图1 偏心距e 0100mm12020080135135505050087020020022113 8@504 6@100150200501206φ124φ123 8@504φ121201201-12-23 8@503 8@50 4双向钢丝网2片 4双向钢丝网2片 尺寸170x908@508@506@100图1 大偏心受压柱配筋图(3)试件承载力估算 N c =α1f c bh 0ζN c e=α1f c bh 02ζ(1-0.5ζ) + f y ’ A s ’(h 0-a s ’) e=e 0+0.5h-a s不妨令:A=2f 20c 1bh α, B=)(00c 1-e f h bh α, C=)(f -0y '-''s s h A α 从而有:AAC24B B -2-+=ξ得出本次试验试件的极限承载力的预估值为:Ncu=87.71kN 详细计算过程见附录12.3 试件的制作根据《普通混凝土力学性能试验方法标准》GB/T 50081-2002规定, 成型前,试模内表面应涂一薄层矿物油或其他不与混凝土发生反应的脱模剂。

结构设计原理偏心受压构件

结构设计原理偏心受压构件
结构设计原理偏心受压构件
本章主题
• 偏心受压构件的破坏形态及其特征 • 大偏心受压破坏(受拉破坏) • 小偏心受压破坏(受压破坏) • 界限破坏
• 偏心弯曲的影响 • 当长细比较大时,破坏时会产生较大的纵向弯曲,使构件偏心距增大,变形增大,承载力下降,还可
能出现失稳破坏。
• 矩形截面偏心受压构件正截面承载力计算 • 基本公式的引出及其应用条件 • 配筋设计 • 承载力验算
2、大、小偏心受压正截面承载力计算图式
esη e0 e's
γ0Nd
a's
x
fcd
A's
fs'dA's
x
fcdbx
h/ 2
ho
h0
h
as
σAs
As b
as
esη e0 e's
3、计算公式 纵轴方向力的平衡 :
A s 合力点取矩:
A
' s
合力点取矩:
N 0 d 作用点取矩 :
γ0Nd
h/ 2
a's
★两个基本方程中有三个未知数,
取补充条件
b ,即 x bh0
As、A's和 x,故无唯一解。 与双筋梁类似,为使总配筋面积 (As+As')最小?可取x=ξbh0
令 N0Nd、 Mu Nes
As' Nes
fcdbh02b(10.5b)
fs'd(h0as' )

m' inbh
取 s fsd
As
4 10
应变图
160 剖面 A-A
P=97KN 195KN
265KN
应力图

混凝土结构设计原理第五章ppt课件

混凝土结构设计原理第五章ppt课件

Nu
fc Acor 2
f y Ass0
f yAs
令2 / 2
图5-11 混凝土径向压力示意图 Nu 0.9( fc Acor 2 f y Ass0 f yAs)
α称为间接钢筋对混凝土约束的折减系数,当混凝土强度等级不超过C50时, 取α=1.0;当混凝土强度等级为C80时,取α=0.85;当混凝土强度等级在 C50与C80之间时,按直线内插法确定。
图5-16 不同长细比柱从加荷到破坏的N-M关系
在图5 -16中,示出了截面尺寸、配 筋和材料强度等完全相同,仅长细比不 相同的3根柱,从加载到破坏的示意图。
5.4 偏心受压构件的二阶效应
轴向压力对偏心受压构件的侧移和挠 曲产生附加弯矩和附加曲率的荷载效应称 为偏心受压构件的二阶荷载效应,简称二 阶效应。其中,由侧移产生的二阶效应, 习称P-Δ效应;由挠曲产生的二阶效应, 习称P-δ效应。
①M1/M2>0.9或 ②轴压比N/fcA>0.9或
③lci>34-12(M1/M2)
3)考虑二阶效应后控制截面的弯矩设计值
《混凝土结构设计规范》规定,除排架结构柱外,
其他偏心受压构件考虑轴向压力在挠曲杆件中产生的
二阶效应后控制截面的弯矩设计值,应按下列公式计
算:
M CmnsM 2
Cm
0.7 0.3
5.3.2 偏心受压长柱的破坏类型
图5-15 长柱实测N-f曲线 偏心受压长柱在纵向弯曲影响下,可能发生失稳破坏和材料破坏两种破坏类 型。长细比很大时,构件的破坏不是由材料引起的,而是由于构件纵向弯曲失去 平衡引起的,称为“失稳破坏”。当柱长细比在一定范围内时,虽然在承受偏心 受压荷载后,偏心距由ei增加到 ei+f,使柱的承载能力比同样截面的短柱减小, 但就其破坏特征来讲与短柱一样都属于“材料破坏”,即因截面材料强度耗尽而 产生破坏。

《结构设计原理》教案第六章钢筋混凝土受压构件承载能力计算精品

《结构设计原理》教案第六章钢筋混凝土受压构件承载能力计算精品

《结构设计原理》教案第六章钢筋混凝⼟受压构件承载能⼒计算精品1、轴⼼受压构件在实际⼯程中⼏乎没有。

如果荷载偏⼼距很⼩,所产⽣的弯矩与其轴⼒相⽐甚⼩,可略去不计时,则视为轴⼼受压构件。

其计算⽅法简单,但应重视它的构造要求,并注意细长⽐对失稳的重要影响。

螺旋箍盘柱施⼯较复杂,只有当柱⼦受⼒很⼤时,才考虑采⽤它。

2、矩形、I形偏⼼受压构件必须确定是⼤偏⼼还是⼩偏⼼,因为两者在计算上有本质的差别。

3、偏⼼受压构件可以看成是轴⼼压⼒N和弯矩M=N·e0 的共同作⽤。

由于M的作⽤将使构件产⽣挠曲变形f⼜和轴⼼压⼒N组成附加弯矩,从⽽使其计算复杂化。

附加弯矩的⼤⼩与N、e0和f 有关,⽽f⼜与截⾯尺⼨、配筋多少、混凝⼟强度等级、钢筋种类等因素有关。

4、学习时要注意⼤⼩偏⼼⼆种情况的计算公式、分界条件、适⽤条件等。

5、⼤偏⼼受压构件的受⼒和变形特点,与受弯构件双筋梁相类似;⼩偏受压构件的受⼒和变形特点与轴⼼受压构件相类似。

学习时可与受弯构件和轴⼼受压构件结合起来学习,以加深理解。

6、圆形截⾯偏⼼受压构件不分⼤⼩偏⼼,重点掌握实⽤计算法。

第⼀节轴⼼受压构件的强度计算⼀、普通箍筋柱⼆、螺旋箍筋柱以承受轴向压⼒为主的构件称为受压构件。

凡荷载的合⼒通过截⾯形⼼的受压构件称之为轴⼼受压构件(compression members with axial load at zero eccentricity)。

若纵向荷载的合⼒作⽤线偏离构件形⼼的构件称之为偏⼼受压构件。

受压构件(柱)往往在结构中具有重要作⽤,⼀旦产⽣破坏,往往导致整个结构的损坏,甚⾄倒塌。

按箍筋作⽤的不同,钢筋混凝⼟轴⼼受压构件可分为两种基本类型:⼀种为配有纵向钢筋及普通箍筋的构件,称为普通箍筋柱(tied columns),如图;另⼀种为配有纵向钢筋及螺旋箍筋或焊环形箍筋的螺旋箍筋柱(spirally reinforced columns),如图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、实验内容
在静荷载作用下,测定柱测向位移和 L/2截面钢筋及混凝土应变,描绘柱体裂缝 出现、扩大与破坏状况及特征,测定开裂 荷载值及破坏荷载值。
2020/12/12
5
三、实验设备
1、自平衡加力架:500KN以上; 2、油压千斤顶:50~300KN; 3、压力传感器:50~300KN; 4、静态电阻应变仪:配有可多点测量的 平衡箱;
2020/12/12
16
2020/12/12
5 2
1 6
4
5
3
4 说明:
1-加力架承压板
2-试验柱
3-横截面电阻片
4 4-位移计
5、7-支座
7
6-力传感器
图五 试验柱装置与测点布置图
17
2020/12/12
13
4、分析试验中出现的问题,提出解决问 题的办法;
5、对试验中出现的现象及与理论课中产 生的误差进行讨论和分析。
2020/12/12
14
六、思考题 1、偏心受压的破坏现象与哪些情况有关? 2、大、小偏心受压构件破坏形式有何特点?
2020/12/12
15
26φ 28φ
图四 偏心受压试样尺寸及配筋图
5、电阻应变片:3×5 (mm)及5×40 (mm); 6、钢卷尺、刻度放大镜及贴片焊线设备; 7、百分表及磁性表架,玻璃片; 8、数字万用表:灵敏度1mV。
2020/12/12
6
图一 实验设备
2020/11、实验前测量柱子尺寸及力作用点偏心 矩;
2、预备试验时,预载值取计算破坏荷载 的20%左右。同时,加载后测取读数,观察 试验柱,仪表装置工作是否正常,及时排 除故障后,才能进行正式试验;
2020/12/12
10
图二 试验过程
2020/12/12
11
2020/12/12
图三 试验过程
12
五、实验报告要求
1、绘出荷载作用下的裂缝开展图,标出 主要裂缝出现时的荷载值;
2、计算侧向位移、绘出计算与实测的p-f 关系曲线图;
3、计算受拉区出现裂缝时的荷载值,受 压区出现裂缝时荷载、破坏荷载、破坏时 钢筋最大应力,分析误差产生的原因;
2020/12/12
8
3、正式试验开始时,预加5%初荷载, 调试仪器,按计算破坏荷载的20%分级加载, 每级稳定5分钟后读取试验数据,当接近开 裂荷载时,加载值应减至为原分级的一半 或更小,并注意观察裂缝发展情况,同时 拆除构件上装置的位移计后,再继续加载 到破坏;
2020/12/12
9
4、裂缝的出现和发展用目视或读数显 微镜观察,每级荷载下的裂缝发展情况应 进行记录和描述。
结构设计原理
钢筋混凝土柱偏心受压破坏试验
2020/12/12
1
试验二 钢筋混凝土柱偏心受压破坏试验
一、试验目的及要求
1、通过试验了解偏心受压构件理论计算 的依据和分析方法;
2、观察偏心受压柱的破坏特征及强度变 化规律,进一步增强对钢筋混凝土构件试 验研究和分析能力;
3、加强学生对于理论知识的理解和消化。
2020/12/12
2
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
相关文档
最新文档