高炉本体设计(冷却设备) SS
毕业设计 高炉本体设计

内蒙古科技大学毕业设计说明书.内蒙古科技大学本科生毕业设计说明书题目:包头地区原料条件下1500m3高炉本体设计学生姓名:学号:专业:冶金工程班级:冶金09-1指导教师:摘要高炉炼铁是获得生铁的主要手段,高炉是炼铁的主要设备,高炉本体设计是炼铁厂设计的基础。
本着优质、高产、低耗和对环境污染小的方针,长寿与高效是高炉设计与生产所追求的目标。
本设计说明书进行的详细的设计及计算,同时结合国内外一些大型高炉的先进生产操作经验及相关的数据。
力求设计的高炉做到高度机械化、自动化和大型化。
以期达到最佳的生产效益。
本设计为1500m3高炉本体设计,所设计的炼铁高炉采用的高径比为2.78,高炉的有效利用系数为2.3t/(m3٠d)。
车间采用岛式布置,出铁场采用圆形出铁场。
其炉底和炉缸采用的先进的“陶瓷杯”技术来砌筑,从而达到了隔热保温、减少热损、保护炭砖的目的。
炉腹部位用耐火度较高的铝碳转,炉腰和炉身下部用抗渣和防震较好的碳化硅砖,而炉身上部和炉喉用抗刷和抗侵蚀较好的高铝砖。
高炉冷却方法采用了炉壳喷水冷却,和板壁结合的方式达到冷却效果,其中板壁结合中用到的冷却壁有光面冷却壁、第三代和第四代冷却壁。
合适的钢结构和高炉基础设计保证了高炉的正常冶炼。
关键词高炉;炉衬;冷却系统;钢结构AbstractBlast furnace iron making is the main means for pig iron, the main equipment of iron making is blast furnace, blast furnace design of ontology is the foundation of the iron mill design. In line with high quality, high yield, low consumption and pollution to the environment policy of small, long life and high efficiency is the goal of the design and production of the blast furnace. This design manual for detailed design and calculation, at the same time, combined with some large blast furnace at home and abroad advanced production operation experience and related data. Strive to design blast furnace of high mechanization, automation and large. In order to achieve the best production efficiency.This design for 1500 m3 blast furnace body design, The design of the blast furnace high aspect ratio of 2.78,the effective utilization of blast furnace coefficient of 2.3t/(m3٠d).Workshop uses the island type layout cast house using circular cast house Blast furnace bottom and hearth uses advanced technology to building "ceramic cup", so as to achieve the heat insulation heat preservation, reduce heat loss and protect the carbon brick. Furnace belly with high refractoriness of aluminum carbon, bosh and furnace body with good slag resistance and shock-proof carborundum brick, The furnace body and brush with resistance and erosion resistance furnace throat good high alumina brick.Blast furnace cooling method USES a furnace shell water spray cooling, cooling effect and partition way, combined with the wooden partition used in cooling stave cooling wall has smooth surface, the third and fourth generation of cooling stave.Appropriate steel structure and foundation design guarantees the normal of the blast furnace smelting blast furnace.Key word: blast furnace body;the lining;of blast furnace cooling system;steel structure目录摘要 (I)Abstract (II)目录 (III)第一章文献综述 (1)1.1高炉炉型概述 (1)1.1.1高炉炉型的发展 (1)1.1.2高炉炉龄及其影响因素 (2)1.2高炉炉衬的发展 (2)1.2.1高炉各部分耐火材料的选择 (2)1.2.2我国最新对耐火材料的选择 (4)1.3高炉的冷却设备 (4)1.3.1高炉冷却的必要性 (4)1.3.2高炉冷却的目的 (5)1.3.3高炉冷却的方式 (5)1.3.4高炉各个冷却方式的发展以及优缺点 (6)1.4高炉钢结构以及高炉基础的概述 (10)1.4.1高炉的钢结构以及影响因素 (10)1.4.2我国高炉钢结构设计的基本现状 (11)1.4.3我国在高炉钢结构设计上的差距 (12)1.4.4高炉基础的概述 (13)1.5高炉设计方案 (15)第二章炼铁工艺计算 (17)2.1原料成分及参数选择 (17)2.1.1原料成分 (17)2.1.2参数选择 (18)2.2原料成分的整理计算 (19)2.2.1矿石成分补齐计算 (19)2.2.2矿石成分的平衡计算 (20)2.2.3燃料成分的整理计算 (22)2.3配料计算 (23)2.3.1吨铁矿石用量 (23)2.3.2生铁成分计算 (23)2.3.3熔剂用量计算 (24)2.3.4炉料及炉渣成分计算 (24)2.4物料平衡计算 (25)2.5热平衡计算 (29)2.5.1热收入 (29)2.5.2热支出 (30)2.6高温区热平衡计算 (34)2.6.1高温区热收入 (34)2.6.2高温区热支出 (34)2.7炼铁焦比的计算 (36)第三章高炉炉型设计 (38)3.1炉型的计算 (38)3.1.1铁口 (38)3.1.2渣口 (39)3.1.3风口 (39)3.1.4日产铁量的计算 (40)3.1.5炉缸尺寸计算 (40)3.1.6死铁层厚度 (41)3.1.7炉腰直径、炉腹角、炉腹高度的计算 (41)3.1.8炉喉直径、炉喉高度、炉身高度、炉腰高度 (41)3.2炉容的校核 (42)3.3出铁场布置 (42)第四章高炉炉衬设计 (44)4.1各部位砖衬的选择 (44)4.1.1炉底、炉缸部位的选择 (44)4.1.2炉腹部位的选择 (44)4.1.3炉身中下部及炉腰部位的选择 (44)4.1.4炉身上部及炉喉部位的选择 (45)4.2各部位砖量计算 (45)4.2.1炉底、炉缸的砌筑 (46)4.2.2炉腹的砌筑 (46)4.2.3炉腰的砌筑 (47)4.2.4炉身部位的砌筑 (48)第五章高炉冷却系统设计 (52)5.1高炉冷却设备 (52)5.1.1高炉冷却目的及方法 (52)5.1.2冷却设备 (52)5.2冷却器的工作机制 (53)5.3合理的冷却结构 (54)5.4高炉冷却系统的维护 (57)第六章高炉钢结构及基础 (60)6.1高炉钢结构 (60)6.1.1高炉本体钢结构 (60)6.1.2炉壳 (61)6.1.3炉体平台 (61)6.1.4炉体框架 (61)6.1.5热风围管 (62)6.2高炉基础 (62)参考文献 (63)致谢 (65)第一章文献综述1.1高炉炉型概述1.1.1高炉炉型的发展高炉是一种竖炉型的冶炼炉,它由炉体内耐火材料砌成的工作空间、炉体设备、炉体冷却设备、炉体钢结构等组成。
《高炉本体设计》课件

高炉本体设计流程
1
高炉结构分析
2
通过结构分析,评估高炉本体的承载能
力和稳定性,并确定设计参数。
3
结构优化和方案选择
4
进一步优化高炉本体设计,选择最合适 的方案以实现高炉的高效运行。
设计流程概述
设计高炉本体的流程包括需求分析、结 构分析、设计和方案选择等多个阶段。
高炉本体结构设计
根据结构分析的结果,设计高炉本体的 具体细节和构造方式。
关键技术及应用
壳体结构材料选择
钢铁高炉壳体由特殊耐火材料构 成,能够抵御高温和化学腐蚀。
高炉内部构件设计
高炉内部构件的设计需要考虑耐 磨、耐高温和保护钢铁质量等因 素。
高炉维护与检修
高炉维护和检修是确保高炉长期 稳定运行的关键,需要定期进行。
总结
1 设计的重要性
高炉本体设计对于钢铁生产具有重要意义, 直接关系到工艺效率和产品质量。
பைடு நூலகம்
2 总结与展望
本课件详细介绍了高炉本体设计的内容和流 程,并展望了未来的发展方向。
参考文献
1. 钢铁行业标准化委员会. 高炉本体设计技术规范[M]. 北京:中国标准出版社, 2018。
2. Smith, John. Blast Furnace Design: Principles and Practice[M]. London: Steel Publishing, 2019.
高炉本体设计案例分享
1 国内案例
中国在高炉本体设计领域取得了丰硕成果,例如某钢铁集团的高炉本体设计。
2 国外案例
国外也有很多优秀的高炉本体设计案例,比如日本的某钢铁公司的高炉。
第3章 高炉本体设计(1)

每座高炉日产量: P 总 P 4035 (t ) 2 每座高炉容积:
V
' u
P
V
4035 2018 (m 3 ) 2.0
(3)炉缸尺寸:
①炉缸直径: 选定冶炼强度: I 0.95 t m3 d
m2 h I Vu 0.95 2018 则: d 0.23 =0.23 9.83(m) i燃 1.05
4
D h2
2
4
11 2.2 209 .08m
2
3
炉身体积:
V4
12
h4 ( D Dd 1 d )
2 2 1
12
17 (112 11 7.5 7.5 2 ) 1156 .04 m 3
炉喉体积:
V5
4
d h
2 1 5
4
7.5 2.0 88.36 m
(4)死铁层厚度
选取:
h0 1.5m
(5)炉腰直径、炉腹角、炉腹高度 选取: 则: 取
D
d
1.13
D 1.13 9.8 11.07
D 11m
选取: 则: 取 校核
8030'
Dd h2 tg8030' 3.58 2
h2 3.5m
2h2 2 3.5 tg 5.83 D d 11 9.8
意义:①是表示高炉炉型形状,“矮胖”或 “细长”的一个重要设计指标;②与煤气利用 和炉况顺行有关。高径比大,利于煤气利用不 利于炉况顺行。 不同炉型的高炉,其比值的范围是: 巨型高炉 ~2.0 大型高炉 2.5~3.1 中型高炉 2.9~3.5 小型高炉 3.7~4.5
第三章 高炉本体设计(冷却设备)3.概要

3.4.2 送风支管
一. 作用: 将热风围管送来的热风通过风口 送入高炉炉缸,并且通过它向高炉喷 吹煤粉。
rW——下降管中水的密度,kg/m3;
rV——上升管中汽水混合物的密度,kg/m3。
3. 强制循环汽化冷却 是在自然循环汽化冷却的下降管 路上装一水泵,作为循环的动力,推 动循环过程的进行,此时汽包装置的 高度可灵活一些。
4. 汽化冷却的优点: (1)冷却强度大,节水、节电; (2)防止冷却设备结垢,延长寿命; (3)产生大量蒸气,可作为二次能源;
唐 钢 高 炉 冷 却 模 块 示 意 图
冷却模块将炉身部位的炉壳沿径向 分成数块 ,高度方向就一块。 2. 主要技术优点:
①炉身寿命可提高近1倍;
②明显降低投资,炉身大修费用降低41% ;
③缩短大修时间;
④炉衬厚度减小,扩大了炉容。
七. 水冷炉底
1. 结构:
水冷管中心线以下埋在耐火混凝 土基墩中,中心线以上为碳素捣固层, 水冷管为φ40×10mm,炉底中心部位 管间距200~300mm,边缘较疏为 350~500mm,水冷管两端伸出炉壳 外50~100mm。
软水密闭循环系统原理 1-冷却设备;2-膨胀罐;3-空气冷却器;4-循环泵;
5-补水;6-加药;7-充氮装置
2. 特点 :
(1)工作稳定可靠 ;
(2)冷却效果好,高炉寿命长 ;
(3)电能耗量低;
(4)节水;
(5)检漏技术不成熟。
软水闭路循环冷却中的“欠冷度”:冷却 水饱和蒸汽温度与冷却器内冷却水实际 温度之差。膨胀罐就是起缓冲压力波动 及部分给水的作用
3. 冷却水温度差
一般要求进水温度低于35℃,不 应超过40℃;出水温度不超过50~ 60℃。 实际的进出水温差比允许的进出 水温差适当低些 ,其关系为:
高炉本体设计高炉冷却设备

,a click to unlimited possibilities
高炉本体设计及高炉冷却设备
CONTENTS
目录
输入目录文本
高炉本体设计
设计优化建议
未来发展趋势
高炉冷却设备
添加章节标题
高炉本体设计
结构特点
炉壳:高炉炉壳由钢板焊接而成,分为炉喉、炉身和炉腰三个部分。
炉衬:高炉炉衬由耐火材料砌筑而成,分为工作层、永久层和填充层。
冷却设备:高炉冷却设备包括冷却壁、风冷管和汽化冷却器等,用于控制炉衬温度和保护炉壳。
风口装置:高炉风口装置包括风口小套、大套和十字测温装置等,用于向炉内鼓入空气和测量炉温。
材质选择
耐火材料:高炉炉衬的主要材料,要求具有高温强度、耐腐蚀性和良好的热稳定性
碳化硅砖:具有高导热率和高电子饱和迁移率,是高炉出铁口用砖的理想材料
新型冷却材料类型:陶瓷、金属基复合材料等
绿色环保理念融入设计
减少能源消耗:采用高效节能技术,降低高炉本体及冷却设备的能源消耗。
降低污染物排放:优化燃烧过程,减少废气、废渣等污染物的排放,提高环保性能。
循环利用资源:对高炉本体及冷却设备产生的废弃物进行回收利用,实现资源循环利用。
智能化控制:采用先进的智能化控制技术,提高设备的运行效率,减少人工干预,降低对环境的影响。
定期对高炉本体和冷却设备进行检查和维修
未来发展趋势
智能化控制技术应用
智能化控制技术概述
高炉冷却设备中的智能化控制技术应用
未来发展趋势及展望
高炉本体设计中的智能化控制技术应用
新型冷却材料研发
研发背景:高炉冷却设备在钢铁生产中的重要性
新型冷却材料特点:高效、耐高温、耐腐蚀等
高炉系统的危险有害因素辨识

高炉系统的危险有害因素辨识高炉系统的危险有害因素辨识,主要有高炉本体、冷却设备、冷却系统动力设备、炉体附属设备和检测系统等五个方面。
1.高炉本体炉体采用自立式框架结构,主框架间距为14m,高炉在煤气导出管上设有膨胀器,上升管的重量由框架传给基础,从而减轻了炉壳的负荷,杜绝煤气导出管与炉壳焊缝拉裂事故。
设置炉底封板,增强护壳气密性。
框架由炉体框架和炉顶框架组成,炉体设置3层炉身平台和1层炉底平台,各平台之间都设有双向走梯,以确保工作人员的方便和安全。
高炉本体是整个炼铁系统最主要设备,发生事故频率高,事故类型多,在实际生产中为危险重点控制对象。
其主要危险有害因素如下:(1)火灾、爆炸a、开氧气者在氧气阀门附近抽烟或周围有人动火,可能发生火灾。
b、风口、渣口及水套,密封性不好,引起煤气泄漏,在有火星、火源的情况下,可能发生火灾、爆炸事故。
c、在停电断水情况下,由于事故供水不及时,致使炉内温度过高,发生炉体开裂,引起火灾。
d、炉顶压力过高又无法控制,可能导致,炉体爆炸,并引起火灾。
e、高炉停吹氧气,可能造成火灾、爆炸事故。
f、在高炉休风、检修、停电、停水情况下,由于误操作,可能发生火灾爆炸事故。
(2)中毒a、挖炉缸作业时,如通风不良,炉缸内煤气浓度过高,可能造成煤气中毒事故。
b、换风口及二套时,由于煤气泄漏,如不加强防护,可能造成煤气中毒事故。
c、在炉体清理作业中,由于残留煤气,如通风不良,无恰当防护措施,可能发生煤气中毒事故。
d、在高炉休风、检修、停电、停水情况下,由于误操作,可能发生火灾爆炸事故。
(3)烧伤a、在休风倒流阶段,炉前工离风口过近,可能被喷火烧伤。
b、在进行换风口操作时,由于风口内渣铁没有完全淌出,可能烧伤工人。
c、风管烧穿打水时,可能对工人造成伤害。
d、在风口区域、铁口旁取暖,工人可能被烧伤。
e、烧氧时,吹氧管顶的太死,氧气回火,可能造成工人烧伤。
(4)高空坠落a、平台四周栏杆走桥损坏、送脱,操作人员可能从高空坠落。
高炉冷却的基础知识

高炉冷却的基础知识高炉冷却的基础知识第一节高炉冷却理论常识一. 高炉冷却的目的高炉冷却的目的在于增大炉衬内的温度梯度,致使1150℃等温面远离高炉炉壳,从而保护某些金属结构和混凝土构件,使之不失去强度。
使炉衬凝成渣皮,保护甚至代替炉衬工作,从而获得合理炉型,延长炉衬工作能力和高炉使用寿命。
高炉冷却是形成保护性渣皮、铁壳、石墨层的重要条件。
高炉常用的冷却介质有:水、风、汽水混合物。
根据高炉各部位工作条件,炉缸、炉底的冷却目的主要是使铁水凝固的1150℃等温面远离高炉壳,防止炉底、炉缸被渣铁水烧漏。
而炉身冷却的目的是为了保持合理的操作炉型和保护炉壳。
二. 高炉冷却的方式目前国内高炉采用的冷却方式有三种:1. 工业水开路循环冷却系统2. 汽化冷却系统3. 软水密闭循环冷却系统三.冷却原理冷却水通过被冷却的部件空腔,并从其表面将热量带走,从而使冷却水的自身温度提高。
t1 ┏━━━┓ t2水——→┃冷却件┃——→水┗━━━┛1.自然循环汽化冷却工作原理:利用下降管中的水和上升管中的汽水混合物的比重不同所形成的压头,克服整个循环过程中的阻力,从而产生连续循环,汽化吸热而达到冷却目的。
2.软水密闭循环冷却工作原理:它是一个完全封闭的系统,用软水(采用低压锅炉软水即可)作为冷却介质,其工作温度50~60℃(实践经验40~45℃)由循环泵带动循环,以冷却设备中带出来的热量经过热交换器散发于大气。
系统中设有膨胀罐,目的在于吸收水在密闭系统中由于温度升高而引起的膨胀。
系统工作压力由膨胀罐内的N2压力控制,使得冷却介质具有较大的热度而控制水在冷却设备中的汽化。
3.工业水开路循环冷却工作原理:由动力泵站将凉水池中的水输送到冷却设备后,自然流回凉水池或冷却塔,把从冷却设备中带出的热量散发于大气。
系统压力由水泵供水能力大小控制。
四.冷却方式的优缺点高炉技术进步的特点,表现为高炉炼铁已发展成为较成熟的技术。
从近几年高炉技术进步的发展方向看,突出的特点是大型化、高效化和自动化。
高炉本体及附属设备课件

料车
用于运输焦炭、矿石等原 料,通常配备有自动控制 系统,确保供料的准确性 和稳定性。
振动筛
用于筛选原料,去除杂质 和不合格的矿石,保证原 料的质量和纯度。
皮带输送机
用于将原料从原料场输送 到高炉炉顶,具有长距离、 大运量、连续输送等优点。
送风设备
鼓风机
为高炉提供所需的风量,将空气压缩后送入高炉内部, 为焦炭和矿石的燃烧提供氧气。
处理方法
立即停炉,查找漏水原因,修复漏水部位,确认无 隐患后重新开炉。
高炉风口堵塞
故障三
处理方法
停炉后清理风口,确保无杂物堵塞,检查风口冷却水是 否正常。
日常维护与保养
维内容
定期检查高炉本体及附属设备运行状况,清理设备表面灰尘、油 污。
保养措施
对关键部位进行润滑、紧固,对磨损严重的部件进行更换。
记录与报告
做好日常维护与保养记录,发现问题及时报告,并妥善保存相关 资料。
PART 04
高炉安全与环保
安全操作注意事 项
1 2 3
严格遵守操作规程 高炉操作应遵循相关规程,禁止违规操作。
定期检查设备 对高炉本体及附属设备进行定期检查,确保设备 正常运行。
预防煤气中毒 在高炉煤气区域工作时要特别注意防止煤气中毒, 采取必要的安全措施。
高效能高炉技术可以降低能耗、减少污染物排放,提高钢铁企业的经济效益和社会 效益。
节能减排技术
节能减排技术是指通过采用先进 的节能技术和减排措施,降低钢
铁企业的能耗和污染物排放。
节能减排技术包括余热回收利用、 低氮燃烧技术、烟气脱硫脱硝等 措施,以减少钢铁企业的能源消 耗和污染物排放。
节能减排技术可以提高钢铁企业 的能源利用效率和环保水平,促
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
唐钢炉身冷却模块结构示意图:
唐 钢 高 炉 冷 却 模 块 示 意 图
冷却模块将炉身部位的炉壳沿径向 分成数块 ,高度方向就一块。 2. 主要技术优点: ①炉身寿命可提高近1倍; ②明显降低投资,炉身大修费用降低41% ; ③缩短大修时间;
②铜冷却壁前不必使用昂贵的或很厚 的耐火材料;
③使用铜冷却壁可将高炉寿命延长至 15~20年。
六. 炉身冷却模块技术 1. 结构:
炉身冷却模块是指将厚壁(14~16mm) 把手型无缝钢管作为冷却元件直接焊接在炉 壳上,在炉壳及钢管间浇注耐热混凝土,混 凝土层高出水管110~130mm,构成大型预 制冷却模块。
(2)应用部位:
炉缸和炉底部位冷却。
风口区冷却壁的块数为风口数目的 两倍;渣口周围上下段各两块,由四块冷 却壁组成。 (3)冷却壁尺寸:
光面冷却壁厚80~120mm,宽度为 700~1500mm,高度一般小于3000mm。
圆周冷却壁块数最好取偶数;
(4)安装: ①同段冷却壁间垂直缝为20mm;
②上下段间水平缝为30mm;
②冷却均匀,侵蚀后炉衬内壁光滑。
4. 缺点: 消费金属多、笨重、冷却壁损坏后
不能更换。
三. 冷却板(又称扁水箱)
冷却板厚度 70~110mm,内部铸有 φ44.5×6mm无缝钢管。 1. 冷却部位:
用在炉腰和炉身部位。
冷却水箱 1-支梁式;2-扁水箱(P107)
2. 安装:
①上下层间距500~900mm,同层间距 150~300mm,呈棋盘式布置,炉腰部 位比炉身部位要密集一些。 ②冷却板前端距炉衬设计工作表面一 砖距离230mm或345mm 。
高炉的破坏。
3. 水的硬度: 指每m3水中钙、镁离子的摩尔数。
根据硬度不同,水可分为三类: 软 水:硬度<3mol/m3 硬 水:硬度在3~9mol/m3 极硬水:硬度>9mol/m3
水的软化处理: 就是将Ca2+、Mg2+ 离子除去,通
常用Na+ 阳离子置换。
3.3.3 高炉冷却结构形式
两种: ★外部冷却:向炉壳外部喷水冷却。
⑤铜冷却板的铸造质量大大提高; ⑥能维护较厚的炉衬,便于更换,重 量轻、节省金属。
(3)缺点:
冷却不均匀,侵蚀后高炉内衬表 面凸凹不平。
四. 板壁结合冷却结构 为了缓解炉身下部耐火材料的损坏
和保护炉壳,采用冷却板和冷却壁交错
布置的结构形式 。
板壁交错布置结构
五. 新型冷却壁——铜冷却壁 1. 结构:
新日铁第三代和第四代冷却壁 a-第三代冷却壁;b-第四代冷却壁
新日铁的四代冷却壁(P106)
主要特点:
①设置边角冷却水管; ②采用双层冷却水管; ③加强凸台部位的冷却强度,采用双排 冷却水管冷却;
④第四代冷却壁的炉体砌砖与冷却壁一 体化。
3. 冷却壁的优点: ①冷却壁安装在炉壳内部,密封性好;
★内部冷却:将冷却介质通入冷却设 备内部进行冷却。包括冷却壁、冷 却板、板壁结合冷却结构、炉身冷 却模块及炉底冷却等。
一. 外部喷水冷却
适用于小型高炉,对于大型高炉, 在炉龄晚期冷却设备烧坏的情况下使用。
炉身和炉腹部位装设有环形冷却水 管,距炉壳约100mm,水管上朝炉壳的 斜上方钻有若干φ5~φ8mm小孔,小孔 间距100mm。
第三章高炉本体设计(冷却设备)3
3.3.1 冷却设备的作用
(l)保护炉壳。 (2)对耐火材料的冷却和支承。 (3)维持合理的操作炉型。 (4)促成炉衬内表面形成渣皮,代替炉 衬工作,延长炉衬寿命。
3.3.2 冷却介质
1. 冷却介质:
2.
水——水冷
空气——风冷
汽水混合物——汽化冷却
2. 对冷却介质的要求: (1)有较大的热容量及导热能力; 1. (2)来源广、容易获得、价格低廉; 2. (3)介质本身不会引起冷却设备及
二. 冷却壁
冷却壁设置于炉壳与炉衬之间, 有光面冷却壁和镶砖冷却壁两种 。
基本结构图:
冷却壁基本结构 a-渣铁口区光面冷却壁;b-镶砖冷却壁;c-上部带凸台镶砖冷却壁;d-中间带凸台镶砖冷却壁
1. 光面冷却壁 (1)结构:
在铸铁板内铸有无缝钢管。无缝钢 管为φ34×5mm或φ44.5×6mm,中心距 为100~200mm的蛇形管。
(1)冷却部位:
用于炉腹、炉腰和炉身下部冷却,炉 腹部位用不带凸台的镶砖冷却壁。
(2)安装:镶砖冷却壁紧靠炉衬。 (3)结构型式:
普通型、上部带凸台型和中间带 凸台型。
(4)凸台冷却壁的优点:
①凸台部分除起冷却作用外,还起到 支撑上部砌砖的作用 ;
②延长炉衬寿命。中间带凸台的冷却 壁更优越。
(5)新日铁第三代和第四代冷却壁: 结构见图
③上下两段竖直缝应相互错开;
④光面冷却壁与炉壳留20mm缝隙,用 稀泥浆灌满;
⑤与砖衬镶砖冷却壁 镶砖冷却壁就是在冷却壁的内表面
侧(高炉炉衬侧)铸入或砌入耐火材料, 耐火材料的材质一般为粘土质、高铝质、 碳质或碳化硅质砖。
镶砖冷却壁厚度为250~350mm。
铜冷却壁是在轧制好的壁体上加工 冷却水通道,并且在热面设置耐火砖。
铜冷却壁与铸铁冷却壁特性的比较 见表
2. 铜冷却壁的特点: (l)铜冷却壁具有导热率高,热损失 低的特点;
(2)利于渣皮的形成与重建;
(3)铜冷却壁的投资成本。
①单位重量的铜冷却壁冷却的炉墙面积 要比铸铁冷却壁大1倍;
铜冷却壁与铸铁冷却壁特性比较表
3. 六室双通道结构铜冷却板 : (1)结构:
采用隔板将冷却板腔体分隔成六 个室,即把冷却板断面分成六个流体 区域,并采用两个进、出水通道进行 冷却。
示意图:
冷却板
(2)特点: ①适用于高炉高热负荷区的冷却,可以采 用密集式的布置形式。
②冷却板前端冷却强度大,不易产生局部 沸腾现象;
③当冷却板前端损坏后可继续维持生产; ④双通道的冷却水量可根据高炉生产状况 分别进行调整。
④炉衬厚度减小,扩大了炉容。
七. 水冷炉底
1. 结构:
水冷管中心线以下埋在耐火混凝 土基墩中,中心线以上为碳素捣固层, 水冷管为φ40×10mm,炉底中心部位 管间距200~300mm,边缘较疏为 350~500mm,水冷管两端伸出炉壳 外50~100mm。