《高考数学总复习系列》高中数学必修三
2015届高考数学总复习第三章 第二节同角三角函数基本关系式及诱导公式精讲课件 文

所以sin α+cos α=-
答案:D
关于sin x,cos x的齐次式的求值问题 【例4】 已知tan α=2,求下列各式的值:
思路点拨:(1)据tan α=2,首先确定α所在的象限,再由 α所在的象限和同角间的三角函数关系来确定sin α与cos α的 值,最后代入即可.
(2)要注意到分式的分子与分母均是关于sin α与cos α的齐
点评: 深刻理解诱导公式口诀的含义,熟练运用口诀可提 高化简、求值速度和正确率.
变式探究
1.(1)(2013· 石家庄二模)tan(-1 410°)的值为( )
(2)(2013· 江西省百所重点中学阶段性诊断考试) 已知
sin
=
,则cos(π-2θ)=(
)
解析:(1)tan(-1 410°)=-tan 1 410°=-tan(360°×4-
第三章
第二节 同角三角函数基本关系式 及诱导公式
利用诱导公式求三角函数的值 【例1】 (1)cos -sin 的值是( )
(2) 已知f(x)=asin(πx +α) +bcos(πx+ β) ,其中a、 b 、 α、β 都 是非零常数,若f(2 013)=-1,则f(2 014)=( )
A.-1
又∵3π<α< π,∴tan α+
=cos α=-
,∴sin α+cos α=-
利用诱导公式、三角基本关系式化简、求值
【例5】
已知-
<x<0且sin x+cos x=
,求:
(1)sin x-cos x的值; (2)sin3 +cos3 的值. ,
解析:(1)由已知得2 sin xcos x=(sin x+cos x)2-1=- 且sin x<0<cos x,所以sin x-cos x=
2025年高考数学总复习课件23第三章第二节第2课时导数与函数的极值、最值

当a>0时,令f ′(x)=0,得x=1a.
当x∈
0,
1
a
时,f ′(x)>0,函数f (x)单调递增;
当x∈
1
a
,+∞
时,f ′(x)<0,函数f (x)单调递减,
故函数f (x)在x=1a处取得极大值,无极小值.
综上可知,当a≤0时,函数f (x)无极值点;当a>0时,f (x)有一个极大值点1a,无
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
(2)讨论函数f (x)在定义域内极值点的个数.
解:由(1)知函数f (x)的定义域为(0,+∞),f ′(x)=1x-a=1-xax(x>0).
当a≤0时,f ′(x)>0在(0,+∞)上恒成立,即函数f (x)在(0,+∞)上单调递增,
此时函数在定义域上无极值点.
y′>0,解得x<-7或x>1;令y′<0,解得-7<x<1,所以函数y=13x3+(a+1)x2-(a2 +3a-3)x在(-∞,-7),(1,+∞)上单调递增,在(-7,1)上单调递减,所以x =1是函数的极小值点,符合题意.若a=-3,则y′=x2-4x+3.令y′>0,解得
x<1或x>3;令y′<0,解得1<x<3,所以函数y=13x3+(a+1)x2-(a2+3a-3)x在(- ∞,1),(3,+∞)上单调递增,在(1,3)上单调递减,所以x=1是函数的极大值 点,不符合题意.
A 解析:f ′(x)=(x-c)2+2x(x-c)=(x-c)·(3x-c),
由题知f ′(2)=(2-c)(6-c)=0,所以c=2或c=6.
【套路汇总】高考数学所有题型解题套路总结

2016年高考数学复习宝典目录一、2016年高考数学全部知识点整理+经典例题详细解析高中数学必修一、高中数学必修二、高中数学必修三、高中数学必修四、 高中数学必修五、高中数学选修2-1、高中数学选修2-2、高中数学选修2-3 高中数学选修4-5二、【内部资料】2012-2010高考数学模拟压轴大题总结+详细解析《2016年高考数学总复习系列》——高中数学必修一 第一章、集合一、基础知识(理解去记)定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},}0{>x x 分别表示有理数集和正实数集。
定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。
规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。
如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。
便于理解:B A ⊆包含两个意思:①A 与B 相等 、②A 是B 的真子集 定义3 交集,}.{B x A x x B A ∈∈=且 定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。
定义6 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,b a R x <∈记作闭区间],[b a ,R 记作).,(+∞-∞∅是任何集合的子集,是任何非空集合的真子集。
高考数学总复习 第三章 第三节两角和与差及二倍角三角函数公式课时精练试题 文(含解析)

第三节 两角和与差及二倍角三角函数公式题号 1 2 3 4 5 6 7答案1.计算1-2sin 222.5°的结果等于( ) A.12 B.22 C.33 D.32解析:原式=cos 45°=22.故选B.答案:B2.设tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,则tan ⎝⎛⎭⎪⎫α+π4的值是( ) A.318 B.322 C.1318 D .-1322解析:tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫β-π4=322. 答案:B3.求值:⎝ ⎛⎭⎪⎫cos π12-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12=( )A .-32 B .-12 C.12 D.32答案:D4.(2012·江西卷)若tan θ+1tan θ=4,则sin 2θ=( )A.15B.14C.13D.12解析:由tan θ+1tan θ=4得,sin θcos θ+cos θsin θ=sin 2θ+cos 2θsin θcos θ=4,即112sin 2θ=4,∴sin 2θ=12.故选D.答案:D5.(2012·重庆卷)sin 47°-sin 17°cos 30°cos 17°=( )A .-32B .-12 C.12 D.32解析:sin 47°-sin 17°cos 30°cos 17°=sin 17°+30°-sin 17°cos 30°cos 17°=sin 17°cos 30°+cos 17°sin 30°-sin 17°cos 30°cos 17°=sin 30°=12.故选C.答案:C6.若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫π3+α等于( ) A .-79 B .-13 C.13 D.79答案:C 7.(2012·山西省考前适应性训练)已知α,β都是锐角,cos 2α=-725,cos (α+β)=513,则sin β=( )A.1665B.1365C.5665D.3365解析:∵cos 2α=2cos 2α-1,cos 2α=-725,又α为锐角,∴cos α=35, sin α=45.∵cos (α+β)=513,∴(α+β)为锐角,sin (α+β)=1213.∴si n β=sin []α+β-α=sin (α+β)cos α-cos (α+β)sin α =1213×35-513×45=1665.故选A. 答案:A8.(2013·上海卷)若cos x cos y +sin x sin y =13,则cos(2x -2y )=________.解析: cos x cos y +sin x sin y =cos(x -y )=13,所以cos 2(x -y )=2cos 2(x -y )-1=-79.答案:-799.sin α=35,cos β=35,其中α,β∈⎝⎛⎭⎪⎫0,π2,则α+β=________________.解析:∵α,β∈⎝⎛⎭⎪⎫0,π2,sin α=35,cos β=35,∴cos α=45,sin β=45.∴cos(α+β)=cos αcos β-sin αsin β=0.∵α,β∈⎝⎛⎭⎪⎫0,π2,∴0<α+β<π,故α+β=π2.答案:π210.已知tan α=2,则2sin 2α+1sin 2α=________.解析:2sin 2α+1sin 2α=3sin 2α+cos 2α2sin αcos α=3tan 2α+12tan α=3×22+12×2=134.答案:13411.(2013·广州二模)已知α为锐角,且cos ⎝⎛⎭⎪⎫α+π4=35,则sin α=__________.解析:因为α为锐角,所以α+π4∈⎝ ⎛⎭⎪⎫π4,3π4,因为cos ⎝ ⎛⎭⎪⎫α+π4=35, 所以sin ⎝⎛⎭⎪⎫α+π4= 1-cos 2⎝⎛⎭⎪⎫α+π4=45,则sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π4-π4=sin ⎝ ⎛⎭⎪⎫α+π4cos π4-cos ⎝ ⎛⎭⎪⎫α+π4sin π4=45×22-35×22=210. 答案:21012.(2013·江门一模)已知函数f (x )=2sin x ·cos x +2cos 2x -1,x ∈R . (1)求f (x )的最大值;(2)若点P (-3,4)在角α的终边上,求f ⎝⎛⎭⎪⎫α+π8的值.解析:(1)f (x )=sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4, 所以f (x )的最大值为 2.(2)由(1)得f ⎝ ⎛⎭⎪⎫α+π8=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α+π8+π4=2sin ⎝ ⎛⎭⎪⎫2α+π2=2cos 2α, P (-3,4)在角α的终边上,cos α=-35.所以f ⎝⎛⎭⎪⎫α+π8=22cos 2α-2=-7225.13.(2013·梅州二模)已知函数f (x )=2cos 2x +23sin x cos x . (1)求函数f (x )的最小正周期;(2)在△ABC 中,若f (C )=2,2 sin B =cos(A -C )-cos(A +C ),求tan A 的值.解析:(1)函数f (x )=2cos 2+23sin x cos x =1+cos 2x +3sin 2x =2 sin ⎝ ⎛⎭⎪⎫2x +π6+1,∴函数的最小正周期为2π2=π.(2)∵f (C )=2,∴2 sin ⎝⎛⎭⎪⎫2 C +π6+1=2, ∴sin ⎝⎛⎭⎪⎫2 C +π6=12, ∵0<C <π,∴π6<2C +π6<2π+π6,∴2C +π6=5π6,C =π3;∵2 sin B =cos(A -C )-cos(A +C )=2 sin A sin C , ∴sin(A +C )=sin A sin C ,即:sin A cos C +cos A sin C =sin A sin C ,即:tan A =sin C sin C -cos C =sinπ3sin π3-cos π3=3232-12=3+32.。
高考数学总复习 第三章 第七节正弦定理和余弦定理课件 理

sinA+30°+ 3≤3 3. 答案:(1)B (2)3 3
第十二页,共40页。
变式探究 (tànjiū)
1.(1)△ABC的内角(nèi jiǎo)A,B,C的对边分别为a,b,c,若c= ,
b= ,B=120°,2则a等于 6
()
A.
B.2
C.
D.
6
3
2
(2)在△ABC中,已知a,b,c分别为∠A,∠B,∠C所对的边,且a
第十九页,共40页。
解析:(1)由余弦定理及已知条件得,a2+2ba2b-4=12,即 a2 +b2-ab=4,
又因为△ABC 的面积等于 3,所以12absin C= 3,得 ab= 4.
联立方程组aa2b+=b42,-ab=4, 解得 a=2,b=2.
第二十页,共40页。
(2)由题意得 sin(B+A)+sin(B-A)=4sin A cos A,
解析:(1)由ccooss
故选 D.
(2)由正弦定理得sina A=sinb B⇒sin
B=bsian A=4
3sin 4
30°=
23,
∵0°<B<180°,
∴B=60°或 120°.故选 D.
答案:(1)D (2)D
第十四页,共40页。
考点(kǎo 用余弦定理(yú xián dìnɡ lǐ)求边、角 diǎn)二
【例2】 (1)(2012·湖北卷)设△ABC的内角A,B,C所对的边 分别为a,b,c. 若(a+b-c)(a+b+c)=ab,则角C=________.
设△ABC的三边(sān biān)为a,b,c,对应的三个角为A,B,
C.
A+B+C = π
1.三内角的关系:a_+__b__>__c,__b__+__c__>_a. ,c + a > b,
2023年高考数学总复习第三章 导数及其应用第5节:利用导数研究函数的零点问题(教师版)

2023年高考数学总复习第三章导数及其应用利用导数研究函数的零点问题题型一判断、证明或讨论函数零点的个数例1已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.(1)解当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3.当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )在(-∞,3-23),(3+23,+∞)单调递增,在(3-23,3+23)单调递减.(2)证明由于x 2+x +1>0,所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2(x 2+2x +3)(x 2+x +1)2≥0,仅当x =0时g ′(x )=0,所以g (x )在(-∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a -1)=-6a 2+2a -13=-a -162-16<0,f (3a +1)=13>0,故f (x )有一个零点.综上,f (x )只有一个零点.感悟提升利用导数研究方程根(函数零点)的一般方法(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图像的走势规律,标明函数极(最)值的位置.(3)数形结合法分析问题,可以使问题的求解过程有一个清晰、直观的整体展现.训练1设函数f (x )=ln x +m x ,m 为正数.试讨论函数g (x )=f ′(x )-x 3零点的个数.解由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).转化为函数y =m 与y =-13x 3+x 的图像的交点情况.设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减,∴x =1是φ(x )唯一的极值点,且是极大值点,因此x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图像(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;综上所述,当m >23时,函数g (x )无零点;当实数m =23时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二根据零点个数确定参数范围例2(2021·全国甲卷)已知a >0且a ≠1,函数f (x )=x a ax (x >0).(1)当a =2时,求f (x )的单调区间;(2)若函数φ(x )=f (x )-1有且仅有两个零点,求a 的取值范围.解(1)当a =2时,f (x )=x 22x ,定义域为(0,+∞),f ′(x )=x (2-x ln 2)2x(x >0),令f ′(x )>0,则0<x <2ln 2,此时函数f (x )单调递增,令f ′(x )<0,则x >2ln 2,此时函数f (x )单调递减,所以函数f (x )(2)函数φ(x )=f (x )-1有且仅有两个零点,则转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增,当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e)=1e,且当x >e 时,g (x )g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e)∪(e ,+∞).感悟提升在解决已知函数y =f (x )有几个零点求f (x )中参数t 的取值范围问题时,经常从f (x )中分离出参数t =g (x ),然后用求导的方法判断g (x )的单调性,再根据题意求出参数t 的值或取值范围.解题时要充分利用导数工具和数形结合思想.训练2已知函数f (x )=ax -2ln x -a x(a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数h (x )=1-a 2x -f (x )2恰有两个不同的零点,求实数a 的取值范围.解(1)函数f(x)=ax-2ln x-ax的定义域是(0,+∞),求导可得f′(x)=a-2x+ax2=ax2-2x+ax2.当a≤0时,f′(x)<0,故函数f(x)在(0,+∞)上单调递减.当a≥1时,4(1-a2)≤0,此时f′(x)=ax2-2x+ax2≥0,故函数f(x)在(0,+∞)上单调递增.当0<a<1时,4(1-a2)>0,令f′(x)=0,得x1=1-1-a2a,x2=1+1-a2a,所以函数f(x)在(0,x1),(x2,+∞)上单调递增;在(x1,x2)上单调递减.综上所述,当a≤0时,函数f(x)在(0,+∞)上单调递减;当a≥1时,函数f(x)在(0,+∞)上单调递增;当0<a<1时,函数f(x)(1-1-a2a,1+1-a2a)上单调递减.(2)由题意得函数h(x)=1-a2x-f(x)2=1-a2x+ln x(x>0),则函数h(x)=1-a2xf(x)2恰有两个不同的零点即方程1-a2x+ln x=0恰有两个不同的根.由1-a2x+ln x=0得a=2(1+ln x)x,所以直线y=a与函数g(x)=2(1+ln x)x的图像有两个不同的交点.由g(x)=2(1+ln x)x,得g′(x)=-2ln xx2,当0<x<1时,g′(x)>0,g(x)单调递增,当x>1时,g′(x)<0,g(x)单调递减,所以g(x)max=g(1)=2.又e-2<1,g(e-2)=2(1+ln e-2)e-2=-2e-2<0,x>1时,g(x)>0,所以实数a的取值范围为(0,2).题型三可化为函数零点的个数问题例3已知函数f(x)=ln x(0<x≤1)与函数g(x)=x2+a的图像有两条公切线,求实数a的取值范围.解设公切线与函数f(x)=ln x的图像切于点A(x1,ln x1)(0<x1≤1),因为f(x)=ln x,所以f′(x)=1 x,所以在点A(x1,ln x1)处切线的斜率k1=f′(x1)=1 x1,所以切线方程为y-ln x1=1x1(x-x1),即y=xx1+ln x1-1,设公切线与函数g(x)=x2+a的图像切于点B(x2,x22+a),因为g(x)=x2+a,所以g′(x)=2x,所以在点B(x2,x22+a)处切线的斜率k2=g′(x)=2x2,所以切线方程为y-(x22+a)=2x2(x-x2),即y=2x2x-x22+a,1x1=2x2,ln x1-1=-x22+a.因为0<x1≤1,所以1x1=2x2≥1,x2≥12.又a=-ln2x2+x22-1,令t=x2∈12,+∞,则h(t)=-ln2t+t2-1=-ln2-ln t+t2-1,所以h′(t)=2t2-1 t.令h′(t)>0且t≥12,得t>22;令h ′(t )<0且t ≥1,得12≤t <22.所以h (t )在12,所以函数f (x )=ln x (0<x ≤1)与函数g (x )=x 2+a 有两条公切线,满足h (t )≤ln2-12<h (t )≤-34,所以a ln 2-12,-34.感悟提升解决曲线的切线条数、两曲线的交点个数、方程根的个数等问题的关键是转化为对应函数的零点个数问题,利用数形结合思想,通过研究函数的零点个数解决相关问题.训练3已知函数f (x )=1+ln x x.(1)求函数f (x )的图像在x =1e 2处的切线方程(e 为自然对数的底数);(2)当x >1时,方程f (x )=a (x -1)+1x(a >0)有唯一实数根,求a 的取值范围.解(1)函数f (x )的定义域为(0,+∞),f ′(x )=-ln x x 2,所以f 2e 4,又e 2,所以函数f (x )的图像在x =1e2处的切线方程为y +e 2=2e 即y =2e 4x -3e 2.(2)当x >1时,f (x )=a (x -1)+1x,即ln x -a (x 2-x )=0.令h (x )=ln x -a (x 2-x ),有h (1)=0,h ′(x )=-2ax 2+ax +1x.令r (x )=-2ax 2+ax +1(a >0),则r (0)=1,r (1)=1-a ,①当a≥1时,r(1)≤0,r(x)在(1,+∞)上单调递减,所以x∈(1,+∞)时,r(x)<0,即h′(x)<0,所以h(x)在(1,+∞)上单调递减,故当x>1时,h(x)<h(1)=0,所以方程f(x)=a(x-1)+1x无实根.②当0<a<1时,r(1)=1-a>0,r(x)在(1,+∞)上单调递减,所以存在x0∈(1,+∞),使得x∈(1,x0)时,r(x)>0,即h(x)单调递增;x∈(x0,+∞)时,r(x)<0,即h(x)单调递减.所以h(x)max=h(x0)>h(1)=0.取x=1+1(x>2),则1+1a ln1+1a a1+1a+a1+1a ln1+1a-1+1a.令t=1+1a>0,故m(t)=ln t-t(t>2),则m′(t)=1t-1<0,所以m(t)在(2,+∞)单调递减,所以m(t)<ln2-2<0,即h 1+1a故存在唯一x1x0,1+1a,使得h(x1)=0.综上,a的取值范围为(0,1).隐零点问题在求解函数问题时,很多时候都需要求函数f(x)在区间I上的零点,但所述情形都难以求出其准确值,导致解题过程无法继续进行时,可这样尝试求解:先证明函数f(x)在区间I上存在唯一的零点(例如,函数f(x)在区间I上是单调函数且在区间I的两个端点的函数值异号时就可证明存在唯一的零点),这时可设出其零点是x0.因为x0不易求出(当然,有时是可以求出但无需求出),所以把零点x0叫作隐零点;若x0容易求出,就叫作显零点,而后解答就可继续进行,实际上,此解法类似于解析几何中“设而不求”的方法.例1设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.解(1)f(x)的定义域为R,f′(x)=e x-a.当a≤0时,f′(x)>0恒成立,所以f(x)单调增区间为(-∞,+∞),无单调减区间.当a>0时,令f′(x)<0,得x<ln a,令f′(x)>0,得x>ln a,所以f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞). (2)由题设可得(x-k)(e x-1)+x+1>0,即k<x+x+1e x-1(x>0)恒成立,令g(x)=x+1e x-1+x(x>0),得g′(x)=e x-1-(x+1)e x(e x-1)2+1=e x(e x-x-2)(e x-1)2(x>0).由(1)的结论可知,函数h(x)=e x-x-2(x>0)是增函数.又因为h(1)<0,h(2)>0,所以函数h(x)的唯一零点α∈(1,2)(该零点就是h(x)的隐零点).当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0,所以g(x)min=g(α)=α+1eα-1+α.又h(α)=eα-α-2=0,所以eα=α+2且α∈(1,2),则g(x)min=g(α)=1+α∈(2,3),所以k的最大值为2.例2已知函数f(x)=(x-1)e x-ax的图像在x=0处的切线方程是x+y+b=0.(1)求a,b的值;(2)求证函数f(x)有唯一的极值点x0,且f(x0)>-32.(1)解因为f′(x)=x e x-a,由f′(0)=-1得a=1,又f(0)=-1,所以切线方程为y-(-1)=-1(x-0),即x+y+1=0,所以b=1.(2)证明令g(x)=f′(x)=x e x-1,则g′(x)=(x+1)e x,所以当x<-1时,g(x)单调递减,且此时g(x)<0,则g(x)在(-∞,-1)内无零点;当x≥-1时,g(x)单调递增,且g(-1)<0,g(1)=e-1>0,所以g(x)=0有唯一解x0,f(x)有唯一的极值点x0.由x0e x0=1⇒e x0=1 x0,f(x0)=x0-1x0-x0=1x又=e2-1<0,g(1)=e-1>0⇒12<x0<1⇒2<1x0+x0<52,所以f(x0)>-3 2 .1.已知函数f(x)=e x+(a-e)x-ax2.(1)当a=0时,求函数f(x)的极值;(2)若函数f(x)在区间(0,1)内存在零点,求实数a的取值范围.解(1)当a=0时,f(x)=e x-e x,则f′(x)=e x-e,f′(1)=0,当x<1时,f′(x)<0,f(x)单调递减;当x>1时,f′(x)>0,f(x)单调递增,所以f(x)在x=1处取得极小值,且极小值为f(1)=0,无极大值.(2)由题意得f′(x)=e x-2ax+a-e,设g(x)=e x-2ax+a-e,则g′(x)=e x-2a.若a=0,则f(x)的最大值f(1)=0,故由(1)得f(x)在区间(0,1)内没有零点.若a<0,则g′(x)=e x-2a>0,故函数g(x)在区间(0,1)内单调递增.又g(0)=1+a-e<0,g(1)=-a>0,所以存在x0∈(0,1),使g(x0)=0.故当x∈(0,x0)时,f′(x)<0,f(x)单调递减;当x∈(x0,1)时,f′(x)>0,f(x)单调递增.因为f(0)=1,f(1)=0,所以当a<0时,f(x)在区间(0,1)内存在零点.若a>0,由(1)得当x∈(0,1)时,e x>e x.则f(x)=e x+(a-e)x-ax2>e x+(a-e)x-ax2=a(x-x2)>0,此时函数f(x)在区间(0,1)内没有零点.综上,实数a的取值范围为(-∞,0).2.设函数f(x)=12x2-m ln x,g(x)=x2-(m+1)x,m>0.(1)求函数f(x)的单调区间;(2)当m≥1时,讨论f(x)与g(x)图像的交点个数.解(1)函数f(x)的定义域为(0,+∞),f′(x)=(x+m)(x-m)x.当0<x<m时,f′(x)<0,函数f(x)单调递减;当x>m时,f′(x)>0,函数f(x)单调递增.综上,函数f(x)的单调递增区间是(m,+∞),单调递减区间是(0,m).(2)令F(x)=f(x)-g(x)=-12x2+(m+1)x-m ln x,x>0,题中问题等价于求函数F(x)的零点个数.F′(x)=-(x-1)(x-m)x,当m=1时,F′(x)≤0,函数F(x)为减函数,因为F(1)=32>0,F(4)=-ln4<0,所以F(x)有唯一零点;当m>1时,0<x<1或x>m时,F′(x)<0;1<x<m时,F′(x)>0,所以函数F(x)在(0,1)和(m,+∞)上单调递减,在(1,m)上单调递增,因为F(1)=m+12>0,F(2m+2)=-m ln(2m+2)<0,所以F(x)有唯一零点.综上,函数F(x)有唯一零点,即函数f(x)与g(x)的图像总有一个交点.3.已知函数f(x)=(x-1)e x-ax2+b+12.(1)若a=1,求函数f(x)的单调区间;(2)当a=12时,f(x)的图像与直线y=bx有3个交点,求b的取值范围.解(1)当a=1时,f(x)=(x-1)e x-x2+b+12(x∈R),则f′(x)=e x+(x-1)e x-2x=x(e x-2).令f′(x)>0,解得x<0或x>ln2;令f′(x)<0,解得0<x<ln2,所以函数f(x)的单调递增区间为(-∞,0)和(ln2,+∞),单调递减区间为(0,ln2).(2)因为a=12,所以f(x)=(x-1)e x-12x2+b+12.由(x-1)e x-12x2+b+12=bx,得(x-1)e x-12(x2-1)=b(x-1).当x=1时,方程成立.当x≠1时,只需要方程e x-12(x+1)=b有2个实根.令g(x)=e x-12(x+1),则g′(x)=e x-12.当x <ln 12时,g ′(x )<0,当x >ln 12且x ≠1时,g ′(x )>0,所以g (x )∞,ln 12,(1,+∞)上单调递增,因为=12-12+=12ln 2,g (1)=e -1≠0,所以b 2,e -(e -1,+∞).4.已知函数f (x )=ax cos x -1在0,π6上的最大值为3π6-1.(1)求a 的值;(2)证明:函数f (x )2个零点.(1)解f ′(x )=a (cos x -x sin x ),因为x ∈0,π6,所以cos x >sin x ≥0,又1>x ≥0,所以1·cos x >x sin x ,即cos x -x sin x >0.当a >0时,f ′(x )>0,所以f (x )在区间0,π6上单调递增,所以f (x )max =a ·π6×32-1=3π6-1,解得a =2.当a <0时,f ′(x )<0,所以f (x )在区间0,π6上单调递减,所以f (x )max =f (0)=-1,不符合题意,当a =0时,f (x )=-1,不符合题意.综上,a =2.(2)证明设g (x )=cos x -x sin x ,则g ′(x )=-2sin x -x cos x x所以g (x )又g (0)=1>0,=-π2<0,所以存在唯一的x0g(x0)=0,当0<x<x0时,g(x)>0,即f′(x)=2g(x)>0,所以f(x)在(0,x0)上单调递增;当x0<x<π2时,g(x)<0,即f′(x)=2g(x)<0,所以f(x)0又f(0)=-1<0,=2π4-1>0,1<0,所以f(x)综上,函数f(x).。
2015届高考数学总复习第三章三角函数、三角恒等变换及解三角形第5课时二倍角的正弦、余弦和正切公式教学案

第三章 三角函数、三角恒等变换及解三角形第5课时 二倍角的正弦、余弦和正切公式第四章 (对应学生用书(文)、(理)49~50页)1. (必修4P 105例1改编)已知sin α=-45,α∈⎝⎛⎭⎫-π2,π2,则sin2α=__________.答案:-2425解析:∵ sin α=-45,α∈⎝⎛⎭⎫-π2,π2,∴ α∈⎝⎛⎭⎫-π2,0,cos α=35.∴ sin2α=2sin αcos α=-2425.2. (必修4P 108习题3.2第5(2)题改编)已知α为第二象限角,sin α+cos α=33,则cos2α=________.答案:-53解析:∵ sin α+cos α=33, ∴ (sin α+cos α)2=13,∴ 2sin αcos α=-23,即sin2α=-23.∵ α为第二象限角且sin α+cos α=33>0, ∴ 2k π+π2<α<2k π+34π(k ∈Z ),∴ 4k π+π<2α<4k π+32π(k ∈Z ),∴ 2α为第三象限角,∴ cos2α=-1-sin 22α=-53.3. (必修4P 108习题3.2第3题改编)若sin(π2+θ)=35,则cos2θ=________.答案:-725解析:∵ sin ⎝⎛⎭⎫π2+θ=35,∴ cos θ=35,∴ cos2θ=2cos 2θ-1=-725. 4. (必修4P 106练习第1(1)题改编)函数f(x)=sinxcosx 的最小正周期是________. 答案:π解析:∵ f(x)=sinxcosx =12sin2x ,∴ T =2π2=π.5. (必修4P 108习题 3.2第5(3)题改编)若5π2≤α≤7π2,则1+sin α+1-sin α=________.答案:-2sin α2解析:∵ 5π2≤α≤7π2,∴ 5π4≤α2≤7π4. ∴1+sin α+1-sin α=1+2sin α2cos α2+1-2sin α2cos α2=⎝⎛⎭⎫sin α2+cos α22+⎝⎛⎭⎫sin α2-cos α22=-⎝⎛⎭⎫sin α2+cos α2-⎝⎛⎭⎫sin α2-cos α2=-2sin α2.1. 二倍角公式sin2α=2sinαcosα;cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan2α=2tanα1-tan 2α.2. 降幂公式 sin 2α=1-cos2α2;cos 2α=1+cos2α2;sin αcos α=sin2α2.[备课札记]题型1 化简求值例1 计算:(tan10°-3)·sin40°. 解:原式=⎝ ⎛⎭⎪⎫sin10°-3cos10°cos10°·sin40°=2(sin10°cos60°-cos10°sin60°)sin40°cos10°=-2sin50°sin40°cos10°=-2sin40°cos40°cos10°=-sin80°cos10°=-1.变式训练计算:sin50°(1+3tan10°). 解:原式=sin50°⎝ ⎛⎭⎪⎫1+3sin10°cos10°=sin50°·cos10°+3sin10°cos10°=2sin50°·sin30°cos10°+cos30°sin10°cos10°=2sin50°·sin40°cos10°=2cos40°sin40°cos10°=sin80°cos10°=1.题型2 给值求值例2 已知α∈⎝⎛⎭⎫0,π2,tan α=12,求:(1) tan2α的值; (2) sin ⎝⎛⎭⎫2α+π3的值.解:(1) 因为tan α=12,所以tan2α=2tan α1-tan 2α=43. (2) 因为α∈⎝⎛⎭⎫0,π2,所以2α∈(0,π).又tan2α>0,所以sin2α=45,cos2α=35.所以sin ⎝⎛⎭⎫2α+π3=sin2αcos π3+cos2αsin π3=45×12+35×32=4+3310.备选变式(教师专享)已知α+β=3π4,则cos 2α+cos 2β+2cos αcos β=________.答案:12解析:原式=1+cos2α2+1+cos2β2+2c osαcosβ=1+12(cos2α+cos2β)+2cos αcos β=1+cos(α+β)cos(α-β)+22[cos(α+β)+cos(α-β)] =1-22cos (α-β)+22×⎝⎛⎭⎫-22+22cos (α-β)=12. 题型3 给值求角例3 已知α、β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.解:∵ tan α=tan [(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∴ 0<α<π2.∵ tan2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34>0, ∴ 0<2α<π2,∴ tan (2α-β)=tan2α-tan β1+tan2αtan β=34+171-34×17=1.∵ tan β=-17<0,∴π2<β<π,-π<2α-β<0, ∴ 2α-β=-3π4.备选变式(教师专享)已知θ是第三象限角,|cos θ|=m ,且sin θ2+cos θ2>0,求cos θ2.解:∵θ为第三象限角,|cosθ|=m , ∴θ2为第二或四象限角,cos θ=-m.∵sin θ2+cos θ2>0,∴θ2为第二象限角,∴cos θ2=-1+cosθ2=-1-m2. 题型4 二倍角公式的应用例4 (2013·盐城二模)已知函数f(x)=4sinxcos(x +π3)+ 3.(1) 求f(x)的最小正周期;(2) 求f(x)在区间⎣⎡⎦⎤-π4,π6上的最大值和最小值及取得最值时x 的值.解:(1) f(x)=4sinx(cosxcos π3-sinxsin π3)+3=2sinxcosx -23sin 2x +3=sin2x +3cos2x =2sin ⎝⎛⎭⎫2x +π3.所以T =2π2=π.(2) 因为-π4≤x ≤π6,所以-π6≤2x +π3≤2π3,所以-12≤sin ⎝⎛⎭⎫2x +π3≤1,所以-1≤f(x)≤2,当2x +π3=-π6,即x =-π4时,f(x)min =-1,当2x +π3=π2,即x =π12时,f(x)max =2.备选变式(教师专享)已知函数f(x)=-2sin 2x +23sinxcosx +1. (1) 求f(x)的最小正周期及对称中心;(2) 若x ∈⎣⎡⎦⎤-π6,π3,求f(x)的最大值和最小值.[审题视点] 逆用二倍角公式,化为正弦型函数再求解.解:(1) f(x)=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6,所以f(x)的最小正周期为T =2π2=π.令sin ⎝⎛⎭⎫2x +π6=0,则x =k π2-π12(k ∈Z ),所以f(x)的对称中心为⎝⎛⎭⎫k π2-π12,0(k ∈Z ).(2) 因为x ∈⎣⎡⎦⎤-π6,π3,所以-π6≤2x +π6≤5π6.所以-12≤sin ⎝⎛⎭⎫2x +π6≤1,所以-1≤f(x)≤2.所以当x =-π6时,f(x)的最小值为-1;当x =π6时,f(x)的最大值为2.1. (2013·四川)设sin2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan2α=________. 答案:3解析:由sin2α=-sin α,得2sin αcos α=-sin α. 又α∈⎝⎛⎭⎫π2,π,故sin α≠0,于是cos α=-12, 进而sin α=32,于是tan α=-3, ∴ tan2α=2tan α1-tan 2α=2×(-3)1-3= 3.2. 已知向量a =(sin θ,cos θ),b =(3,-4),若a ∥b ,则tan2θ=__________. 答案:-247解析:∵ a ∥b ,∴ -4sin θ-3cos θ=0,∴ tan θ=-34,从而tan2θ=2tan θ1-tan 2θ=2×⎝⎛⎭⎫-341-⎝⎛⎭⎫-342=-247. 3. 设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin (2α+π12)=__________.答案:17250解析:设α+π6=θ,cos θ=45,sin θ=35,sin2θ=2sin θcos θ=2425,cos2θ=2cos 2θ-1=725,sin ⎝⎛⎭⎫2α+π12=sin ⎝⎛⎭⎫2θ-π4=sin2θ·cos π4-cos2θ·sin π4=17250.4. (2013·贵州)已知sin2α=23,则cos 2⎝⎛⎭⎫α+π4=________.答案:16解析:因为sin2α=23,所以cos 2⎝⎛⎭⎫α+π4=12×⎣⎡⎦⎤1+cos2⎝⎛⎭⎫α+π4=12(1-sin2α)=16.1. 已知sinθ+cosθ=15,且π2≤θ≤3π4,则cos2θ=________.答案:-725解析:将sinθ+cosθ=15两边平方,得sinθcosθ=-1225,所以(sinθ-cosθ)2=1-2sinθcosθ=4925,则sinθ-cosθ=±75.又π2≤θ≤3π4, 所以cosθ<0,sin θ>0,所以sinθ-cosθ=75,故cos2θ=cos 2θ-sin 2θ=(cosθ+sinθ)(cosθ-sinθ)=-725.2. 已知sin ⎝⎛⎭⎫π6+α=13,则cos ⎝⎛⎭⎫2π3-2α=________. 答案:-79解析:由sin ⎝⎛⎭⎫π6+α=13,得cos2⎝⎛⎭⎫π6+α=1-2sin 2⎝⎛⎭⎫π6+α=79,即cos ⎝⎛⎭⎫π3+2α=79, 所以cos ⎝⎛⎭⎫2π3-2α=cos ⎝⎛⎭⎫π-⎝⎛⎭⎫π3+2α=-79. 3. 若cos ⎝⎛⎭⎫π4+x =35,1712π<x <74π,求sin2x +2sin 2x 1-tanx 的值. 解:由1712π<x <74π,得53π<x +π4<2π.又cos ⎝⎛⎭⎫π4+x =35,sin ⎝⎛⎭⎫π4+x =-45. cosx =cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+x -π4=cos ⎝⎛⎭⎫π4+x cos π4+sin ⎝⎛⎭⎫π4+x sin π4=-210, 从而sinx =-7210,tanx =7.故原式=2sinxcosx +2sin 2x1-tanx=2⎝⎛⎭⎫-7210·⎝⎛⎭⎫-210+2⎝⎛⎭⎫-721021-7=-2875.4. 已知函数f(x)=sin 2ωx +3sin ωxsin ⎝⎛⎭⎫ωx +π2(ω>0)的最小正周期为π2.(1) 写出函数f(x)的单调递增区间;(2) 求函数f(x)在区间⎣⎡⎦⎤0,π3上的取值范围.解:(1) f(x)=1-cos2ωx 2+32sin2ωx =32sin2ωx -12cos2ωx +12=sin ⎝⎛⎭⎫2ωx -π6+12.因为T =π2,所以2π2ω=π2(ω>0),所以ω=2,f(x)=sin ⎝⎛⎭⎫4x -π6+12.于是由2k π-π2≤4x -π6≤2k π+π2,解得k π2-π12≤x ≤k π2+π6(k ∈Z ).所以f(x)的增区间为⎣⎡⎦⎤k π2-π12,k π2+π6(k ∈Z ).(2) 因为x ∈⎣⎡⎦⎤0,π3,所以4x -π6∈⎣⎡⎦⎤-π6,7π6,所以sin ⎝⎛⎭⎫4x -π6∈⎣⎡⎦⎤-12,1,所以f(x)∈⎣⎡⎦⎤0,32. 故f(x)在区间⎣⎡⎦⎤0,π3上的取值范围是⎣⎡⎦⎤0,32.1. 已知三角函数式的值,求其他三角函数式的值,一般思路为:(1) 先化简所求式子;(2) 观察已知条件与所求式子之间的联系(从三角函数名及角入手); (3) 将已知条件代入所求式子,化简求值.2. 应用倍角公式,一是要选择合适的公式,二是要注意正用和逆用.3. 降幂公式是解决含有cos 2x 、sin 2x 式子的问题较常用的变形之一,它体现了逆用二倍角公式的解题技巧.请使用课时训练(B)第5课时(见活页).[备课札记]。
2024年高考数学专项复习马尔科夫链(与数列结合的概率递推问题)(解析版)

马尔科夫链(与数列结合的概率递推问题)如果要评选出 2023 年各地模拟题中最“成功”的题目,我想非“马尔科夫链”莫属了,尽管2023 年新高考I 卷出乎了很多“命题专家”的意料,但第 21 题考察了马尔科夫链,可谓为广大“专家”“名卷”“押题卷”挽回了一些颜面。
2023年新高考I 卷第21题的投篮问题是马尔可夫链;再往前的热点模考卷中,2023年杭州二模第21题的赌徒输光问题是马尔可夫链,2023年茂名二模的摸球问题是马尔可夫链;再往更前的2019年全国I 卷药物试验也是马尔可夫链,在新人教A 版选择性必修三 P91 页 拓展探索中的第10题是传球问题,是马尔科夫链的典型模型,可以看出自从新教材引入全概率公式(新人教A 版选择性必修三 P49 页),可想而知,未来会有越来越多的递推型概率难题出现模考试题中!因此,在复习备考中全概率等系列内容需要格外关注马尔科夫链作为一种命题模型出现了,马尔科夫链在题中的体现可以简单的概括为全概率公式+数列递推,对于高中生而言,马尔科夫链其实也不难理解。
本文主要介绍了马尔科夫链和一维随机游走模型在高考中的几种具体的应用情形,希望对各位接下来的复习和备考有一些帮助。
基本原理虽然贝叶斯公式不做要求,但是全概率公式已经是新高考考查内容了,利用全概率公式,我们既可以构造某些递推关系求解概率,还可以推导经典的一维随机游走模型,即:设数轴上一个点,它的位置只能位于整点处,在时刻0=t 时,位于点)(+∈=N i i x ,下一个时刻,它将以概率α或者β(1),1,0(=+∈βαα)向左或者向右平移一个单位. 若记状态i t X =表示:在时刻t 该点位于位置)(+∈=N i i x ,那么由全概率公式可得:)|()()|()()(1111111+==++=−==+−==+⋅+⋅=i t i t i t i t i t i t i t X X P X P X X P X P X P另一方面,由于αβ==+==+−==+)|(,)|(1111i t i t i t i t X X P X X P ,代入上式可得:11−+⋅+⋅=i i i P P P βα.进一步,我们假设在0=x 与),0(+∈>=N m m m x 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,1,00==m P P .随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:2024年高考数学专项复习马尔科夫链(与数列结合的概率递推问题)(解析版)11+−++=i i i i cP bP aP P2023·新高考Ⅰ卷T211.乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==−===⋅⋅⋅,则11n ni i i i E X q == = ∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .2019·全国Ⅰ卷2.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1−分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1−分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列.(2)若甲药、乙药在试验开始时都赋予4分,)0,1,2,,8(i p i =⋅⋅⋅表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11()127i i i i p ap bp cp i ==++…-+,,,,其中)1(a P X ==-,(0)b P X == (1)c PX ==. 假设0.5α=,0.8β=. ①证明:1)0{,1,2,,}7(i i p p i−=⋅⋅⋅+为等比数列; ②求4p ,并根据4p 的值解释这种试验方案的合理性.课本原题:人教A版数学《选择性必修三》P913.甲、乙、丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.求n次传球后球在甲手中的概率.重点题型·归类精讲3.从甲、乙、丙等5人中随机地抽取三个人去做传球训练.训练规则是确定一人第一次将球传出,每次传球时,2023届惠州一模4.为了避免就餐聚集和减少排队时间,某校开学后,食堂从开学第一天起,每餐只推出即点即取的米饭套餐和面食套餐. 已知某同学每天中午会在食堂提供的两种套餐中选择,已知他第一天选择米饭套餐的概率为23,而前一天选择了米饭套餐后一天继续选择米饭套餐的概率为14,前一天选择面食套餐后一天继续选择面食套餐的概率为12,如此往复.(1)求该同学第二天中午选择米饭套餐的概率(2)记该同学第n天选择米饭套餐的概率为n P(Ⅰ)证明:25nP−为等比数列;(Ⅱ)证明:当2n≥时,512nP≤.2023届佛山二模·165.有n 个编号分别为1,2,3,,n ⋅⋅⋅的盒子,第1个盒子中有2个白球1个黑球,其余盒子均为1个白球1个黑球,现从第1个盒中任取一球放入第2个盒子,再从第2个盒子中任取一球放入第3个盒子,以此类推,则从第2个盒子中取到白球的概率是 ,从第n 个盒子中取到白球的概率是 .2023·唐山调研6.甲、乙、丙三人玩传球游戏,第1次由甲传出,每次传球时,传球者都等可能地将球传给另外两人中的任何一人.设第k 次传球后球在甲手中的概率为*N k p k ∈,,则下列结论正确的有( )A. 10p =B. 213p = C. 121k k p p ++= D. 202313p >2024届武汉高三九月调研T167.甲,乙,丙三人进行传球游戏,每次投掷一枚质地均匀的正方体骰子决定传球的方式:当球在甲手中时,若骰子点数大于3,则甲将球传给乙,若点数不大于3,则甲将球保留;当球在乙手中时,若骰子点数大于4,则乙将球传给甲,若点数不大于4,则乙将球传给丙;当球在丙手中时,若骰子点数大于3,则丙将球传给甲,若骰子点数不大于3,则丙将球传给乙.初始时,球在甲手中,投掷n 次骰子后(),记球在甲手中的概率为,则 ; .2024届·湖北荆荆恩高三9月起点联考·218.甲、乙两个盒子中都装有大小、形状、质地相同的2个黑球和1个白球,现从甲、乙两个盒子中各任取一个球交换放入另一个盒子中,重复次这样的操作后,记甲盒子中黑球的个数为,甲盒中恰有2个黑球的概率为,恰有3个黑球的概率为.(1)求;(2)设,证明:;(3)求的数学期望的值. *n ∈N n p 3p =n p =()*n n ∈N n X n p n q 11,p q 2n n n c p q =+11233n n c c +=+n X ()n E X2023·济南开学考10.甲、乙两人进行抛掷骰子游戏,两人轮流地掷一枚质均匀的骰子.规定:先掷出点数6的获胜,游戏结束.(1)记两人抛掷骰子的总次数为X,若每人最多抛掷两次骰子,求比赛结束时,X的分布列和期望;(2)已知甲先掷,求甲恰好抛掷n 次骰子并获得胜利的概率.2023届·杭州二模11.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是…,2t X −,1t X −,t X ,1t X +,…,那么1t X +时刻的状态的条件概率仅依赖前一状态t X ,即()()t 1t 2t 1t t 1t ,,,X X X X X X P P +−−+= ∣∣. 现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B 元,赌徒停止赌博.记赌徒的本金为*(,)A A N A B ∈<元,赌博过程为如图所示的数轴.当赌徒手中有n 元()0,n B n N ≤≤∈时,最终输光的概率为()P n ,请回答下列问题:(1)请直接写出()0P 与()P B 的数值;(2)证明(){}P n 是一个等差数列,并写出公差d ;(3)当100A =时,分别计算200B =,1000B =时,()P A 的数值,并结合实际,解释当B →+∞时,()P A 的统计含义.12.校足球队中的甲、乙、丙、丁四名球员将进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能的将球传给另外三个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
**** 在各省市中,必修三算法、统计、初等概率(选修部分是重点),不会考解答大题,所以同学要重视这本书中的选择填空题!
一、基础知识(理解去记)
(1)四种基本的程序框
终端框(起止框)
输入.输出框
处理框
判断框
(2)三种基本逻辑结构
顺序结构 条件结构 循环结构
(3)基本算法语句
(一)输入语句
单个变量
多个变量
(二)输出语句
(三)赋值语句
(四)条件语句
IF-THEN-ELSE 格式
当计算机执行上述语句时,首先对IF后的条件进行判断,如果条件符合,就执行THEN后的语句1,否则执行ELSE后的语句2。
其对应的程序框图为:(如上右图)
IF-THEN格式
计算机执行这种形式的条件语句时,也是首先对IF后的条件进行判断,如果条件符合,就执行THEN后的语句,如果条件不符合,则直接结束该条件语句,转而执行其他语句。
其对应的程序框图为:(如上右图)
(五)循环语句
(1)WHILE语句
其中循环体是由计算机反复执行的一组语句构成的。
WHLIE后面的“条件”是用于控制计算机执行循环体或跳出循环体的。
当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE与WEND之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合
为止。
这时,计算机将不执行循环体,直接跳到WEND语句后,接着执行WEND之后的语句。
因此,当型循环有时也称为“前测试型”循环。
其对应的程序结构框图为:(如上右图)
(2)UNTIL语句
其对应的程序结构框图为:(如上右图)
(4)算法案例
案例1 辗转相除法与更相减损术
案例2 秦九韶算法
案例3 排序法:直接插入排序法与冒泡排序法
案例4 进位制
二.基础例题(必会)
例1 写一个算法程序,计算1+2+3+…+n的值(要求可以输入任意大于1的正自然数)
解:INPUT “n=”;n
i=1
sum=0
WHILE i<=n
sum=sum+i
i=i+1
WEND
PRINT sum
END
思考:在上述程序语句中我们使用了WHILE格式的循环语句,能不能使用UNTIL循环?
例2 设计一个程序框图对数字3,1,6,9,8进行排序(利用冒泡排序法)
开始
输入a1,a2,a3,a4,a5
i=1
a i>a i+1
x=a i
a i=a i+1
a i+1=x
i=5
r=5
输出
a1,a2,a3,a4,a5
结束i=i+1r=r+1
r=1
否
否
是
否
是
是
思考:上述程序框图中哪些是顺序结构?哪些是条件结构?哪些是循环结构?例3 把十进制数53转化为二进制数.
解:53=1×25+1×24+0×23+1×22+0×21+1×20
=110101(2)
例4 利用辗转相除法求3869与6497的最大公约数与最小公倍数。
解:6497=3869×1+2628
3869=2628×1+1241
2628=1241*2+146
1241=146×8+73
146=73×2+0
所以3869与6497的最大公约数为73
最小公倍数为3869×6497/73=344341
思考:上述计算方法能否设计为程序框图?
三、趋近高考(必懂)
1.(2011浙江理)某程序框图如图所示,
若输出的S=57,则判断框内位
(A)k>4?
(B)k>5?
(C)k>6?
(D)k>7?
【答案】A
【解析】:本题主要考察了程序框图的结构,
以及与数列有关的简
单运算,属容易题
2.(2011辽宁理)如果执行右面的程序框图,输入正整数n ,m ,满足n
≥m ,那么输出的P 等于
(A )1m n C -
(B) 1m n A -
(C) m n C
(D) m n A
【答案】D
【解析】第一次循环:k=1,p=1,p=n-m+1;
第二次循环:k=2,p=(n-m+1)(n-m+2);
第三次循环:k=3,p=(n-m+1) (n-m+2) (n-m+3)
……
第m 次循环:k=3,p=(n-m+1) (n-m+2) (n-m+3)…(n-1)n
此时结束循环,输出p=(n-m+1) (n-m+2) (n-m+3)…(n-1)n=m n A
3.(2010广东理)某城市缺水问题比较突出,为了制定节水管理办法,对
全市居民某年的月均用水量进行了抽样调查,其中n 位居民的月均用水量
分别为x1…xn(单位:吨),根据图2所示的程序框图,若n=2,且x1,x2 分
别为1,2,则输出地结果s 为 . 【答案】32 1 1.5 1.5263442s +++=
==
1.(2011.湖南卷13)若执行如图3所示的框图,输入1231,2,3,2x x x x ====,则输出的数等于 。
答案:23
【解析】:由框图的算法功能可知,输出的数为三个数的方差,
则222(12)(22)(32)233
S -+-+-==。
4.(2011.陕西8.)右图中,1x ,2x ,3x 为某次考试三个评阅人对同一道题的
独立评分,p 为该题的最终得分,当16x =,29x =,8.5p =时,3x 等于( )
(A )11 (B )10 (C )8 (D )7
【分析】先读懂右图的逻辑顺序,然后进行计算判断,其中判断条件
3132||||x x x x -<-是否成立是解答本题的关键.
【解析】选C 16x =,29x =,12||32x x -=„不成立,即为“否”,所以再输
入3x ;由绝对值的意义(一个点到另一个点的距离)和不等式
3132||||x x x x -<-知,点3x 到点1x 的距离小于点3x 到2x 的距离,所以当
37.5x <时,3132||||x x x x -<-成立,即为“是”,此时23x x =,所以132x x p +=,即368.52x +=,解得311x =7.5>,不合题意;当37.5x …时,3132||||x x x x -<-不成立,即为“否”,此时13x x =,所以322x x p +=,即3
98.52
x +=,解得38x =7.5>,符合题意,故选C .
5.(2010广东文)某城市缺水问题比较突出,为了制定节水管
理办法,对全市居民某年的月均用水量进行了
抽样调查,其中4位居民的月均用水量分别为
(单位:吨)。
根据图2所示的程序框图,若分
别为1,1.5,1.5,2,则输出的结果s 为 .
第一(1=i )步:11011=+=+=i x s s
第二(2=i )步:
5.25.1111=+=+=i x s s 第三(3=i )步:45.15.211=+=+=i x s s
第四(4=i )步:62411=+=+=i x s s ,23641=⨯=
s
第五(5=i )步:45>=i ,输出23=s
6.(2010安徽文)如图所示,程序框图(算法流程图)的输出值x=
【答案】 12
【解析】程序运行如下:
1,2,4,5,6,8,9,10,12x x x x x x x x x =========,输出12。
【规律总结】这类问题,通常由开始一步一步运行,根据判断条件,要么几步后就会输出结果,要么就会出现规律,如周期性,等差或等比数列型.
7.(2010江苏卷)右图是一个算法的流程图,则输出S 的值是_____________
【解析】考查流程图理解。
2412223133,++++=<L 输出25122263S =++++=L 。
8.(2009浙江卷理)某程序框图如图所示,该程序运行后输出的k 的
值是 ( )
A .4
B .5
C .6
D .7
【解析】对于0,1,1k s k ==∴=,而对于1,3,2k s k ==∴=,则
2,38,3k s k ==+∴=,后面是113,382,4k s k ==++∴=,不
符合条件时输出的4k =.
答案 A
9、(2009年广东卷文)某篮球队6名主力队员在最近三场比赛中投进
队员i
1 2 3 4
5 6 三分球个数 1a 2a 3a 4a 5a 6a
下图(右)是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填 ,输出的s=
(注:框图中的赋值符号“=”也可以写成“←”或“:=”)
【解析】顺为是统计该6名队员在最近三场比赛中投进的三分中判断框应填6i ≤,输出的
球总数的程序框图,所图
s=126a a a +++L .
T= .
【解析】:按照程序框图依次执行为S=5,n=2,T=2;
S=10,n=4,T=2+4=6;S=15,n=6,T=6+6=12;
S=20,n=8,T=12+8=20;S=25,n=10,T=20+10=30>S,输出T=30 答案 30。