碳纤维生产加工工艺

碳纤维生产加工工艺
碳纤维生产加工工艺

碳纤维生产加工工艺

碳纤维国内技术和生产现状简介

碳纤维国内技术和生产 现状简介 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

国内碳纤维技术及生产现状 我国从20世纪60年代后期开始研制碳纤维,历经近40年的漫长历程。在此期间,由于国外把碳纤维生产技术列入禁运之列,严格控制封锁,制约了我国碳纤维工业的发展。我国科技工作者发扬自力更生的精神,从无到有,逐步建成了碳纤维的工业雏型。20世纪70年代初突破连续化工艺,1976年在中科院山西煤炭化学研究所建成我国第一条PAN基碳纤维扩大试验生产线,当时生产能力为2t/a。20世纪80年代开展了高强型碳纤维的研究,于1998年建成一条新的中试生产线,规模为40t/a。我国主要研究单位有中科院山西煤化所、上海合纤所、北京化工大学、山东工业大学、东华大学、安徽大学、浙江大学、长春工业大学等。 我国目前使用碳纤维量约占世界用量的1/5。巨大的市场潜力,供不应求的局面,必然促进我国碳纤维工业的发展。但是,要想进入竞争的市场,一是要保证产品的质量,二是要求价位相当。针对我国碳纤维工业的现状,需首先解决高性能PAN原丝的质量,在这基础上才有可能产业化,这是进市场的前提;同时,还需进行预氧化,碳化,石墨化设备及表面处理装置的工程化开发,使其形成规模化生产能力,才能在保证质量的基础上降低成本。目前,内内研究开发以及生产碳纤维的呼声很高,发展趋势令人鼓舞。 但由于对我国碳纤维产业发展的建议目前我国高性能碳纤维无论在质量上还是数量上与国外相比还有一定差距,远远满足不了需求。为此,尽快研究和发展我国自己的高性能碳纤维材料已迫在眉睫。碳纤维是一门多学科交叉、多技术集成的系统工程,质量的提升涉及到方方面面。以下几个方面应优先考虑。 1、提高PAN原丝质量 PAN原丝不仅影响碳纤维的质量,而且影响其产量和生产成本。换言之,只有高质量的原丝才能生产出高性能碳纤维,才能稳定生产,提高产量,降低成本。对于现代碳纤维

碳纤维制备工艺简介讲解

碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。 一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。 虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

碳纤维制备工艺简介资料

碳纤维制备工艺简介资料. 碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。

一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。

虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC 沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

碳纤维生产技术路线及应用领域

碳纤维生产技术路线及应用领域 按原料体系的不同,碳纤维主要分为:黏胶基碳纤维、聚丙烯腈基碳纤维和沥青基碳纤维。 一、黏胶基碳纤维 黏胶基碳纤维主要用于耐烧蚀材料和隔热材料,目前, 黏胶基碳纤维仍占据着其他碳纤维不可取代的地位,是重要的战略物资。在民用市场方面,利用其柔软与导电性制作电热产品,利用其孔隙结构发达和容易调控的特性制造活性碳纤维系列制品,是良好的环保材料和医用卫生材料。 黏胶基碳纤维的产量不足世界碳纤维总产量的1%,它虽然不会有大的发展,但也不会被彻底淘汰出局。 二、聚丙烯腈基碳纤维 聚丙烯腈基碳纤维是目前的主流,占据了主要的市场费额: 1、瓦特的技术突破打通了制造高性能碳纤维的通道; 2、PAN原丝质量是制造高性能碳纤维的前提; 3、一条龙生产线得到发展,世界上几条著名的PAN基碳纤维生产线大多是从原丝开始,直到碳纤维以及中、下游产品开发。例如:日本东丽、东邦、三菱人造丝公司,美国的赫克利公司和阿莫科公司,以及中国台湾地区的台塑都是从聚合、纺丝开始,国外原丝主要生产 (1~24K)的质量提高,普及是指大丝束碳纤维(48~540K)的产量大幅度增加,价格日趋下降。 三、沥青基碳纤维 1965年,日本群马大学的大谷衫郎研制沥青基碳纤维获得成功,从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。

五、碳纤维及其复合材料的应用领域(一)

PAN基碳纤维生产路线

空气合成溶剂→溶剂DMAC ↓↓ 氢→合成氨合成催化剂→引发 剂AIBN ↓↓ 氨合成共聚单体→共聚单体衣康酸 ↓↓ 原油→蒸馏→石脑油→分解→丙烷→合成AN → AN 聚合1001 PAN 溶剂纺丝回收工程油剂PEO 1002 1001 1002 回收AN 回收熔剂 AN 熔剂DMAC PAN纤维 1003-1 表面处理上浆剂 碳纤维收丝,包装 碳纤维成品 碳纤维发展简史 1860年,斯旺制作碳丝灯泡 1878年,斯旺以棉纱试制碳丝 1879年,爱迪生以油烟与焦油、棉纱和竹丝试制碳丝(持续照明45小时) 1882年,碳丝电灯实用化1911年,钨丝电灯实用化 1950年,美国Wright--Patterson空军基地开始研制黏胶基碳纤维

碳纤维生产工序介绍

纱架放丝岗:在恒温恒湿张力平稳的条件下把原丝舒展开送入下一道工序氧化炉。安全注意防止平台跌伤。加湿器的主要作用是除静电、减少丝束间差异。“雾化”“喷淋”的形式,现在停用主要原因是原丝的油剂遇水黏连辊子。 氧化炉为碳化做准备。预氧化过程的目的是是热塑性的PAN线性大分子链转化为非塑性耐热梯形结构,使其在碳化高温下不熔不燃,保持纤维形态,最后转化为乱层石墨结构的碳纤维。四个温区温度为236/242/248/248,上七层下八层共三十层,有效温区长度15米。炉内要求温度均一性,风速均一性。形成温度梯度,由低温到高温逐步氧化,若温度高,氧化太快,纤维皮层很快形成致密的皮芯结构,阻挡氧向内部结构扩散。送风和排风系统主要的3个作用:1、提供预氧化反应所需的氧。2、带走反应热和热解产物。3、使炉内温度均匀。驱动牵伸可以保持原丝取向度,调节线密度。 低温碳化炉低温碳化炉4个温区,加热元件热电偶,升温速率为50℃/H,2#温区两侧位排废口,废气排放口也是废气产生最多的地方。炉温在400—1000℃在这个阶段预氧丝发生剧烈的变化,约有30%~40%的质量热解逸走,600度以前释放 速率较大,预氧丝中结合的氧以CO、CO 2和H 2 O的形式逸走,同时释放大量的HCN 和NH 3约占70%。另外30%在高温段挥发出去,主要是HCN和N 2 ,是小的碳环缩聚成 大的产物。主要控制要点有温度梯度、碳化时间、气体流动、碳化牵伸。炉内保持微正压。 高温碳化炉最高温度1800℃,两端进出口氮气密封,炉内保持微正压。六个温区,加热元件为石墨马弗管。炉口两端非接触迷宫密封装置,氮气(纯度99.9998%)不直进直出要走迷宫,入口处设置氮气预热器,出口段设置氮气冷却、冷却水系统。冷却水由3台冷却水泵提供,两台电动一开一备自动切换,一台柴油泵紧急情况使用。排放的废气主要有含氧小分子、HCN及焦油、N 2 进入DFTO焚烧处理。后处理阳极电解氧化法,该方法的特点是处理时间短。碳纤维作为阳极,阴极为铂板,电解质为硫酸溶液。在直流电场作用下对纤维表面进行处理,适当增大纤维表面极性和粗糙度从而达到改善复合材料界面性能的目的,经过表面处理后极性官能团增加。工艺控制要点:电解液浓度,电流大小。水洗水与纤维运行方向相反,以达到去除纤维表面电解液的目的。然后一干,上浆处理,提高碳纤维与基体树脂的结合力。在纤维表面形成坚韧薄膜,提高纤维的耐磨性,浆剂深入纤维内部使单丝胶合在一起,加大抱合力防止发散。 收丝卷绕最后一道工序也是成品质量把关的一道工序,主要防止毛丝、毛团卷入及时下轴,外观不齐及时发现处理,丝束宽窄不一加捻情况进行调节,成品端面毛丝清理等。

碳纤维纸生产工艺

碳纤维纸是使用碳纤维或活性碳纤维及碳纤维或活性碳纤维与其他植物或非植物纤维混合生产的具有特殊性能的功能纸。碳纤维纸中碳纤维是以短纤维无规则的形式存在,各向同性,是利用长纤维复合成形材料无法比拟的。 电热性能 导电性能 多孔性 轻量化、耐高温、耐腐蚀等性能。还可以作为电池电极使用。 用于燃料电池电极的碳纤维纸要具有以下性能:(1)均匀的多孔结构,优异的透气性(2)低的电阻率,赋予其高的电子传导能力(3)结构紧密且表面平整,以减少接触电阻,提高导电性能(4)具有一定的机械强度(5)具有化学稳定性。 碳纤维纸生产的基本工序为:碳纤维纸由一种有机的高分子化合物与碳纤维复合而成,燃料电池的多孔碳电极基体通过浸润热塑性树脂先热压再碳化。其中碳纤维的含量为碳纤维纸的40~90%,炭化温度不低于800℃ 碳纤维纸生产工艺 碳纤维不同于植物纤维,它的表面仅含有少量的基团,在打浆过程中只能产生切断作用,不能产生分丝帚化现象,在纸页成型后纤维间也不会产生氢键。在碳纤维的成纸过程中面临一些不同于植物纤维的难题需要解决,主要集中在分散和成纸强度两个方面。 普通碳纤维纸的抄造 普通的碳纤维纸一般采用湿法抄造,碳纤维的含量在5%~60%,在碳纤维的湿法成形中主要的问题是分散和成形。在实际的碳纤维纸成形实验中发现,碳纤维如果过长,不易分散,容易成团。反之若碳纤维过短,容易分散成均匀的浆液,成形匀度好,但纸页强度低。 在湿法抄造碳纤维工艺中,主要是依靠配抄的植物纤维或者利用胶黏剂使分散的碳纤维实现粘结。普通碳纤维纸已经工业规模生产,并得到实际应用。 高性能碳纤维纸的成形 高性能碳纤维纸一般对碳纤维纸的纯度、均匀性、电阻率、气孔率等提出要求。高纯度的碳纤维纸生产中,因为其他浆料含量少,碳纤维的分散和成形问题更为突出,生产工艺更加复杂。目前高性能的碳纤维纸只有少数几个国家能够批量成熟制造。 一是利用湿法成形,碳纤维要在低浓度条件下实现均匀分散,因此,碳纤维纸要采用低浓成形,浆料浓度要在0.01%左右,滤水速度是现在普通长网和圆网造纸机不能实现的,必须使用斜网纸机。粘结方式主要靠化学胶黏剂进行连结。 斜网纸机上网浓度低,可抄造的纤维长度较长,一般为8~10mm,最长可达30mm,纸机的脱水性能较好,抄纸的匀度好,网部的倾斜角度可在0~30°的范围内调节,抄纸最大定量可达300g`m-2,与长网和圆网纸机相比,斜网纸机存在着明显的优势。 斜网成型器的上网浓度为0.01~0.08%,由于上网浓度很低,所以斜网成形在成形的脱水量很大,并且脱水与成形是同步进行的,纤维是在悬浮状态成形,且成形时间比长网、圆网长,能保证纸页得匀度及透气度。

碳纤维国内技术和生产现状简介

国内碳纤维技术及生产现状 我国从20世纪60年代后期开始研制碳纤维,历经近40年的漫长历程。在此期间,由于国外把碳纤维生产技术列入禁运之列,严格控制封锁,制约了我国碳纤维工业的发展。我国科技工作者发扬自力更生的精神,从无到有,逐步建成了碳纤维的工业雏型。20世纪70年代初突破连续化工艺,1976年在中科院山西煤炭化学研究所建成我国第一条PAN 基碳纤维扩大试验生产线,当时生产能力为2t/a。20世纪80年代开展了高强型碳纤维的研究,于1998年建成一条新的中试生产线,规模为40t/a。我国主要研究单位有中科院山西煤化所、上海合纤所、北京化工大学、山东工业大学、东华大学、安徽大学、浙江大学、长春工业大学等。 我国目前使用碳纤维量约占世界用量的1/5。巨大的市场潜力,供不应求的局面,必然促进我国碳纤维工业的发展。但是,要想进入竞争的市场,一是要保证产品的质量,二是要求价位相当。针对我国碳纤维工业的现状,需首先解决高性能PAN原丝的质量,在这基础上才有可能产业化,这是进市场的前提;同时,还需进行预氧化,碳化,石墨化设备及表面处理装置的工程化开发,使其形成规模化生产能力,才能在保证质量的基础上降低成本。目前,内内研究开发以

及生产碳纤维的呼声很高,发展趋势令人鼓舞。 但由于对我国碳纤维产业发展的建议目前我国高性能碳纤维无论在质量上还是数量上与国外相比还有一定差距,远远满足不了需求。为此,尽快研究和发展我国自己的高性能碳纤维材料已迫在眉睫。碳纤维是一门多学科交叉、多技术集成的系统工程,质量的提升涉及到方方面面。以下几个方面应优先考虑。 1、提高PAN原丝质量 PAN原丝不仅影响碳纤维的质量,而且影响其产量和生产成本。换言之,只有高质量的原丝才能生产出高性能碳纤维,才能稳定生产,提高产量,降低成本。对于现代碳纤维生产线,要求喂入丝束数在100以上,且高速运行;如果原丝质量低劣、彼此性能差异较大,易在生产过程中产生毛丝缠结,甚至发生断丝,很难稳定生产,这样必然加大原丝的损耗。对于质量好的PAN原丝。用2.0kg以下的原丝可生产出1kg碳纤维;而质量差的原丝,则需2.5kg,甚至更高,这必然加大生产成本,而原丝成本占碳纤维生产成本的50%~65%。所以,PAN原丝质量不仅可左右碳纤维的性能,而且也制约着碳纤维的生产成本和市场竞争力。 2、研制高纯度原丝 研制高纯度原丝可把先天性缺陷降低到最小程度,大量

【CN109910327A】一种碳纤维制品的HPRTM成型工艺【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910163706.2 (22)申请日 2019.03.05 (71)申请人 福建海源新材料科技有限公司 地址 354200 福建省南平市建阳区武夷新 区童游工业园区四期TF06 (72)发明人 李明阳 赵云宝 叶哲霏 练方伟  程国龙 薛同妹  (74)专利代理机构 福州市鼓楼区京华专利事务 所(普通合伙) 35212 代理人 宋连梅 (51)Int.Cl. B29C 70/34(2006.01) B29C 70/54(2006.01) (54)发明名称 一种碳纤维制品的HP-RTM成型工艺 (57)摘要 本发明提供一种碳纤维制品的HP -RTM成型 工艺,所述成型工艺步骤包括:模具准备,模具上 蜡或喷涂脱模剂,铺放碳纤维制品预成型毛坯 件,压机合模,真空保压,基体树脂注射,保压固 化,制品成型,顶针脱模,冷却、去飞边。本发明解 决了传统手糊工艺成型强度不足、气泡现象、干 斑等问题,提高了产品质量稳定性及可靠性,缩 短了成型周期, 提高了生产效率。权利要求书1页 说明书4页 附图2页CN 109910327 A 2019.06.21 C N 109910327 A

权 利 要 求 书1/1页CN 109910327 A 1.一种碳纤维制品的HP-RTM成型工艺,其特征在于:所述成型工艺步骤如下: 步骤1、模具准备:HP-RTM模具材质为钢,模具表面光滑; 步骤2、模具上蜡或喷涂脱模剂:HP-RTM新模具上蜡次数至少3遍以上,每隔10分钟上一次蜡,模具表面细孔需完全填充,并保持光洁度;放入碳纤维制品预成型毛坯件模压前,喷涂与树脂特性相应匹配的外用脱模剂; 步骤3、铺放碳纤维制品预成型毛坯件:按照产品铺层设计要求,前期先加工出碳纤维制品预成型毛坯件,每次模压一个产品,模压前在模具内铺放碳纤维制品预成型毛坯件; 步骤4、压机合模:完成碳纤维制品预成型毛坯件的铺放工作后,进入模具合模步骤; 步骤5、真空保压:上下模完成闭合、锁紧后,启动真空泵,通过模具内置的真空管,进行模内抽真空、保压程序; 步骤6、基体树脂注射:在树脂注射前,需要对树脂、固化剂、内脱模剂进行预加热、脱泡工作,达到设定温度值后,进行注射工作; 步骤7、保压固化:短时间内完成树脂注射填充工作,然后保压固化; 步骤8、制品成型:当达到设定固化周期后,压机上模具开启,产品完成固化; 步骤9、顶针脱模:通过模具内置的顶针液压装置的顶针进行机械式顶出脱模; 步骤10、冷却、去飞边。 2.根据权利要求1所述的一种碳纤维制品的HP-RTM成型工艺,其特征在于:所述步骤2中,外用脱模剂喷涂前应确保模具表面无任何粉尘杂质,喷枪方向与模具表面成直角,喷枪与模具保持30cm~45cm喷涂距离,喷涂均匀。 3.根据权利要求1所述的一种碳纤维制品的HP-RTM成型工艺,其特征在于:所述步骤6的具体过程如下: 在树脂注射前,通过泵分别将树脂、固化剂、内脱模剂抽至各自对应的加热器内,分别设定树脂预加热温度为60~80℃,固化剂预加热温度为30~40℃,内脱模剂预加热温度为25~30℃,达到设定温度值后;树脂与固化剂、内脱模剂的重量份配比为100:25:1,将上述配比的树脂、固化剂、内脱模剂输送至注射枪头,分别设定树脂、固化剂、内脱模剂的注射压力为140bar、144bar、150bar,并设定树脂组分流量值为3300g,流速为80g/s,当注射压力达到后,高压力下三个管路的流体汇集至枪头,完成注射工作。 4.根据权利要求1所述的一种碳纤维制品的HP-RTM成型工艺,其特征在于:所述步骤7具体为:在35-45s内完成树脂注射填充工作,并设定160s~200s的保压固化时间。 2

碳纤维管道成型工艺介绍

碳纤维管道成型工艺介绍 缠绕是碳纤维管道生产的一种重要成型工艺,由于该法易于实现机械化、自动化,与其他成型工艺方法相比,劳动条件好,劳动强度低落,且产品质量稳定,生产成本低,故应用十分广泛。碳纤维缠绕工艺是利用湿法缠绕,湿法缠绕是将浸胶后的玻璃纤维集束,在一定张力控制下直接缠绕在芯膜上的工艺方法。 缠绕时要使碳纤维位置稳定、不打滑,并均匀连续地布满芯模表面,相邻纤维既不重叠又不离缝,这就要求碳纤维按一定规律排布,这一规律称为“缠绕规律”。碳纤维从芯模上某一点开始,绕过芯模再回到此起始点,在芯模上形成一条不重复的缠绕绕型称为标准线,缠绕规律不同,其标准线也不同,缠绕规律由芯模与绕丝头之间相对运动关系决定。缠绕线型的正确设计是保证碳纤维缠绕产品质量的重要前提,管道的使用情况不同,其缠绕线型也不同,缠绕线型可分为:环向缠绕、纵向平面缠绕和螺旋缠绕三种。把这三种缠绕分布用不同的缠绕层上,以提高碳纤维管道的纵向及环向综合拉伸强度。 一、环向缠绕 缠绕时,芯模绕自身轴线作匀速转动,绕丝头沿芯模筒体轴线方向匀速移动,芯模每转一周,绕丝头移动一个纱布宽度,如此循环下去直至纱布带均匀地布满芯模筒体段表面为止。环向纤绕的缠绕角通常在85~900之间,实现环向缠绕的缠绕运动速比可以定义为单位时间内芯模的转数与绕丝头移动距离之比。

二、纵向平面缠绕 纵向缠绕时绕丝头在固定平面内作匀速圆周运动,芯模绕自身的轴线慢速运转,绕丝头每转一圈,芯模旋转一个微小的角度,反映在芯模表面上是一个纱布的宽度。 三、螺旋缠绕 螺旋缠绕的基本运动是:芯模绕轴线匀速转动,绕丝头沿芯模轴线方向作间歇往复运动。 四、缠绕工艺设计内容 (1)根据产品使用和设计要求、技术质量指标,进行结构造型、缠绕线型和芯模设计。 (2)选择原材料。 (3)根据产品强度要求、原材料性能及缠绕线型进行缠绕层数设计。 (4)根据选定的原材料和工艺方法,制定工艺流程及工艺参数。 (5)根据缠绕线型选定缠绕设备,或为缠绕设备设计提供参数。 (6)芯模设计。 五、缠绕工艺参数 缠绕工艺过程一般由下列式序组成:芯模或内衬制造、胶液配制、纤维烘烤、浸胶、缠绕、固化、检测等。 选择合理的缠绕工艺参数是充分发挥原材料特性,制造高质量碳纤维缠绕制品的重要条件,所以是非常重要的。 1、浸胶与胶液含量

碳纤维材料简介

碳纤维材料简介 从爱迪生首先将竹子纤维碳化成丝制成电灯灯丝.开启了碳纤维应用的先河, 一直到今天碳纤维假肢力助'`刀锋战士'`皮斯托瑞斯让他在伦敦奥运会的赛场上大放异彩碳纤维这种一直被认为是非常神秘的高科技材料如今正逐渐走入大众的生活之中.我们周遭的很多产品上都或多或少地采用了这种材料,比如钓鱼竿、网球拍自行车、汽车零部件等目前国外设计师也已经开始尝试将这种高科技材料应用到家具产品中去, 给传统的家具行业注入了新的活力。 1 概述 碳纤维(C arb o n F .b e r .C F ) 是一种具有高强度和高模量的耐高温纤维是化纤的高端品种, 一般按原料 的不同可将碳纤维分为聚丙烯晴基(po lva er丫Ion ,tr, le )碳纤维、沥青(P lteh ) 基碳纤维和粘胶基(Vi so os e一ba sed) 碳纤维等。其中聚丙烯晴基碳纤维由于碳化率较高(4 0 % 一4 5 % ) , 且生产过程和本相对后两者要简单低廉因此他的产量也是最大的.是目前世界碳纤维的主流。但不论是哪种碳纤维, 其制造工艺都是十分复杂的简单来说以聚丙烯晴基碳纤维为例制备需完成以下两个基本过程: (1) 热稳定氧化处理 纤维原丝通过含有氧气的高温炉体(20 0 ℃一3 0 0 C ) 材料受热软化.内部结构由原先的聚丙烯睛的线状结构, 转成较稳定且坚固的六角形排列。

(2) 碳化或石墨化 经过氧化处理后的原丝在惰性气体保护下加热至I0 0 0 C 以上的高温, 这时高分子结构中的氧、氢等元素会因受不了高温纷纷夺门而出.最后遗留下来的就只剩碳了。 制备完成后的碳纤维束一方面具有一般碳素材料的共有特性.如耐高温、耐摩擦、导电、导热及耐腐蚀等另一方面.从原子层面看碳纤维跟石墨很相似.是由一层层以六角型排列的碳原子所构成两者之间的差别在于石墨是晶体结构它的层间连结松散.而碳纤维层间连结是不规则的这样就可以防止层间的滑移.从而使碳纤维在沿纤维轴方 向表现出很高的强度。 2 材料特点 从以上对碳纤维材料的制备介绍我们可以知道材料的独特结构使其具有非常优异的物理化学性能碳纤维最优异的性能是比强度(抗拉强度/ 密度)和比模量(弹性模量/ 密度)超过一般的增强纤维。通常材料的比强度越高则构件自重愈小:比模量越高.则构件的刚度愈大.而碳纤维和树脂形成的复合材料的比强度和比模量比钢和铝合金还高出几倍, 这也是为什么现在越来越多需要高强度轻量化的产品都会使用这种材料的原因, 碳纤维也因此成为了`'轻量化“的代名词。 此外.碳纤维材料还具有以下一些特性 (1)极佳的耐热性(可耐20 0 0 c 的高温)和尺寸稳定性(热膨胀系数小) (2)由于碳纤维与基体复合可缓和破坏裂纹的扩展因此其疲劳强度

碳纤维生产工艺介绍与设备介绍

碳纤维生产工艺介绍与设备介绍碳纤维生产工艺介绍与设备介绍.日新高温技术有限公司为您解答。合肥日新高温技术有限公司成立于1998年是专业设计、研发、生产、销售高温热处理设备的民营高新技术企业。碳纤维(carbon fiber,简称CF),是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。 生产工艺: (1)原丝制备,聚丙烯腈和粘胶原丝主要采用湿法纺丝制得,沥青和酚醛原丝则采用熔体纺丝制得。制备高性能聚丙烯腈基碳纤维需采用高纯度、高强度和质量均匀的聚丙烯腈原丝,制备原丝用的共聚单体为衣康酸等。制备各向异性的高性能沥青基碳纤维需先将沥青预处理成中间相、预中间相(苯可溶各向异性沥青)和潜在中间相(喹啉可溶各向异性沥青)等。作为烧蚀材料用的粘胶基

碳纤维,其原丝要求不含碱金属离子。 (2)预氧化(聚丙烯腈纤维200到300℃)、不融化(沥青200到400℃)或热处理(粘胶纤维240℃),以得到耐热和不熔的纤维,酚醛基碳纤维无此工序。 (3)碳化,其温度为:聚丙烯腈纤维1000到1500℃,沥青1500到1700℃,粘胶纤维400到2000℃。 (4)石墨化,聚丙烯腈纤维为2500到3000℃,沥青2500到2800℃,粘胶纤维3000到3200℃。 (5)表面处理,进行气相或液相氧化等,赋予纤维化学活性,以增大对树脂的亲和性。 (6)上浆处理,防止纤维损伤,提高与树脂母体的亲和性。所得纤维具有各种不同的断面结构。 主要设备:①碳纤维预氧化炉:

碳纤维预氧化炉设计应用于高性能碳纤维(粘胶基碳纤维、沥青基碳纤维、PAN基碳纤维)材料在350℃以下进行热处理之用。 主要设备:②碳纤维低温碳化炉: 碳纤维低温碳化炉设计应用于高性能碳纤维(粘胶基碳纤维、沥青基碳纤维、PAN基碳纤维)材料在1000℃以下的低温碳化之用。 主要设备:③碳纤维高温碳化炉: 碳纤维高温碳化炉设计应用于高性能碳纤维(粘胶基碳纤维、沥青基碳纤维、

碳纤维复合材料在汽车车身上的应用及主要制造工艺

一、未来汽车工业为什么用复合材料 复合材料可以减轻车身重量,降低油耗,减少尾气排放,提高装载量;其抗冲击性强,能量吸收能力强,可以非常好地改善汽车的安全性能,F1上大量使用碳纤维,就是一个最好的证明;复合材料的可设计性灵活,可视的碳纤维外观使汽车造型更加美观时尚;其抗疲劳、耐腐蚀性能好,可以延长车身寿命,这一特点在航空航天领域得到普遍认可。 二、复合材料在汽车上的应用 复合材料在汽车上主要可应用于发动机罩、翼子板、车顶、行李箱、门板、底盘等结构件中。碳纤维最初主要应于赛车当中,随着车用复合材料技术地不断成熟发展,现在也被广泛地应用于超级跑车和高价值民用轿车上。在商用车应用上,也逐渐从重型卡车中,广泛地延伸到大巴车和轻型小卡。 1、主承载车身结构件 为了确保足够的安全性能,在主承载车身结构件上汽车厂商通常要选择强度,刚性及耐冲击性能均很高的材料用于制作主承力结构件,这时环氧树脂碳纤维增强复合材料就成为理想的材料选择。 环氧树脂碳纤维增强复合材料具有可设计性,质轻高强,与同体积的铝合金构件相比减重可达50%,耐冲击,耐腐蚀,抗疲劳, 材料寿命长,此类材料制作的主承载车身结构件,不仅大大提高了汽车的安全性,而且降低了车重,减少了燃油消耗,提高了经济性,另外还改善了美观性。 2、次承力结构件 次承力结构件主要包括:车门,发罩,行李舱门,前后杠,翼子板,扰流板等部件,其结构大都为层合实体结构和复合材料三明治夹心结构。 三明治结构特点: 蒙皮选用高强度高模量材料制作,承受较大的弯曲负荷;芯材选用一定刚度和强度的低密度材料,其抗剪切性能突出,可承受较大的冲击载荷;胶结层将蒙皮和芯材连接在一起,承受剪切应力;由于选用低密度芯材,重量会进一步降低。 三、用于制作车身结构的主要制造工艺 1、预浸料袋压/热压罐(Autoclave) 该工艺是将纤维预先被树脂浸润,制成半固化态材料,过程中纤维和树脂含量是可控的,采用手工积层,干法操作,易于施工,环境友好。成型制品表面精度高,孔隙率低,品质高,由于采用热压罐加压固化,层间结合紧密,机械强度优。目前是应用最广泛的工艺,是高端复合材料必备工艺,其材料需要低温运输和储存。 工艺流程:根据铺层设计和工艺规范在模具上手工逐层干法铺贴;制袋密封,使其内部处于真空并产生负压,消除气泡;送入热压罐,在一定的温度、压力、时间下固化成型。 2、树脂传递模塑(RTM)

碳纤维国内技术和生产现状简介

国碳纤维技术及生产现状 我国从20世纪60年代后期开始研制碳纤维,历经近40年的漫长历程。在此期间,由于国外把碳纤维生产技术列入禁运之列,严格控制封锁,制约了我国碳纤维工业的发展。我国科技工作者发扬自力更生的精神,从无到有,逐步建成了碳纤维的工业雏型。20世纪70年代初突破连续化工艺,1976年在中科院煤炭化学研究所建成我国第一条PAN 基碳纤维扩大试验生产线,当时生产能力为2t/a。20世纪80年代开展了高强型碳纤维的研究,于1998年建成一条新的中试生产线,规模为40t/a。我国主要研究单位有中科院煤化所、合纤所、化工大学、工业大学、东华大学、大学、大学、工业大学等。 我国目前使用碳纤维量约占世界用量的1/5。巨大的市场潜力,供不应求的局面,必然促进我国碳纤维工业的发展。但是,要想进入竞争的市场,一是要保证产品的质量,二是要求价位相当。针对我国碳纤维工业的现状,需首先解决高性能PAN原丝的质量,在这基础上才有可能产业化,这是进市场的前提;同时,还需进行预氧化,碳化,石墨化设备及表面处理装置的工程化开发,使其形成规模化生产能力,才能在保证质量的基础上降低成本。目前,研究开发以及生

产碳纤维的呼声很高,发展趋势令人鼓舞。 但由于对我国碳纤维产业发展的建议目前我国高性能碳纤维无论在质量上还是数量上与国外相比还有一定差距,远远满足不了需求。为此,尽快研究和发展我国自己的高性能碳纤维材料已迫在眉睫。碳纤维是一门多学科交叉、多技术集成的系统工程,质量的提升涉及到方方面面。以下几个方面应优先考虑。 1、提高PAN原丝质量 PAN原丝不仅影响碳纤维的质量,而且影响其产量和生产成本。换言之,只有高质量的原丝才能生产出高性能碳纤维,才能稳定生产,提高产量,降低成本。对于现代碳纤维生产线,要求喂入丝束数在100以上,且高速运行;如果原丝质量低劣、彼此性能差异较大,易在生产过程中产生毛丝缠结,甚至发生断丝,很难稳定生产,这样必然加大原丝的损耗。对于质量好的PAN原丝。用2.0kg以下的原丝可生产出1kg碳纤维;而质量差的原丝,则需2.5kg,甚至更高,这必然加大生产成本,而原丝成本占碳纤维生产成本的50%~65%。所以,PAN原丝质量不仅可左右碳纤维的性能,而且也制约着碳纤维的生产成本和市场竞争力。 2、研制高纯度原丝 研制高纯度原丝可把先天性缺陷降低到最小程度,大量检测表明,国产原丝和碳纤维所含碱、碱土金属和铁的含量

碳纤维使用工艺

碳纤维使用工艺 碳纤维材料的成型工艺 碳纤维材料的成型工艺 成型 ,是指将碳纤维按不同方向、不同层数铺设出制品形状 ,在一定压力和温度下固化成型 .而复合材料成型工艺 ,较常见的有以下 5 种 . 1.1 裱糊成型工艺 它是用手工将预浸料裱糊在模具上 ,然后固化成型 .此法最大的优点是工艺装备简单 ,手工完成比较复杂的操作 ,能加工出形状复杂的 零件 ,适用于小批量生产 ;缺点是生产效率低 ,劳动条件差 ,劳动强度大 .笔者采用该工艺试制出的碳纤维整体车架样件 ,表观质量尚 可 ,但尺寸精度较差 ,工艺稳定性差 . 1.2 纤维缠绕成型工艺 它是开发最早的连续成型工艺 ,即纤维通过树脂胶槽浸上树脂后按照一定的规律缠绕在转动的芯模上 ,然后经加热使胶液固化成型 .它 的一个突出特点是能够按照制品的受力情况 ,将纤维按一定规律排布 ,从而充分发挥纤维的强度 ,获得轻质高强的制品 ;在工艺上能实 现连续化、机械化生产 ,并且生产周期短 ,生产效率高 ,劳动强度小 ,适用于制造圆柱体、球体及某些正曲率回转体或筒形制品 . 1.3 拉挤工艺 它是发展速度较快的一种成型工艺 ,即纤维通过树脂槽浸渍树脂后进入加热模具固化 ,制 成各种各样不同形状的型材 .其优点是能一次压制出形状复杂、尺寸准确的零件 ,生产率高 ,但工艺装备复杂 ,不适于制备批量小、尺寸大的产品 . 1.4 树脂传递模压工艺 ( RTM) RTM( resin transfer moulding)工艺是 9 0年代最热门的一种成型工艺 ,即先将增强材料做成预成型件放入封闭模具中 ,在真空和压力的条件下 ,树脂被注入模具而固化成型 .其特点是 :1)工艺过程简单 ,避免了预浸料这一中间环节 ;2)低压注胶 ,节约了附加设备的费 用 ;3)封闭式模具操作 ,作业环境清洁 ;4)易于实现自动化和计算机控制 ;5)制件表面质量好 .因此 ,RTM技术有很好的发展前景 . 1.5 编织成型工艺 三维编织的过程是参加编织的所有纤维都沿同一方向排列 ,然后每根纤维束都沿自己的 方向偏移一个角度互相交织形成织物的过程 .采用三维编织的复合材料具有整体性和力学的合理性两大特点 ,其在剪切强度、抗冲击损伤特性等性能方面均优于传统的层合复合材料 ,因此采用编织结构的复合材料发展迅速 . 三维编织分圆机和方机两种 ,用这两种机器可以编织出许多复杂的编织物 .但这些复杂形 状大多来源于两种基本形状——长方体和厚壁的圆管 . 2 碳纤维自行车整体车架成型工艺 成型工艺是碳纤维车架制品的关键环节 ,成型工艺的选择取决于制品的形状、物理性能要 求和用途 .笔者设计的有机形态自行车车架的结构具有自由形态的三维曲面、非等径结构、截面变化比较大等特点 ,因而无法采用缠绕法和拉挤法 ;而编织成型工艺 ,在编织之前 ,必须使用计算机对制作零件的编织物进行设计和计算 ,由于车架是三维自由曲面 ,难于构造 出数学模型 ,无法进行编程计算 ,因此难以采用编织法 .基于以上原因 ,在多方调研和分析比较的基础上 ,决定采用 RTM的改进工艺——真空辅助 RTM成型工艺 . 2.1 工艺装置 真空辅助 RTM工艺装置 (如图 2)主要由树脂注射机、成型模具、抽真空设备三部分组成 . 图 2 RTM工艺装置示意图 2.1.1 树脂注射机由计量泵、注射头组成 .计量泵含有树脂泵、固化剂泵及计量装置 .树脂及固化剂经计量泵按一定的比例加压输入注射头中 ,经注射头混合后注入模具 .这种方法注射速度易于控制 ,树脂和固化剂只在注射头中混合 ,因而可长期存放 ,且注射结束后易 于清洗 . 2.1.2 成型模具采用铝合金制造 ,铝合金模具使用寿命长 ( >25000次 ) ,表面质量良好 .模具结构为组合形式 ,有定位、锁紧、开启、密封装置 .注射口位于模具最低点即车架前脸管附近 ,排出口在树脂较难流到的车架后*钩处 .抽真空设备同排出口相连接 ,在注射机注射树脂的同时抽真空 .这样能增加树脂传递压力 ,排除模具及树脂中的气泡和水分 ,并为树脂在模腔中打开通道 ,形成完整的通路 ,从 而大大提高制品成功率 ,使得制品质量上升 . 2.2 工艺特点及材料 RTM工艺的技术关键是树脂系统的选择 .为了提高车架的质量 ,笔者选用了韧性好、同 碳纤维亲合力强的改性环氧树脂 J153.要将树脂输送至模腔内并迫使树脂迅速浸润纤维 ,其 粘度为 0.025Pa? s~ 0.030Pa?s为最佳 ,以加热压注方式为好 . 图 3车架成型工艺流程图 制备自行车 架泡沫内芯

碳纤维生产工艺流程

碳纤维工艺流程 退丝集线卧式干燥炉预氧化炉1 预氧化炉2 预氧化炉3 低温炭化炉高温炭化炉表面处理1 表面处理2 水洗卧式干燥炉上浆立式干燥炉收丝 退丝是把原丝分束送人下一步的工序。从退丝区出来的原丝经集线板一束束的进入干燥炉进行下面的工艺。退丝区中要注意原丝走完后,新丝与旧丝的连接。用耐热纤维把两丝连接在一起。通过集线板进入干燥炉。 从退丝区过来的原丝含有大量的水分,经过卧式干燥炉能充分的干燥原丝,使其能够进入预氧化炉更好的进行一系列的反应。 预氧化工艺是碳纤维生产中的关键步骤。原丝经过预氧化过程由线型分子链转化为耐热的梯型结构,为以后的碳化过程起固氧固碳的作用。在此过程中发生一系列的环化、氧化和脱氢等反应,原先的σ键为主的直链结构形成大量的离域π电子,形成生色的共轭结构。使得原丝由洁白色逐步变深:白色→淡黄色→米黄色→浅棕色→棕色→黑色。此过程中PAN发生化学反应脱去大量小分子,发生结构变化,需施加一定的牵伸力保证丝的结构不发生解取向,保证预氧丝的强度。预氧化过程中温度在200℃~300℃之间,在240℃左右时,氧含量迅速上升,发生化学反应。此过程中炉膛内温度保持均匀,并

有循环空气带走反应中产生的小分子等杂质及反应热,保证预氧化能连续进行。预氧化过程反应时间较长,需80~100min,制约碳纤维生产效率。车间采用三台预氧化炉同时对丝进行预氧化,使得丝有足够的预氧化反应时间,并且能连续不断的走丝,进行流水化生产。 PAN原丝经预氧化转化为含氧8%~10%的预氧丝,然后进入碳化炉进行碳化。低温炭化炉温度在300℃~800℃之间,分为几个温度区间,逐步对预氧丝在隔绝空气的条件下进行碳化反应,形成初级的乱层石墨结构。在预氧化中,预氧丝发生热解和缩聚反应,会产生大量的废气和焦油,,应通过排气口及时排出保证生产稳定。高温碳化温度在1000℃~1600℃,一般可能在1400℃左右,此过程中预氧丝发生进一步的反应,形成乱层石墨结构,并脱出一些小分子。在碳化过程中发生分子结构的转变,应给予一定的牵伸力,保证结构的取向度。 为碳纤维能更好的用于复合材料生产,需对碳纤维的表面进行处理,使其能形成更好的接触表面。使用阳极电极氧化法,用脉冲通电的方法进行表面处理,使得碳纤维表面发生刻蚀和生产含氧官能团。表面处理中通一10V左右的电压,形成25A左右的电流。采用碳酸氢铵中性电解质进行表面处理。 水洗过程用浸渍法对碳丝进行清洗,将碳丝表面的电解液等杂质清洗掉,为以后的上浆过程做准备。在水洗中水温设定在50℃左右,之后在加以100℃左右的干燥过程。 碳纤维是脆性材料,在后续的深加工过程中容易出现起毛丝等不

碳纤维制备工艺简介

碳纤维制备工艺简介 碳纤维(CarbonFibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。 一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽

车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。 虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30%以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,

相关文档
最新文档