江苏省南通市中考数学真题试题

合集下载

南通数学中考试题及答案

南通数学中考试题及答案

南通数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 3.14D. 0.33333...答案:B2. 一个等腰三角形的底边长为6,高为4,那么它的周长是多少?A. 16B. 18C. 20D. 22答案:C3. 如果一个二次函数的图像开口向上,且顶点坐标为(1, -2),那么这个函数的解析式可能是?A. y = (x - 1)^2 - 2B. y = -(x - 1)^2 - 2C. y = (x + 1)^2 - 2D. y = -(x + 1)^2 - 2答案:B4. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 一个数列的前三项为1, 2, 4,那么第四项可能是?A. 6B. 7C. 8D. 16答案:D6. 一个长方体的长、宽、高分别为3, 4, 5,那么它的体积是多少?A. 60B. 48C. 36D. 24答案:A7. 一个直角三角形的两个直角边长分别为3和4,那么它的斜边长是多少?A. 5B. 6C. 7D. 8答案:A8. 一个函数y = 2x + 3的图象经过点(-1, 1),那么这个函数的斜率是多少?A. 2B. 3C. 4D. 5答案:A9. 一个扇形的圆心角为60°,半径为4,那么它的面积是多少?A. 4πB. 8πC. 6πD. 12π答案:A10. 一个数列的前三项为2, 4, 8,那么第四项可能是?A. 10B. 12C. 16D. 32答案:D二、填空题(每题4分,共20分)11. 一个圆的直径为10,那么它的周长是______。

答案:20π12. 一个等差数列的前三项为2, 5, 8,那么它的公差是______。

答案:313. 一个函数y = kx + b的图象经过点(2, 6)和(3, 9),那么k和b的值分别是______和______。

答案:3和314. 一个长方体的长、宽、高分别为2, 3, 4,那么它的表面积是______。

2023年江苏省南通市中考数学试卷(含答案解析)035217

2023年江苏省南通市中考数学试卷(含答案解析)035217

2023年江苏省南通市中考数学试卷试卷考试总分:142 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. (−3)×(−16)的结果是( )A.12B.2C.−12D.−22. 2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为( )A.2.536×104人B.2.536×105人C.2.536×106人D.2.536×107人3. 将一包卷筒卫生纸按如图所示的方式摆放在水平桌面上,它的左视图是( )A.B.C.(−3)×(−)16122−12−2201725360002.536×1042.536×1052.536×1062.536×107D.4. 无理数2√11−3在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间5. 如图,已知直线m//n ,将含30∘角的直角三角板ABC 按如图方式放置,若∠1=40∘,则∠2的度数为( )A.10∘B.20∘C.30∘D.40∘6. 知−a +2b +8=0,则代数式2a −4b +10的值为( )A.26B.16C.2D.−67. 如图,从山顶望地面C ,D 两点,测得它们的俯角分别是45∘和30∘,已知CD =100米,点C 位于BD 上,则山高AB 等于( )2−311−−√23344556m//n 30∘ABC ∠1=40∘∠210∘20∘30∘40∘−a +2b +802a −4b +1026162−6C D 45∘30∘CD =100C BD ABA.100米B.50√3米C.50√2米D.50(√3+1)米8. 如图,四边形ABCD 中,AB =AD,AC =5,∠DAB =∠DCB =90∘,则四边形ABCD 的面积为()A.15B.12.5C.14.5D.179. 边长都为4的正方形ABCD 和正三角形EFG 如图放置,AB 与EF 在一条直线上,点A 与点F 重合.现将△EFG 沿AB 方向以每秒1个单位的速度匀速运动,当点F 与B 重合时停止.在这个运动过程中,正方形ABCD 和△EFG 重叠部分的面积S 与运动时间t 的函数图象大致是( )100503–√502–√50(+1)3–√ABCD AB =AD,AC =5,∠DAB =∠DCB =ABCD 1512.514.5174ABCD EFG AB EF A F △EFG AB 1F B ABCD △EFG S tA. B. C. D.10. 方程组{x +y =102x +y =16的解是( )A.{x =6y =4B.{x =5y =6C.{x =3y =6D.{x =2y =8二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 ){x+y =102x+y =16{x =6y =4{x =5y =6{x =3y =6{x =2y =811. 计算√27−√13=________. 12. 分解因式:m 2−2m =________. 13.如图,正方形ABCD 中,点F 在边AB 上,且AF:FB =1:2,AC 与DF 交于点N .(1)当AB =4时,AN =________;(2)S △ANF :S 四边形CNFB =________.(S 表示面积) 14. 在某一电路中,保持电压不变,电流I (安)与电阻R (欧)成反比例函数关系,其图象如图,则这一电路的电压为________伏. 15. 如图,A ,B ,C 是⊙O 上的点,若∠AOB =100∘,则∠ACB =________.16. 有以下几组数据①3、4、5②17、15、8③10、6、14④12、5、13 ⑤300、160、340,⑥0.3,0.4,0.5.其中可以构成勾股数有________.17. 方程组{y =3x −1,y =x +3的解是________;直线y =3x −1与直线y =x +3的交点是________.18. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=________.−=27−−√13−−√−2m m 2ABCD F AB AF :FB =1:2AC DF N(1)AB =4AN =(2):=S △ANF S 四边形CNFBS I R A B C ⊙O ∠AOB =100∘∠ACB =3451715810614125133001603400.30.40.5{y =3x−1,y =x+3y =3x−1y =x+36∠1+∠2+∠3=三、 解答题 (本题共计 8 小题 ,每题 11 分 ,共计88分 )19. 解方程组:(1){2x −5y =−21,4x +3y =23; (2){3y +5=x,5y −1=x. 20. 6月26日是“国际禁毒日”,某中学组织七、八年级全体学生开展了“禁毒知识”网上竞赛活动.为了解竞赛情况,从两个年级各随机抽取了10名同学的成绩(满分为10,收集数据为:七年级90,95,95,80,90,80,85,90,85,100;八年级85,85,95,80,95,90,90,90,100,90.整理数据:分析数据:平均数中位数众数方差七年级89b 9039八年级c 90d 30根据以上信息回答下列问题:(1)请直接写出表格中a ,b ,c ,d 的值;(2)通过数据分析,你认为哪个年级的成绩比较好?请说明理由;(3)该校七、八年级共有600人,本次竞赛成绩不低于90分的为“优秀”.估计这两个年级共有多少名学生达到“优秀”? 21. 如图1,已知AB =AC ,AB ⊥AC. 直线m 经过点A ,过点B 作BD ⊥m 于D , CE ⊥m 于E .我们把这种常见图形称为“K”字图.(1)悟空同学对图1进行一番探究后,得出结论:DE =BD +CE ,现请你替悟空同学完成证明过程;(2)悟空同学进一步对类似图形进行探究,在图2中,若AB =AC ,∠BAC =∠BDA =∠AEC ,则结论DE =BD +CE 还成立吗?如果成立,请证明之.(1){2x−5y =−21,4x+3y =23;(2){3y+5=x,5y−1=x.626101090959580908085908510085859580959090901009089b 9039c 90d 30(1)a b c d(2)(3)600901AB =AC AB ⊥AC.m A B BD ⊥m D CE ⊥m E K(1)1DE =BD+CE(2)2AB =AC ∠BAC =∠DE =BD+CE22. 如图,在边长为1的正方形ABCD 的顶点A 处有一点P ,点P 按照顺时针方向在正方形ABCD 的四个顶点动,每掷1次骰子,前进掷出的数字的长度.例如:骰子掷出来的数字是3时,点P 移动到点D 处;骰子掷出来的数字是6时,点P 移动到点C 处.另外,掷2次骰子时,第2次从第1次的停止点处开始移动.(1)掷1次骰子后,求点P 移动到点B 处的概率;(2)掷2次骰子后,求点P 移动到点C 处的概率. 23. 如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AB 与CD 的延长线交于点A ,过点O 作OE//BD 交BC 于点F ,交AB 的延长线于点E .(1)求证:∠E =∠C ;(2)若⊙O 的半径为3,cosA =45,求EF 的长. 24. 某药店销售A ,B 两种口罩,每个A 种口罩比B 种进价多0.5元,用240元购进A 种口罩与用180元购进B 种口罩的数量相同.(1)求A ,B 两种口罩每个的进价;(2)药店计划购进A ,B 两种口罩共1000个,其中A 种口罩的进货量不多于300个,且B 种口罩进货量不超过A 种口罩进货量的3倍.设购进A 种口罩m 个,A 口罩每个售价3元,B 口罩每个售价2元,药店售完1000个口罩获得的利润为W 元,求药店获得利润W 最大时的进货方案. 25. 如图,在△ABC 中,∠C =90∘,AC =6cm ,BC =8cm ,D 、E 分别是AC 、AB 的中点,连接DE .点P 从点D 出发,沿DE 方向匀速运动,速度为1cm/s ;同时,点Q 从点B 出发,沿BA 方向匀速运动,速度为2cm/s ,当点P 停止运动时,点Q 也停止运动.连接PQ ,设运动时间为t(0<t <4)s .解答下列问题:(1)当t 为何值时,以点E 、P 、Q 为顶点的三角形与△ADE 相似?(2)当t 为何值时,△EPQ 为等腰三角形?(直接写出答案即可);(3)当点Q 在B 、E 之间运动时,是否存在某一时刻t ,使得PQ 分四边形BCDE 所成的两部分的面积之比为S △PQE ∼S 五边形PQBCD =1:29?若存在,求出此时t 的值以及点E 到PQ 的距离h ;若不存在,请说明理由.1ABCD A P P ABCD 13P D 6P C 221(1)1P B(2)2P C CD ⊙O B ⊙O BC BD B AB CD A O OE//BD BC F AB E(1)∠E =∠C(2)⊙O 3cosA =45EF A B A B 0.5240A 180B(1)A B(2)A B 1000A 300B A 3A m A 3B 21000W W△ABC ∠C =90∘AC =6cm BC =8cm D E AC AB DE P D DE 1cm/s Q B BA 2cm/s P Q PQ t(0<t <4)s t E P Q △ADEt △EPQQ B E t PQ BCDE ∼=1:29S △PQE S 五边形PQBCD t E PQ h26. 如图,已知抛物线y =−x 2+bx +c 经过点A(−3,0),C(0,3),交x 轴于另一点B ,其顶点为D .(1)求抛物线的解析式;(2)点P 为抛物线上一点,直线CP 交x 轴于点E ,若△CAE 与△OCD 相似,求P 点坐标;(3)如果点F 在y 轴上,点M 在直线AC 上,那么在抛物线上是否存在点N ,使得以C ,F ,M ,N 为顶点的四边形是菱形?若存在,请求出菱形的周长;若不存在,请说明理由.y −+bx+c x 2A(−3,0)C(0,3)x B D P CP x E △CAE △OCD PF y M AC N C F M N参考答案与试题解析2023年江苏省南通市中考数学试卷试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】A【考点】有理数的乘法有理数的乘除混合运算【解析】根据有理数的乘法法则计算可得.【解答】(−3)×(−16)=+(3×16)=12,2.【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】2536000人=2.536×106人,3.【答案】B【考点】简单几何体的三视图【解析】根据三视图的定义分析即可解答.【解答】解:一个几何体的正投影,也叫做视图,从左面得到的视图叫做左视图..∵该几何体是一个空心圆柱,∴该几何体外侧圆柱的左视图是一个矩形,内部空心圆柱是虚线矩形,故B正确.故选B.4.【答案】B【考点】估算无理数的大小【解析】首先得出2√11的取值范围进而得出答案.【解答】∵2√11=√44,∴6<√44<7,∴无理数2√11−3在3和4之间.5.【答案】B【考点】平行线的性质【解析】根据平行线的性质即可得到结论.【解答】解:∵直线m//n,∴∠2+∠ABC+∠1+∠BAC=180∘.∵∠ABC=30∘,∠BAC=90∘,∠1=40∘,∴∠2=180∘−30∘−90∘−40∘=20∘.故选B.6.【答案】A【考点】列代数式求值【解析】由已知得出a−2b=8,代入原式=2(a−2b)+10计算可得.【解答】∵−a+2b+8=0,∴a−2b=8,则原式=2(a−2b)+10=2×8+10=16+10=26,7.【答案】D【考点】解直角三角形的应用-仰角俯角问题【解析】直角△ABC与直角△ABD有公共边AB,若设AB=x,则在直角△ABC与直角△ABD就满足解直角三角形的条件,可以用x表示出BC与BD的长,根据BD−BC=CD,即可列方程求解.【解答】解:设AB=x,在Rt△ACB中,∠ACB=45∘,∴BC=AB=x.在Rt△ABD中,∠D=30∘,∴tanD=ABBD=√33,∴BD =ABtan30∘=√3x.∵BD −BC =CD ,∴√3x −x =100,解得x =50(√3+1),故山高AB 等于50(√3+1)米.故选D .8.【答案】B【考点】解直角三角形直角三角形的性质【解析】【解答】解:∵AB =AD ,∠DAB =∠DCB =90∘,∴四边形ABCD 是正方形,设正方形边长为a ,∴AB 2+BC 2=AC 2⇒2a 2=25,∴a 2=252,∴四边形面积=a 2=252=12.5.故选B.9.【答案】C【考点】动点问题函数的图象【解析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.【解答】解:由题知AF的长度为t.当0≤t≤2时,阴影部分为三角形,且随着t的增加,三角形的高也在增加,则S与t是二次函数关系,有最小值(0,0),开口向上;当2<t≤4时,阴影部分为三角形加梯形,且随着t的增加,且三角形的面积不变,梯形的高在增加,上底的长度在减少,则S与t是二次函数关系,开口向下,综上可得,选项C符合题意.故选C.10.【答案】A【考点】加减消元法解二元一次方程组【解析】此题暂无解析【解答】解:{x+y=10①2x+y=16②,②−①得,x=6,把x=6代入①得,6+y=10,解得y=4,∴{x=6y=4,故选A.二、填空题(本题共计 8 小题,每题 3 分,共计24分)11.【答案】83√3【考点】二次根式的减法【解析】先进行二次根式的化简,然后合并.【解答】解:原式=3√3−√33=83√3.故答案为:83√3.12.【答案】m(m−2)【考点】因式分解-提公因式法【解析】直接把公因式m提出来即可.【解答】m2−2m=m(m−2).13.【答案】√21:11【考点】勾股定理相似三角形的判定与性质正方形的性质【解析】..【解答】解:(1)在正方形ABCD中,AB=CD,AB//CD,∠B=90∘,∵AF:FB=1:2,∴AF:AB=1:3,∴AF:CD=1:3.∵AB//CD,∴△ANF∼△CND,∴ANCN=AFCD,∴CN=3AN.∵AB=4,∠B=90∘,√42+42=4√2,∴AC=∴AN=11+3AC=√2.故答案为:√2.(2)由(1)可得AN:AC=1:4,AF:AB=13.过点N作NE⊥AB,如图,可得∠NEA=∠B=90∘,∴NE//CB,∴△NEA∼△CBA,∴ANAC=NECB=AEAB=14,∴NE=14BC.S△ANF=12AF⋅NE=12×14BC×13AB=124BC⋅AB,S△ABC=12BC⋅AB,∴S四边形CNFB=S△ABC−S△ANF=1124BC⋅AB,124BC⋅AB1124BC⋅AB=1:11.∴S△ANF:S四边形CNFB=故答案为:1:11.14.【答案】10【考点】反比例函数的应用【解析】根据反比例函数的概念,电压不变时电流I(安)与电阻R(欧)的乘积为定值,利用图象可知电压为10伏.【解答】解:∵I=UR∴把点(2,5)代入函数解析式可知U=10V,故答案为:10.15.【答案】50∘【考点】圆周角定理【解析】直接根据圆周角定理即可得出结论.【解答】解:∵A ,B ,C 是⊙O 上的点,∠AOB =100∘,∴∠ACB =12∠AOB =50∘.故答案为:50∘.16.【答案】①②④⑤【考点】勾股数【解析】勾股数的定义:满足a 2+b 2=c 2的三个正整数,称为勾股数,根据定义即可求解.【解答】解:①32+42=52,符合勾股数的定义;②82+152=289=172,符合勾股数的定义;③102+62≠142,不符合勾股数的定义;④52+122=169=132,符合勾股数的定义;⑤3002+1602=115600=3402,符合勾股数的定义;⑥0.3,0.4,0.5不是正整数,不符合勾股数的定义.所以,可以构成勾股数有①②④⑤.故答案为①②④⑤.17.【答案】{x =2,y =5,(2,5)【考点】一次函数与二元一次方程(组)一次函数图象上点的坐标特征一次函数的图象【解析】此题暂无解析【解答】解:对原方程组使用加减消元法,两式相减得2x−4=0,解得x=2,带入原方程得y=5.所以方程组的解为{x=2,y=5,所以直线y=3x−1与直线y=x+3的交点为(2,5).故答案为:{x=2,y=5;(2,5).18.【答案】135∘【考点】全等三角形的性质与判定【解析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:如图:观察图形可知:△ABC≅△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90∘,∴∠1+∠3=90∘.∵∠2=45∘,∴∠1+∠2+∠3=∠1+∠3+∠2=90∘+45∘=135∘.故答案为:135∘.三、解答题(本题共计 8 小题,每题 11 分,共计88分)19.【答案】解:(1){2x−5y=−21①,4x+3y=23②,②−①×2得:13y=65,即y=5,把y=5代入②得:x=2,则方程组的解为{x=2,y=5.(2)方程组整理,得{−x+3y=−5①,−x+5y=1②,②−①,得2y=6,解得y=3,把y=3代入①,得x=14.故原方程组的解为{x=14,y=3.【考点】加减消元法解二元一次方程组【解析】(1)方程组利用加减消元法求出解即可.(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1){2x−5y=−21①,4x+3y=23②,②−①×2得:13y=65,即y=5,把y=5代入②得:x=2,则方程组的解为{x=2,y=5.(2)方程组整理,得{−x+3y=−5①,−x+5y=1②,②−①,得2y=6,解得y=3,把y=3代入①,得x=14.故原方程组的解为{x=14,y=3.20.【答案】解:(1)观察八年级95分的有2人,故a=2;七年级的中位数为90+902=90,故b=90;八年级的平均数为:112[85+85+95+80+95+90+90+90+100+90]=90,故c=90;八年级中90分的最多,故d=90.(2)七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更整齐,综上,八年级的学生成绩好.(3)由题知,两个年级20人中,共有13人成绩不低于90分.所以600×1320=390(人),所以估计该校七、八年级这次竞赛达到优秀的有390人.【考点】中位数众数方差用样本估计总体【解析】(1)根据提供数据确定八年级95分的人数,利用众数中位数及平均数分别确定其他未知数的值即可;(2)利用平均数、众数及方差确定哪个年级的成绩好即可;(3)用样本的平均数估计总体的平均数即可.【解答】解:(1)观察八年级95分的有2人,故a=2;七年级的中位数为90+902=90,故b=90;八年级的平均数为:112[85+85+95+80+95+90+90+90+100+90]=90,故c=90;八年级中90分的最多,故d=90.(2)七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更整齐,综上,八年级的学生成绩好.(3)由题知,两个年级20人中,共有13人成绩不低于90分.所以600×1320=390(人),所以估计该校七、八年级这次竞赛达到优秀的有390人.21.【答案】(1)证明:在△ABD和△CAE中,{∠ABD=∠EAC,∠BDA=∠AEC,AB=AC,∴△ABD≅△CAE(AAS),∴BD=AE,AD=CE,∴DE=AE+DA=BD+CE.(2)解:成立.理由如下:∵∠BAC+∠BAD+∠EAC=180∘,∠ADB+∠BAD+∠ABD=180∘,∠BAC=∠BDA,∴∠ABD=∠EAC,在△ABD和△CAE中,{∠ABD=∠EAC,∠BDA=∠AEC,AB=AC,∴△ABD≅△CAE(AAS),∴BD=AE,AD=CE,∴ DE=AE+DA=BD+CE.【考点】全等三角形的性质与判定【解析】【解答】(1)证明:在△ABD和△CAE中,{∠ABD=∠EAC,∠BDA=∠AEC,AB=AC,∴△ABD≅△CAE(AAS),∴BD=AE,AD=CE,∴DE=AE+DA=BD+CE.(2)解:成立.理由如下:∵∠BAC+∠BAD+∠EAC=180∘,∠ADB+∠BAD+∠ABD=180∘,∠BAC=∠BDA,∴∠ABD=∠EAC,在△ABD和△CAE中,{∠ABD=∠EAC,∠BDA=∠AEC,AB=AC,∴△ABD≅△CAE(AAS),∴BD=AE,AD=CE,∴ DE=AE+DA=BD+CE.22.【答案】解:(1)第1次骰子,掷出的数点P移动后的位置如下 .掷出的数点P移动后的位置1B2C3D4A5=4+1B6=4+2C共有6种等可能的结果,点P移动到点B处的有2种,故掷1次骰子后,点P移动到点B处的概率为26=13 .(2)设第1次骰子掷出来的数字为a,第2次骰子掷出来的数字为b,由题意画树状图如下.共有36种等可能的结果,当a+b的值为2,6,10时,点P移动到点C处,这些结果共有9种,故掷2次骰子后,点P移动到点C处的概率为P=936=14 .【考点】概率公式列表法与树状图法【解析】此题暂无解析【解答】解:(1)第1次骰子,掷出的数点P移动后的位置如下 .掷出的数点P移动后的位置1B2C3D4A5=4+1B6=4+2C共有6种等可能的结果,点P移动到点B处的有2种,故掷1次骰子后,点P移动到点B处的概率为26=13 .(2)设第1次骰子掷出来的数字为a,第2次骰子掷出来的数字为b,由题意画树状图如下.共有36种等可能的结果,当a+b的值为2,6,10时,点P移动到点C处,这些结果共有9种,故掷2次骰子后,点P移动到点C处的概率为P=936=14 .23.【答案】(1)证明:如图,连接OB,∵CD为⊙O的直径,∴∠CBD=∠CBO+∠OBD=90∘,∵AE是⊙O的切线,∴∠ABO=∠ABD+∠OBD=90∘,∴∠ABD=∠CBO,∵OB=OC,∴∠C=∠CBO,∵OE//BD,∴∠E=∠ABD,∴∠E=∠C.(2)解:在Rt△OBA 中,cosA=45,OB=3,∴AB=4,AO=5,∴AD=2,∵BD//OE,∴ABBE=ADOD,即4BE=23,解得BE=6,∵OE//BD,设FB =x ,则EF =2x,∵EB 2=EF 2+BF 2,即62=(2x)2+x 2,解得x =6√55(负值舍去),∴EF =12√55.【考点】切线的性质圆周角定理锐角三角函数的定义勾股定理平行线分线段成比例【解析】此题暂无解析【解答】(1)证明:如图,连接OB ,∵CD 为⊙O 的直径,∴∠CBD =∠CBO +∠OBD =90∘,∵AE 是⊙O 的切线,∴∠ABO =∠ABD +∠OBD =90∘,∴∠ABD =∠CBO ,∵OB =OC ,∴ ∠C =∠CBO ,∵OE//BD ,∴∠E =∠ABD ,∴∠E =∠C .(2)解:在Rt △OBA 中,cosA =45,OB =3,∴AB =4,AO =5,∴AD =2,∵BD//OE ,∴ABBE =ADOD ,即4BE =23,解得BE =6,∵OE//BD ,设FB =x ,则EF =2x,∵EB 2=EF 2+BF 2,即62=(2x)2+x 2,解得x =6√55(负值舍去),∴EF =12√55.24.【答案】解:(1)设A 种口罩每个的进价x 元,则B 种口罩每个的进价(x −0.5)元,根据题意,得240x =180x −0.5,解得x =2,经检验,x =2是原方程的解并且符合题意.∴B 种口罩每个的进价2−0.5=1.5 (元),故A 种口罩每个的进价2元,则B 种口罩每个的进价1.5元.(2)依题意得, 1000−m ≤3m ,解得m ≥250,∵m ≤300,∴m 的取值范围为250≤x ≤300.依题意,得W =(3−2)m+(2−1.5)(1000−m)=0.5m+500,W 随m 的增大而增大,∴当m =300时,W 取最大值;∴药店购进A 种口罩300个,B 种口罩700个时,获得利润最大.【考点】分式方程的应用一元一次不等式的实际应用一次函数的应用【解析】(1)设A 口罩每个的进价x 元,则B 口罩每个的进价(x −0.5)元,根据“用240元购进A 种口罩与用180元购进B 种口罩的数量相同”列分式方程解答即可;(2)根据题意得出W 与m 的函数关系式,再根据一次函数的性质讨论解答即可.【解答】解:(1)设A 种口罩每个的进价x 元,则B 种口罩每个的进价(x −0.5)元,根据题意,得240x =180x −0.5,解得x =2,经检验,x =2是原方程的解并且符合题意.∴B 种口罩每个的进价2−0.5=1.5 (元),故A 种口罩每个的进价2元,则B 种口罩每个的进价1.5元.(2)依题意得, 1000−m ≤3m ,解得m≥250,∵m≤300,∴m的取值范围为250≤x≤300.依题意,得W=(3−2)m+(2−1.5)(1000−m)=0.5m+500,W随m的增大而增大,∴当m=300时,W取最大值;∴药店购进A种口罩300个,B种口罩700个时,获得利润最大.25.【答案】解:(1)如图1中,在Rt△ABC中,AC=6,BC=8√62+82=10.∴AB=∵D、E分别是AC、AB的中点.AD=DC=3,AE=EB=5,DE//BC且DE=12BC=4,①PQ⊥AB时,∵∠PQB=∠ADE=90∘,∠AED=∠PEQ,∴△PQE∽△ADE,PEAE=QEDE,由题意得:PE=4−t,QE=2t−5,即4−t5=2t−54,解得t=4114;②如图2中,当PQ⊥DE时,△PQE∽△DAE,∴PEED=QEAE,∴4−t4=2t−55,∴t=4013,∴当t为4114s或4013s时,以点E、P、Q为顶点的三角形与△ADE相似.(2)如图3中,当点Q在线段BE上时,由EP=EQ,可得4−t=5−2t,t=1.如图4中,当点Q 在线段AE 上时,由EQ =EP ,可得4−t =2t −5,解得t =3.如图5中,当点Q 在线段AE 上时,由EQ =QP ,可得 12(4−t):(2t −5)=4:5,解得t =207.如图6中,当点Q 在线段AE 上时,由PQ =EP ,可得 12(2t −5):(4−t)=4:5,解得t =196.综上所述,t =1或3或 207或 196秒时,△PQE是等腰三角形.(3)假设存在时刻t ,使S △PQE :S 五边形PQBCD =1:29,则此时S △PQE =130S 梯形DCBE ,∴35t 2−3910t +6=130×18,即2t 2−13t +18=0,解得t 1=2,t 2=92(舍去).当t =2时,PM =35×(4−2)=65,ME =45×(4−2)=85,EQ =5−2×2=1,MQ =ME +EQ =85+1=135,∴PQ =√PM 2+MQ 2=√(65)2+(135)2=√2055.∵12PQ ⋅h =35,∴h =65⋅5√205=6√205205.∴此时t 的值为2s ,h =6√205205.【考点】相似三角形综合题【解析】(1)如图①所示,当PQ ⊥AB 时,△PQE 是直角三角形.解决问题的要点是将△PQE 的三边长PE 、QE 、PQ 用时间t 表示,这需要利用相似三角形(△PQE ∽△ACB)比例线段关系(或三角函数);(2)分三种情形讨论,如图3中,当点Q在线段BE上时,EP=EQ;如图4中,当点Q在线段AE上时,EQ=EP;如图5中,当点Q在线段AE上时,EQ=QP;如图6中,当点Q在线段AE上时,PQ=EP.分别列出方程即可解决问题.(3)本问要点是根据题意,列出一元二次方程并求解.假设存在时刻t,使S△PQE:S五边形PQBCD=1:29,则此时S△PQE=130S梯形DCBE,由此可列出一元二次方程,解方程即求得时刻t;点E到PQ的距离h利用△PQE的面积公式得到.【解答】解:(1)如图1中,在Rt△ABC中,AC=6,BC=8√62+82=10.∴AB=∵D、E分别是AC、AB的中点.AD=DC=3,AE=EB=5,DE//BC且DE=12BC=4,①PQ⊥AB时,∵∠PQB=∠ADE=90∘,∠AED=∠PEQ,∴△PQE∽△ADE,PEAE=QEDE,由题意得:PE=4−t,QE=2t−5,即4−t5=2t−54,解得t=4114;②如图2中,当PQ⊥DE时,△PQE∽△DAE,∴PEED=QEAE,∴4−t4=2t−55,∴t=4013,∴当t为4114s或4013s时,以点E、P、Q为顶点的三角形与△ADE相似.(2)如图3中,当点Q在线段BE上时,由EP=EQ,可得4−t=5−2t,t=1.如图4中,当点Q在线段AE上时,由EQ=EP,可得4−t=2t−5,解得t=3.如图5中,当点Q在线段AE上时,由EQ=QP,可得12(4−t):(2t−5)=4:5,解得t=207.如图6中,当点Q 在线段AE 上时,由PQ =EP ,可得 12(2t −5):(4−t)=4:5,解得t =196.综上所述,t =1或3或 207或 196秒时,△PQE是等腰三角形.(3)假设存在时刻t ,使S △PQE :S 五边形PQBCD =1:29,则此时S △PQE =130S 梯形DCBE ,∴35t 2−3910t +6=130×18,即2t 2−13t +18=0,解得t 1=2,t 2=92(舍去).当t =2时,PM =35×(4−2)=65,ME =45×(4−2)=85,EQ =5−2×2=1,MQ =ME +EQ =85+1=135,∴PQ =√PM 2+MQ 2=√(65)2+(135)2=√2055.∵12PQ ⋅h =35,∴h =65⋅5√205=6√205205.∴此时t 的值为2s ,h =6√205205.26.【答案】∵抛物线y =−x 2+bx +c 经过点A(−3,0),C(0,3),∴{−9−3b +c =0c =3 ,解得{b =−2c =3 .故此抛物线解析式为:y =−x 2−2x +3;∵y =−x 2−2x +3=−(x +1)2+4,∴顶点D(−1,4).∵A(−3,0),C(0,3),D(−1,4),∴AC =3√2,OA =OC =3,CD =√2,∠OCD =∠CAE =135∘,∴点E 只能在A 点左边.①若△CAE ∽△DCO ,则CAAE =DCCO =√23,∴AE =9,∴OE =12,∴E(−12,0).∵C(0,3),∴y CE =14x +3.联立{y =−x 2−2x +3y CE =14x +3 ,解得{x 1=−94y 1=3916 ,{x 2=0y 2=3 (舍去),∴P(−94,3916);②若△CAE ∽△OCD ,则CAAE =OCCD =3√2,∴AE =2,∴OE =5,∴E(−5,0).∵C(0,3),∴y CE =35x +3.联立{y =−x 2−2x +3y CE =35x +3 ,解得{x 1=−135y 1=3625 ,{x 2=0y 2=3 (舍去),∴P(−135,3625).因此,P(−94,3916)或(−135,3625);在抛物线上存在点N ,使得以C ,F ,M ,N 为顶点的四边形是菱形.①若CF 为对角线,则CF 与NM 互相垂直平分时,四边形CNFM 为菱形,∵∠NCF =∠FCM =∠ACO =45∘,∴∠NCM =90∘,∴CN ⊥CM ,四边形CNFM 为正方形,∴N 点与顶点D 重合,∵D(−1,4),∴N(−1,4),CN =√2,∴菱形CNFM 的周长为4√2;②若CF 为菱形的一边,则MN//CF ,CM//FN ,NM =NF 时,四边形CNFM 为菱形.过F 作FH ⊥NM 于H ,设直线NM 交x 轴于G ,N(m,−m 2−2m+3),则M(m,m+3),G(m,0).∴NM =|m+3−(−m 2−2m+3)|=|m 2+3m|=NF ,∵CM//FN ,∠ACO =45∘,∴∠NFH =∠FNH =45∘,∴NF =√2FH ,又∵FH =OG =|m|,∴|m 2+3m|=√2|m|,∴m =−3−√2或m =−3+√2,∴NF =3√2+2,或NF =3√2−2,∴菱形周长为12√2+8或12√2−8因此,存在菱形,其周长为4√2或8+12√2或12√2−8.【考点】二次函数综合题【解析】(1)根据待定系数法可求抛物线的解析式;(2)分两种情况:①若△CAE ∽△DCO ;②若△CAE ∽△OCD ;进行讨论即可求解;(3)分两种情形:①若CF 为对角线,则CF 与NM 互相垂直平分时,四边形CNFM 为菱形;②若CF 为菱形的一边,则MN//CF ,CM//FN ,NM =NF 时,四边形CNFM 为菱形;进行讨论即可解决问题.【解答】∵抛物线y =−x 2+bx +c 经过点A(−3,0),C(0,3),∴{−9−3b +c =0c =3 ,解得{b =−2c =3 .故此抛物线解析式为:y =−x 2−2x +3;∵y =−x 2−2x +3=−(x +1)2+4,∴顶点D(−1,4).∵A(−3,0),C(0,3),D(−1,4),∴AC =3√2,OA =OC =3,CD =√2,∠OCD =∠CAE =135∘,∴点E 只能在A 点左边.①若△CAE ∽△DCO ,则CAAE =DCCO =√23,∴AE =9,∴OE =12,∴E(−12,0).∵C(0,3),∴y CE =14x +3.联立{y =−x 2−2x +3y CE =14x +3 ,解得{x 1=−94y 1=3916 ,{x 2=0y 2=3 (舍去),∴P(−94,3916);②若△CAE ∽△OCD ,则CAAE =OCCD =3√2,∴AE =2,∴OE =5,∴E(−5,0).∵C(0,3),∴y CE =35x +3.联立{y =−x 2−2x +3y CE =35x +3 ,解得{x 1=−135y 1=3625 ,{x 2=0y 2=3 (舍去),∴P(−135,3625).因此,P(−94,3916)或(−135,3625);在抛物线上存在点N ,使得以C ,F ,M ,N 为顶点的四边形是菱形.①若CF 为对角线,则CF 与NM 互相垂直平分时,四边形CNFM 为菱形,∵∠NCF =∠FCM =∠ACO =45∘,∴∠NCM =90∘,∴CN ⊥CM ,四边形CNFM 为正方形,∴N 点与顶点D 重合,∵D(−1,4),∴N(−1,4),CN =√2,∴菱形CNFM 的周长为4√2;②若CF 为菱形的一边,则MN//CF ,CM//FN ,NM =NF 时,四边形CNFM 为菱形.过F 作FH ⊥NM 于H ,设直线NM 交x 轴于G ,N(m,−m 2−2m+3),则M(m,m+3),G(m,0).∴NM =|m+3−(−m 2−2m+3)|=|m 2+3m|=NF ,∵CM//FN ,∠ACO =45∘,∴∠NFH =∠FNH =45∘,∴NF =√2FH ,又∵FH =OG =|m|,∴|m 2+3m|=√2|m|,∴m =−3−√2或m =−3+√2,∴NF =3√2+2,或NF =3√2−2,∴菱形周长为12√2+8或12√2−8因此,存在菱形,其周长为4√2或8+12√2或12√2−8.。

2023年江苏南通中考真题数学试卷(详解版)

2023年江苏南通中考真题数学试卷(详解版)

123答案AA 选项:三棱柱的俯视图是三角形,故此选项符合题意;B 选项:圆柱体的俯视图是圆,故此选项不合题意;C 选项:四棱锥的俯视图是四边形(画有对角线),故此选项不合题意;D 选项:圆锥体的俯视图是圆(带圆心),故此选项不合题意.故选 A.4A.线段上B.线段上C.线段上D.线段上★★如图,数轴上,,,,五个点分别表示数,,,,,则表示数的点应在().C,而数轴上,,,,五个点分别表示数,,,,,表示数的点应在线段上.故选 C .5A.B.C.D.★★★如图,中,,顶点,分别在直线,上,若,,则的度数为().A 如图,2023年江苏南通中考真题第4题3分2023年江苏南通中考真题第5题3分,,,,,.故选 A .6A.B.C.D.★★★若,则的值为().D,,.故选 D .7★★★如图,从航拍无人机看一栋楼顶部的仰角为,看这栋楼底部的俯角为,无人机与楼的水平距离为,则这栋楼的高度为().2023年江苏南通中考真题第6题3分2023年江苏南通中考真题第7题3分A. B. C. D.B过点作,垂足为,在中,,,在中,,,,故选 B.8★★★2023年江苏南通中考真题第8题3分A.B.C.D.如图,四边形是矩形,分别以点,为圆心,线段,长为半径画弧,两弧相交于点,连接,,.若,,则的正切值为().C,,,,,四边形是矩形,,,,,,,设,则,,由勾股定理得:,,,.故选 C.9A.B.C.D.★★★★如图 1,中,,,.点从点出发沿折线运动到点停止,过点作,垂足为.设点运动的路径长为,的面积为,若与的对应关系如图 2所示,则的值为().B,,,,①当时,点在边上,如图所示,此时,,,,,,,,,,2023年江苏南通中考真题第9题3分当时,,,②当时,点在边上,如图所示,此时,,,,,,,,,当时,,,.故选 B .10A.B.C.D.★★★若实数,,满足,,则代数式的值可以是().D由题意可得,2023年江苏南通中考真题第10题3分解得:,则,,A ,B ,C 不符合题意,D 符合题意.故选 D .11★计算:.原式.故答案为:.12★★★分解因式:..13★★★2023年江苏南通中考真题第11题3分2023年江苏南通中考真题第12题3分2023年江苏南通中考真题第13题4分如图,中,,分别是,的中点,连接,则.,分别是,的中点,,又,,.故答案为:.14★★某型号汽车行驶时功率一定,行驶速度(单位:)与所受阻力(单位:)是反比例函数关系,其图象如图所示.若该型号汽车在某段公路上行驶时速度为,则所受阻力为.设功率为,由题可知,即,将,代入可得:,即反比例函数为:.当时,.胡答案为:.2023年江苏南通中考真题第14题4分15★★★如图,是⊙的直径,点,在⊙上,若,则度.如图,连接,,,,,.故答案为:.16★★★勾股数是指能成为直角三角形三条边长的三个正整数,世界上第一次给出勾股数公式的是中国古代数学著作《九章算术》.现有勾股数,,,其中,均小于,,,是大于的奇数,则 (用含的式子表示).,,是勾股数,其中,均小于,,,2023年江苏南通中考真题第15题4分2023年江苏南通中考真题第16题4分,是大于的奇数,.故答案为:.17★★已知一次函数,若对于范围内任意自变量的值,其对应的函数值都小于,则的取值范围是.一次函数,随的增大而增大,对于范围内任意自变量的值,其对应的函数值都小于,,解得.故答案为:.18★★★★如图,四边形的两条对角线,互相垂直,,,则的最小值是.2023年江苏南通中考真题第17题4分2023年江苏南通中考真题第18题4分设,的交点为,,,,的中点分别是,,,,连接,,,,,,,如图:,互相垂直,和为直角三角形,且,分别为斜边,,,,当为最小时,为最小,根据“两点之间线段最短”得:,当点在线段上时,为最小,最小值为线段的长,点,分别为,的中点,为的中位线,,,同理:,,,,,,,,四边形为平行四边形,,,,,四边形为矩形,在中,,,由勾股定理得:,的最小值为,的最小值为.故答案为:.19(1)(2)★★(1)(2)(1)(2)解方程组:①②.计算:.①②,②①得:,把代入①得:,解得:,故原方程组的解是:..20★★某校开展以“筑梦天宫、探秘苍穹”为主题的航天知识竞赛,赛后在七、八年级各随机抽取名学生的竞赛成绩,进行整理、分析,得出有关统计图表.抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级八年级2023年江苏南通中考真题第19题12分2023年江苏南通中考真题第20题10分(1)(2)(1)(2)(1)(2)注:设竞赛成绩为(分),规定:90为优秀;为良好;60为合格;为不合格.若该校八年级共有名学生参赛,估计优秀等次的约有人.你认为七、八年级中哪个年级学生的竞赛成绩更好些?请从两个方面说明理由.八年级成绩较好,理由见解析若该校八年级共有名学生参赛,估计优秀等次的约有(人).故答案为:.八年级成绩较好,理由如下:因为七、八年级的平均数相等,而八年级的众数和中位数大于七年级的众数和中位数,所以八年级得分高的人数较多,即八年级成绩较好(答案不唯一).21★★★如图,点,分别在,上,,,相交于点,.求证:.2023年江苏南通中考真题第21题10分(1)(2)(1)(2)(1)(2)小虎同学的证明过程如下:证明:,.,.……第一步又,,.……第二步.……第三步小虎同学的证明过程中,第步出现错误.请写出正确的证明过程.二见解析小虎同学的证明过程中,第二步出现错误,故答案为:二.方法一:,,在和中,,,,在和中,,,.方法二:,,.22(1)(2)★★(1)(2)(1)(2)有同型号的,两把锁和同型号的,,三把钥匙,其中钥匙只能打开锁,钥匙只能打开锁,钥匙不能打开这两把锁.从三把钥匙中随机取出一把钥匙,取出钥匙的概率等于.从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.有同型号的,,三把钥匙,从三把钥匙中随机取出一把钥匙,取出钥匙的概率等于.故答案为:.画树状图如下:共有种等可能的结果,其中取出的钥匙恰好能打开取出的锁的结果有种,即、,取出的钥匙恰好能打开取出的锁的概率为.23★★★如图,等腰三角形的顶角,⊙和底边相切于点,并与两腰,分别相交于,两点,连接,.2023年江苏南通中考真题第22题10分2023年江苏南通中考真题第23题10分(1)(2)(1)(2)(1)(2)求证:四边形ODCE是菱形.若⊙的半径为,求图中阴影部分的面积.见解析连接,⊙和底边相切于点,,,,,,,和都是等边三角形,,,,四边形是菱形.连接交于点,四边形是菱形,,,,在中,,,,图中阴影部分的面积扇形的面积菱形的面积,图中阴影部分的面积为.24(1)(2)★★★(1)(2)答案(1)(2)解析为推进全民健身设施建设,某体育中心准备改扩建一块运动场地.现有甲、乙两个工程队参与施工,具体信息如下:信息一工程队每天施工面积(单位:)每天施工费用(单位:元)甲乙信息二甲工程队施工所需天数与乙工程队施工所需天数相等.求的值.该工程计划先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工天,且完成的施工面积不少于.该段时间内体育中心至少需要支付多少施工费用?元根据题意得:,解得:,经检验,是所列方程的解,且符合题意.答:的值为.设甲工程队施工天,则乙工程队单独施工天,2023年江苏南通中考真题第24题12分根据题意得:,解得:,设该段时间内体育中心需要支付元施工费用,则,即,,随的增大而增大,当时,取得最小值,最小值.答:该段时间内体育中心至少需要支付元施工费用.25(1)(2)(3)★★★(1)(2)(3)(1)正方形中,点在边,上运动(不与正方形顶点重合).作射线,将射线绕点逆时针旋转,交射线于点.如图,点在边上,,则图中与线段相等的线段是.过点作,垂足为,连接,求的度数.在(2)的条件下,当点在边延长线上且时,求的值.或四边形是正方形,2023年江苏南通中考真题第25题13分(2),,,(全等),.故答案为:.当点在边上时,如图,过点作交于,延长交于点,,四边形是矩形,,,,,,,是等腰直角三角形,,,,,,,为等腰直角三角形,,;当点在边上时,如图,(3)过点作交于,延长交延长线于点,四边形是矩形,同理,,,为等腰直角三角形,,,综上所述:的度数为或.当点在边延长线上时,点在边上,设,则,,,,.26(1)(2)★★★定义:平面直角坐标系中,点,点,若,,其中为常数,且,则称点是点的“级变换点”.例如,点是点的“级变换点”.函数的图象上是否存在点的“级变换点”?若存在,求出的值;若不存在,说明理由.点与其“级变换点”B分别在直线,上,在,上分别取点,.若,求证:.2023年江苏南通中考真题第26题13分(3)(1)(2)(3)(1)(2)(3)关于的二次函数的图象上恰有两个点,这两个点的“级变换点”都在直线上,求的取值范围.见解析且存在,理由:由题意得,的“级变换点”为:,将代入反比例函数表达式得:,解得:.由题意得,点的坐标为:,由点的坐标知,点在直线上,同理可得,点在直线,则,,则,,则,即.设在二次函数上的点为点、,设点,则其“级变换点”坐标为:,将代入得:,则,即点在直线上,同理可得,点在直线上,即点、所在的直线为;由抛物线的表达式知,其和轴的交点为:、,其对称轴为,当时,抛物线和直线的大致图象如下:直线和抛物线均过点,则点个点为点,如上图,联立直线和抛物线的表达式得:设点的横坐标为,则,则,解得:,此外,直线和抛物线在故,即且;当时,当时,直线不可能和抛物线在故该情况不存在,综上,且.。

南通九年级中考数学试卷【含答案】

南通九年级中考数学试卷【含答案】

南通九年级中考数学试卷【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()A. -5B. 3C. 0D. 72. 若 a > b,则下列哪个选项一定成立?()A. a c > b cB. a + c > b + cC. ac > bcD. a/b > b/a3. 下列哪个图形是平行四边形?()A. 矩形B. 梯形C. 正方形D. 圆形4. 下列哪个数是无理数?()A. √9B. √16C. √3D. √15. 下列哪个选项是代数式?()A. 2x + 3B. x = 5C. y 4 = 2D. 4 < 7二、判断题1. 任何数乘以0都等于0。

()2. 负数的平方是正数。

()3. 所有的偶数都是2的倍数。

()4. 两个负数相乘得到正数。

()5. 所有的正方形都是矩形。

()三、填空题1. 2的平方是______。

2. 若 a = 3,b = -2,则 a + b = ______。

3. 下列图形中,______是轴对称图形。

4. 若 3x + 5 = 14,则 x = ______。

5. 下列数中,______是素数。

四、简答题1. 解释什么是负数。

2. 解释什么是平行四边形。

3. 解释什么是无理数。

4. 解释什么是代数式。

5. 解释什么是因数分解。

五、应用题1. 小明有5个苹果,他吃掉了2个,还剩下几个苹果?2. 一个长方形的长是10cm,宽是5cm,求这个长方形的面积。

3. 若 2x 3 = 7,求 x 的值。

4. 一个数的平方是16,求这个数。

5. 列出所有的2的倍数,从1到10。

六、分析题1. 解释为什么负数的平方是正数。

2. 解释为什么所有的偶数都是2的倍数。

七、实践操作题1. 画出一个边长为5cm的正方形。

2. 画出一个半径为3cm的圆。

八、专业设计题1. 设计一个三角形,其中两个角分别是30度和60度,求第三个角的大小。

2. 设计一个长方形,长是宽的两倍,如果长方形的周长是24cm,求长方形的长和宽。

最新江苏省南通市中考数学真题试卷附解析

最新江苏省南通市中考数学真题试卷附解析

江苏省南通市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.一条信息可通过如图所示的网络线由A 点往各站点传递(同级别站点不能传递),则信息由 A 点到达d 3的所有不同途径中,其中按途径]233A a b c d →→→→到达的概率是( ) A .14B .15C .16D .182.如图,正方形ABCD 边长为3,以直线AB 为轴,将正方形旋转一周,所得圆柱的侧面积是( )A.36лB.18лC.12лD.9л3. 抛物线122+-=x x y ,则图象与x 轴交点为( ) A . 二个交点B . 一个交点C . 无交点D . 不能确定4.设7的小数部分为b ,那么(4+b )b 的值是( ) A .1 B .是一个有理数 C .3 D .无法确定 5.在平面直角坐标系中,下列各结论不成立的是( )A .平面内一点与两坐标轴的距离相等,则这点一定在某象限的角平分线上B .若点P (x ,y )坐标满足0xy=,则点P 一定不是原点 C 点P (a ,b )到x 轴的距离为b ,到y 轴的距离为a D .坐标(-3,4)的点和坐标(-3,-4)的点关于x 轴对称6.已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的( ) A .平均数但不是中位数 B .平均数也是中位数 C .众数D .中位数但不是平均数7.已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,则线段CA 与线段CB 之比为( ) A .3:4B .2:3C .3:5D .1:28.要清楚地表明病人的体温变化情况,应选用的统计图是( ) A .扇形统计图B .折线统计图C .条形统计图D .以上都可以9.下列各组代数式中,不是同类项的一组是( ) A .12-和0B .213ab c -和2cab C .2xy 和2x yD .3xy和xy - 10.计算222222113(22)(46)32a c b a b c +-+---的结果是( )A . 225106a b +B . 221106a b --C . 221106a b -+D . 225106a b -11. 在数①-32;②5. 8;③3178;④-0. 31;⑤0;⑥ 48;⑦2;⑧35-中,负分数的个数有( ) A .0 个B .1 个C .2 个D .3 个二、填空题12. 如图,在高为 2m ,坡角为 30°的楼梯上铺地毯,则地毯长度至少要 m .13. 请画出正四棱锥的俯视图.14.阳光下,高 8 m 的旗杆在地面的影长为l6m ,附近一棵小树的影长为 lO m ,则小树高为 m .15. 若y 与x 成正比例,x 与成反比例,则 y 与z 成 .16.一组数据35,35,36,36,37,38,38,38,39,40的极差是 . 17.已知一次函数y=kx+5的图象经过点(-l ,2),则k= . 18.如图,根据下列物体的三视图,在右边横线上填出几何体的名称:.19. 某商品的标价是 1375元,打 8 折(按标价的 80%)售出,仍可获利 10%,如果设该商品的进价是x 元,那么可列出方程 . 解答题20. 如图,在△ABC 中,AB 的垂直平分线交 AC 于 D ,如果AC= 7 cm ,BC=4 cm ,则△BDC 的周长为 cm .21.等边三角形ABC绕着它的中心,至少旋转度才能与其本身重合.22.6的平方根是 ,它的算术平方根是 .三、解答题23.已知,如图,⊙O1和⊙O2外切于点 P,AC是⊙O1的直径,延长 AP 交⊙O2于点 B,过点B作⊙O2的切线交 AC 的延长线于点D,求证:AD⊥BD.24.如图,以 0为圆心,方圆 8海里范围内有暗礁,某轮船行驶到距 0点正西 16海里的A处接到消息,则该船至少向东偏南多少度航行才不会触礁?25.已知抛物线y=3x2-2x- 53与直线y=2x有两个交点,如何平移直线y=2x,使得直线与抛物线只有一个交点.26.如图,已知二次函数y=ax2-4x+c的图像经过点A和点B.(1)求该二次函数的表达式;(2)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m 的值及点Q 到x 轴的距离.27.已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E . (1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.28.如图,△ACB 、△ECD 都是等腰直角三角形,且点C 在AD 上,AE 的延长线与BD 交于点F .请你在图中找出一对全等三角形,并写出证明它们全等的过程.O -1xy 3--1 A B29.如图,△ABC中,AC⊥BC,CE⊥AB于点E,AF平分∠CAB交CE于点F,过点F作FD∥BC交AB于点D,求证:AC=AD.30.说明:对于任何整数m,多项式9m都能被8整除.+)54(2-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.C5.C6.B7.A8.B9.C10.C11.C二、填空题12.+13.(223)14.515.反比例16.517.318.直六棱柱19.x1.11375=⨯20.8.01121.12022.66三、解答题23.连结O1O2,则必过点 P,连结O2B,∵O1 A=O1 P,∴∠A=∠O1PA,同理∠O2PB=∠O2BP,又∵∠O1PA =∠O2PB,∴∠A=∠O2BP.∵BD 是⊙O2的切线,∴∠DBA+∠A=∠DBA+∠O2BP=90°,∴∠ADB= 90°,∴AD⊥BD.24.该船要不触礁,则航线至少与⊙O 相切,过A 作⊙O 的切线 AB ,再过0点作0C ⊥AB 于 C ,则OC=8,又AO=16,在 Rt △OAC 中,81sin 162OC A OA ===,∴∠A= 30°,即当该船至少向东偏南30°航行时,才不会触礁.25.y=2x+by=3x2-2x-53,Δ=0得b=-3,即向下平移3个单位; 26.(1)将x =-1,y =-1;x =3,y =-9分别代入y=ax 2-4x +c 得⎩⎨⎧+⨯-⨯=-+-⨯--⨯=-.3439,)1(4)1(122c a c a 解得 ⎩⎨⎧-==.6,1c a ∴二次函数的表达式为y=x 2-4x -6.(2)将(m ,m )代入y=x 2-4x -6,得m=m 2-4m -6, 解得121,6m m =-=.∵m >0,∴11-=m 不合题意,舍去.∴ m =6.∵点P 与点Q 关于对称轴2=x 对称,∴点Q 到x 轴的距离为6.27.(1)证明:在△A BC 中, AB =AC ,AD ⊥BC .∴ ∠BAD =∠DAC .∵ AN 是△ABC 外角∠CAM 的平分线,∴ MAE CAE ∠=∠. ∴ ∠DAE =∠DAC +∠CAE =⨯21180°=90°.又 ∵ AD ⊥BC ,CE ⊥AN ,∴ ADC CEA ∠=∠=90°,∴ 四边形ADCE 为矩形.(2)例如,当AD =12BC 时,四边形ADCE 是正方形. 证明:∵ AB =AC ,AD ⊥BC 于D .∴ DC =12BC .又 AD =12BC ,∴ DC =AD .由(1)四边形ADCE 为矩形,∴ 矩形ADCE 是正方形.28.△ACE ≌△BCD (SAS ).29.利用“ASA ”证△ACF ≌△ADF ,得AC=AD30.∵)252(81640169)54(222++=++=-+m m m m m ,∴9)54(2-+m 都能被8整除.。

2023年江苏省南通市中考数学真题合集试卷附解析

2023年江苏省南通市中考数学真题合集试卷附解析

2023年江苏省南通市中考数学真题合集试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.在Rt △ABC 中,∠C=90°,下列式子不一定成立的是( ) A .sinA=cosB B .sinB=cosAC .tanA=tanBD .sin 2A+sin 2B=12.如图,将△ABC 绕顶点A 顺时针旋转60°后,得到△AB ′C ′,且C ′为BC 的中点,则C ′D :DB ′=( )A .1:2B .1:C .1D .1:33.下列计算错误的是( ) A .sin60° - sin30°= sin30°B .22045cos 451o sin +=C .00sin 60tan 60cos 60o = D .00301sin 30tan 30o cos =4.小红把班级勤工助学挣得的班费 500 元按一年期存入银行,已知年利率为 x ,一年 到期后, 银行将本金和利息自动按一年定期转存,设两年到期后,本利和为 y 元,则y 与x 之间的函数关系式为( ) A .25y x x =+ B .2500y x =+ C .2500y x x =+ D .2500(1)y x =+ 5.下列正多边形中,能够铺满地面的是( ) A .正五边形 B .正六边形C .正七边形D .正八边形6.下列图形中,中心对称图形的是( )A .B .C .D .7.下列图形放在一起能镶嵌平面的是( )A .正五边形与长方形B .正方形与长方形C .正方形与正六边形D .正三角形与正八边形8.下列方程中是一元二次方程的是( ) A .2x +1=0B .y 2+x=1C .x 2+1=0D .112=+x x9.不等式组⎩⎨⎧>->-03042x x 的解集为( )A .x >2B .x <3C .x >2或 x <-3D .2<x <3二、填空题10.△ABC 中,CD ⊥AB ,垂足为 D ,以 CD 为直径画圆,与这个圆相切的直线是 .11.为估计新疆巴音布鲁克草原天鹅湖中天鹅的数量. 先捕捉 10 只,全部做上标记后放飞,过一段时间后,重新捕捉 60 只,数一数带有标记的天鹅有 3 只,据此可推断该地区大约有天鹅只.解答题12.将一长方形的纸片按如图方式折叠,BC,BD为折痕,则∠CBD= 度.13.已知:如图,在直角坐标系中,点A,B分别是x轴,y轴上的任意两点,BE是∠ABy的平分线,BE的反向延长线与∠OAB的角平分线交于点C,则∠ACB = .14.如图,已知∠1=∠2=∠3,∠GFA=36°,∠ACB=60°,AQ平分∠FAC,则∠HAQ= .15.一次函数图象经过点(2,0)和(-2,4),这个一次函数的解析式是.16.如图,从2街4巷到4街2巷,走最短的路线的走法共有种.17.如图,若∠1 =∠2,则∥,理由是;若∠4=∠3,则∥,理由是.18.如图,△ABC和△A′B′C′关于直线l对称,下列结论中(1)△ABC≌△A′B′C′;(2)∠BAC=∠B′A′C′;(3)直线l垂直平分CC′;(4)直线BC和B′C′的交点不一定在直线l上.正确的有_____________(填序号)19.下列方程组中,其中是二元一次方程组的有 (填序号).①235571x yx y+=⎧⎨--=⎩,②123xyy x⎧+=⎪⎨⎪-=⎩,③32027x yy z-=⎧⎨+=⎩,④304xy-=⎧⎨=⎩20.如图所示,已知AB=AD,AE=AC,∠DAB=∠EAC,请将下列说明△ACD≌△AEB的理由的过程补充完整.解:∵∠DAB=∠EAC(已知),∴∠DAB+ =∠EAC+ ,即 = .在△ACD和△AEB中AD=AB( ),= (已证),= (已知),∴△ACD≌△AEB( ).21.一个两位数,个位上的数字为a,十位上的数字比个位上的数字大2,用代数式表示这个两位数为 .22.对于加法,我们有 3+5=5+3,11112332+=+,(-3) +(-0.5) = (-0. 5)+(-3),…,用字母可以表示成.23.绝对值小于 2 的整数有个,它们分别是.三、解答题24.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数123456出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.25.已知:如图,在□ABCD 中,以A 为圆心,AB 为半径作圆交AD 、BC 于F 、G ,延长 BA交⊙A 于E .求证:⌒EF=⌒FG .26.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数: 每人加工件数 540 450 300 240 210 120 人数1l2632(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?27.某广告公司欲招聘广告策划人员一名,对A 、B 、C 三名候选人进行了三项素质测试,他们的各项测试如下表所示:(1)根据三次测试的平均成绩确定录用人选,那么谁将被录用?(2)根据实际需要,公司将创新、综合知识、语言三项测试得分按4:3:1的比例确定各人的测试成绩,那么此时谁将被录用?测试项目 测试成绩 A B C 创新 72 85 67 综合知识 50 74 70 语言88456728.已知:如图,AB ∥DE ,AC ∥DF ,BE=CF ,求证:AB=DE .29.已知235x x +-的值为 7,求2200739x x --的值.30. 一位同学想利用树影测出树高,他在某时刻测得直立的标杆高1米,影长是0.9米,但他去测树影时,发现树影的上半部分落在墙CD 上,(如图所示)他测得BC =2.7米,CD=1.2米.你能帮他求出树高为多少米吗?AB DFCE【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.A4.D5.B6.B7.B8.C9.D二、填空题10.AB11.20012.9013.45°14.12°15.2y x=-+16.617.AB;CD;同位角相等,两直线平行;AE;CF;内错角相等,两直线平行18.(1)(2)(3)19.①③20.∠BAC,∠BAC,∠DAC,∠BAE,已知,∠DAC,∠BAE,AC,AE,SAS 21.1120a+22.a+b=b+a23.3;-1,0,1三、解答题24.解:(1)“3点朝上”出现的频率是616010=;“5点朝上”出现的频率是201603=;(2)小颖的说法是错误的.这是因为,“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的频率最大.只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近.小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次.(3)列表如下:1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6789101112∴121(3)363P ==点数之和为的倍数. 25.连结 AG ,∵AB 、AG 是半径,∴AB=AG ,∴∠2=∠3 ,∵□ABCD ,∴.AD ∥BC ,∴∠1 = ∠2,∠3 =∠4 ,∴∠1 = ∠4 ,∴⌒EF =⌒FG .26.(1)平均数:260(件) 中位数:240(件) 众数:240(件);(2)不合理 因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性 因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理27.(1)A 将被录用;(2)B 将被录用28.证明:∵AB ∥DE ,∴∠B=∠DEF . ∵AC ∥DF ,∴∠F=∠ACB .∵BE=CF ,∴BE+EC= CF + EC 即BC=EF . ∴△ABC ≌△DEF ,∴AB=DE .29.197130.4.2m小红投掷的点数 小颖投掷 的点数。

南通中考数学试题及答案2022

南通中考数学试题及答案2022

南通中考数学试题及答案2022一、选择题1. 计算:$\frac{3}{5}\div\frac{2}{3}=$A. $\frac{9}{10}$B. $\frac{15}{13}$C. $\frac{9}{13}$D.$\frac{15}{10}$2. 已知甲、乙两数的比为$3:5$,且$\frac{乙}{甲}=\frac{4}{15}$,则乙是甲的:A. $\frac{2}{3}$B. $\frac{3}{2}$C. $\frac{9}{2}$D.$\frac{15}{4}$3. 下列二次方程中,有实根的是:A. $2x^2-3x+8=0$B. $x^2+4x-5=0$C. $3x^2+5x+2=0$D.$4x^2+4x+4=0$4. 若$y$是$x$的函数,且满足$y(2)=5$,则在图像上的点$(2,5)$是:A. 横坐标为2,纵坐标为5的一个点B. 自变量为2,因变量为5的一个点C. 自变量为5,因变量为2的一个点D. 横坐标为5,纵坐标为2的一个点5. 当$x$取何值时,方程$4x-7=3x+5$成立?A. $x=12$B. $x=-12$C. $x=-4$D. $x=4$二、填空题6. 一盒装有红、黄、绿三种颜色的小球,其中红球比黄球多5个,绿球数比黄球数的一半还少4个,若黄球数为$x$个,则红球数为____,绿球数为____。

7. 甲、乙两个数互质,且甲数是乙数的三倍,那么甲数与乙数的和是____。

8. 已知函数$y=ax^2+bx+c$的图像顶点为$(-1,4)$,且过点$(2,1)$,则$a+b+c=$____。

三、解答题9. 一辆汽车经过一段公路,在半程处减速,然后又以相同的速度加速通过剩下的一段公路,最后以110公里/小时的速度行驶了整个路程,若这段路程全程用时3小时,试求该汽车行驶的最大速度和减速的加速度。

10. 已知等差数列的前$n$项的和为$S_n=\frac{n(3a_1+2n-1)}{2}$,其中$a_1$为首项,$n$为项数。

南通中考数学试卷真题

南通中考数学试卷真题

南通中考数学试卷真题第一节选择题1. 下列选项中,哪一个是一个无理数?A. √4B. 0.5C. 2/3D. π2. 设正方体的棱长为x,则正方体的表面积为A. 3xB. 4xC. 6xD. 12x²3. 若x² + 3x + a 是一个完全平方三项式,其中a的值是A. 1B. 2C. 3D. 44. 设函数f(x) = 2x - 1,g(x) = x² + 1, 则f(x) = g(x)的解为A. x = 1B. x = 2C. x = 3D. x = 45. 在△ABC中,∠A = 60°,∠B = 80°,则∠C的度数为A. 10°B. 30°C. 50°D. 70°第二节解答题1. 现有一边长为10 cm的正方形,另有一个边长为6 cm的等边三角形,如图所示。

请问如何将这个三角形安放在正方形内,使得三角形的面积最大?(解答略)2. 某班级有80名学生,其中男生人数是女生人数的2倍,男生和女生的平均身高分别为165 cm和160 cm。

求全班学生的平均身高。

(解答略)3. 解二元一次方程组:2x + y = 73x - 2y = 2(解答略)4. 一张长方形纸片的长和宽的比是2:1。

现将纸片从短边开始沿顺时针方向剪去1/3的纸片,然后将剩下的部分依然保持原来位置进行叠放,形成一摞纸片。

求这一摞纸片的高度与原纸片的比值。

(解答略)5. 如图,ABC是一个直角三角形,∠BAC = 90°,BC = 15 cm,AC = 20 cm。

P是BC边上一点,BP:PC = 2:1。

求AP的长度。

(解答略)总结:本文为南通中考数学试卷的真题,共分为两节。

第一节是选择题,包括五道题目,涵盖了数的性质、立体几何、函数、三角形等不同知识点。

第二节是解答题,分别涉及到几何图形的最优解、平均值的计算、二元一次方程组的解法、纸片叠加的比值、直角三角形的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(本试卷满分150分,考试时间120分钟)
一、选择题(本大题共10小题,每小题3分,满分30分) 1.下列各数中,小于-3的数是【 】
A .2
B .1
C .-2
D .-4 【答案】D 。

2.某市2013年参加中考的考生人数约为85000人,将85000用科学记数法表示为【 】 A .48.510⨯ B .58.510⨯ C .40.8510⨯ D .50.8510⨯ 【答案】A 。

3.下列计算,正确的是【 】
A .43x x x -=
B .632x x x ÷=
C .34x x x ⋅=
D .()
2
3
6ax ax =
【答案】C 。

4.下面的几何体中,既是轴对称图形又是中心对称图形的个数是【 】
A .4
B .3
C .2
D .1 【答案】C 。

5.有3cm ,6cm ,8cm ,9cm 的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为【 】
A .1
B .2
C .3
D .4 【答案】C 。

6.函数y x 1
=
-中,自变量x 的取值范围是【 】
A .x >1
B .x ≥1
C .x >-2
D .x ≥―2 【答案】A 。

7.如图,用尺规作出∠OBF=∠AOB ,所画痕迹MN 是【 】
A.以点B为圆心,OD为半径的弧
B.以点C为圆心,DC为半径的弧
C.以点E为圆心,OD为半径的弧
D.以点E为圆心,DC为半径的弧
【答案】D。

8.用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4 cm,底面周长是6π cm,则扇形的半径为【】
A.3cm B.5cm C.6cm D.8cm
【答案】B。

9.小李和小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中的信息,有下列说法:
(1)他们都行驶了20 km;
(2)小陆全程共用了1.5h;
(3)小李和小陆相遇后,小李的速度小于小陆的速度
(4)小李在途中停留了0.5h。

其中正确的有【】
A.4个 B.3个 C.2个 D.1个
【答案】A。

10.如图,R t△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是AB的中点,CD与AB的交点
为E,则CE
DE
等于【】
A.4 B.3.5 C.3 D.2.5 【答案】C。

二、填空题(本大题共8小题,每小题3分,满分24分)
11.反比例函数
k
y
x
的图象经过点(1,2),则k= ▲ 。

【答案】2。

12.如图,直线AB、CD相交于点O,OE⊥AB,∠BOD=200,则∠COE等于▲ 度。

【答案】70。

13.一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是▲ .【答案】球。

14.如图,在R t△ABC 中,CD 是斜边AB 上的中线,已知CD=2,AC=3,则sinB 的值是 ▲ 。

【答案】
3
4。

15.已知一组数据5,8,10,x ,9的众数是8,那么这组数据的方差是 ▲ 。

【答案】2.8。

16.如图,经过点B (-2,0)的直线y kx b =+与直线y 4x 2=+相交于点A (-1,-2),则不等式4x 2<kx b<0++的解集为 ▲ 。

【答案】2<x<1--。

17.如图,在
ABCD 中,AB=6cm ,AD=9cm ,∠BAD 的平分线交BC 于点E ,交DC 的延长线于
点F ,BG ⊥AE ,垂足为G ,BG=42cm ,则EF +CF 的长为 ▲ cm 。

【答案】5。

18.已知x 2m n 2=++和x m 2n =+时,多项式2x 4x 6++的值相等,且m n 20-+≠,则当()x 3m n 1=++时,多项式2x 4x 6++的值等于 ▲ 。

【答案】3。

三、解答题(本大题共10小题,满分96分) 19.
(1)计算:082( 5.3)3π÷+---。

【答案】解:原式=2
+1-3=0。

(2)先化简,再求代数式的值: 22
1m 2m 11m 2m 4++⎛
⎫-÷ ⎪+-⎝⎭
,其中m =1。

【答案】解:原式= ()()()()()()
2
2
m 1m 2m 2m 21m 1m 2
==m 2m 2m 2m 2m 1m 1++-+-+-÷⋅++-+++。

当m =1时,原式=
121
=112
--+。

20.在平面直角坐标系xOy 中,已知A (-1,5),B (4,2),C (-1,0)三点。

(1)点A 关于原点O 的对称点A ′的坐标为 ▲ ,点B 关于x 轴对称点B ′的坐标为 ▲ ,点C 关于y 轴对称点C ′的坐标为 ▲ ; (2)求(1)中的△A ′B ′C ′的面积。

【答案】解:(1)(1,-5);(4,-2);(1,0)。

(2)如图,△A ′B ′C ′的面积115
5322
=
⨯⨯=。

21.某水果批发市场将一批苹果分为A ,B ,C ,D 四个等级,统计后将结果绘成条形图,已知A 等级苹果的重量占这批苹果总重量的30%。

回答下列问题: (1)这批苹果总重量为 ▲ kg ; (2)请将条形图补充完整;
(3)若用扇形图表示统计结果,则C 等级苹果所对应扇形圆心角为 ▲ 度。

【答案】解:(1)4000。

(2)条形图补充完整如下:
(3)90。

22.在不透明的袋子中有四张标有数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏。

小明画出树形图如下:
小华列出表格如下:

1 2 3 4
一次
第二次
1 (1,1)(2,1)(3,1)(4,1)
2 (1,2)(2,2)①(4,2)
回答下列问题:
(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后 ▲ (填“放回”或“不放回”),再随机抽出一张卡片;
(2)根据小华的游戏规则,表格中①表示的有序数对为 ▲ ;
(3)规定两次抽到的数字之和为奇数的获胜,你认为淮获胜的可能性大?为什么? 【答案】解:(1)放回。

(2)(3,2)。

(3)理由如下:
∵根据小明的游戏规则,共有12种等可能结果,数字之和为奇数的有8
种,
∴概率为:
82123
=。

∵根据小华的游戏规则,共有16种等可能结果,数字之和为奇数的有8
种,
∴概率为:
81162
=。

∵21>32
,∴小明获胜的可能性大。

23.若关于x 的不等式组()x x 1
>0233x 5a 4>4x 13a +⎧+⎪⎨⎪++++⎩
恰有三个整数解,求实数a 的取值范围。

【答案】解:解
x x 1>023++得:2x >5
-; 解()3x 5a 4>4x 13a ++++得:x <2a 。

∴不等式组的解为2
<x <2a 5
-。

∵关于x 的不等式组()x x 1
>0233x 5a 4>4x 13a +⎧+⎪⎨⎪++++⎩
恰有三个整数解,
∴22a <3≤,解得31a <
2
≤。

相关文档
最新文档