氧解吸实验-学生
化工原理氧解吸实验

实验名称:氧解吸实验实验摘要本实验测定不同气速下干填料塔和湿填料塔的压降,得到填料层压降—空塔气速关系曲线,确定塔的处理能力及找到最佳操作点。
然后用吸收柱使水吸收纯氧形成富氧水,送入解析塔再用空气进行解吸,进而可计算出不同气液流量比下液相体积总传质系数K x a,液相总传质单元高度H OL,液相总传质单元数N OL。
关键词:氧气解吸液相体积总传质系数液相总传质单元高度液相总传质单元数一、实验目的1、测量填料塔的流体力学性能2、测量填料塔的吸收-解吸传质性能3、比较不同填料的差异二、实验原理1、填料塔流体力学性能为保证填料塔的正常运行,通常需要控制操作气速处于液泛气速的0.5~0.8倍之间。
如图4-1在双对数坐标系下,气体自下而上通过填料层时,塔压降ΔP与空塔气速u符合关系式0.2~8.1P u∆,∝∆.当有液体喷下,低气速操作时,0.2~8.1=P u此时的ΔP比无液体喷下时要高。
气速增加到d点,气液两相的流动开始互相影响,以上2.∆,此时的操作点称为载液点。
气速在增大到e点时,气液两相的P∝u交互影响恶性发展,导致塔内大量积液且严重返混,以上10∆,此时的操作点P∝u称为泛液点,对应的气速就是液泛气速。
本次实验直接测量填料塔性能参数,确定其液泛气速,另外还可以用公式法、关联图法等确定。
全塔压降直接读仪表,空塔气速u由孔板流量计测定:s P A V/m 1.07854.0)25.110002(018.07854.061.0u 25.0孔板2⨯÷⨯∆⨯⨯⨯== 式中ΔP 孔板——孔板压降,Kpa2、H O 2P E 20.9Kpa解吸过程的平衡线与操作线都是直线,传质单元数可用对数平均推动力法计算:eee e m x xeOL w w w w x x x x x x x x x dx 112211221221ln ln N --≈--≈∆-=-=⎰)/()ln()x (-)(11221122e e e e m x x x x x x x x ----=∆)1.07854.0/(055.02水⨯⋅=V LH ——填料高度,0.75m ;V 水——水流量,L/h;L ——水摩尔流率,Kmol/(m 2.h),喷淋密度大于7.3m 3/(m 2.h); K xa ——液相体积传质系数,Kmol/(m 3.h);w 2——富氧水质量浓度,mg/L;w 1——贫氧水质量浓度,mg/L ; w 2e ,w 1e ——富氧水、贫氧水平衡含氧量,查表或实验测定,mg/L;根据以上各式,测量出水温度t ,水流量V 水,氧浓度w 1、w 2,即可算出填料塔传质系数K xa图4-2 气液流向和组成三、 实验流程1、吸塔四、1、2、3、固定水流量,从小到大改变气量,每个点稳定后,记录数据4、塔开始液泛时,记录最后一组数据,粗略确定泛点,完成湿料实验5、调节气量到当前值得一半,稳定2min,塔釜取样测量w e=11.13mg/L6、检查氧气罐压力约为0.05Mpa,打开防水倒灌阀和流量调节阀同氧气7、载点附近完成解吸操作,每个点稳定3min,顶、釜同时取样(两次)测量氧浓度8、实验结束后,关闭防水倒灌阀门,总阀门,溶氧仪等举例计算:以第四组数据为例:孔板压降ΔP=2.42kPa,全塔压降ΔP=0.85kPa, 空气流量V=32.0 m 3/h ,填料高度h=0.75m 塔径d=0.1m5.02举例计算同表1表3、解吸实验数据记录表1e 传质单元高度m N h H OL OL197.0805.375.0===水摩尔流量97.10591.07854.0150055.0)1.07854.0/(055.022水=⨯⨯=⨯⋅=V L Kmol/(m 2.h)体积传质单元数5.5377197.097.1059===OL xa H L K kmol.m -3.h -1 六、 作图分析湿塔填料数据 干经origin 曲线1:曲线3:曲线4:实验图表分析1、干塔填料实验,在上图中ΔP=u5.1(与实际的ΔP=u1.8~2.0相差较大)原因在于实验过程中读取全塔压降的读数偏大,导致实验结果偏大。
氧吸收解吸系数测定实验报告

氧吸收/解吸系数测定实验报告一、实验目的1、了解传质系数的测定方法;2、测定氧解吸塔内空塔气速与液体流量对传质系数的影响;3、掌握气液吸收过程液膜传质系数的实验测定方法;4、关联圆盘塔液膜传质系数与液流速率之间的关系; 4、掌握VOC 吸收过程传质系数的测定方法。
二、实验原理1) 吸收速率吸收是气、液相际传质过程,所以吸收速率可用气相内、液相内或两相间传质速率表示。
在连续吸收操作中,这三种传质速率表达式计算结果相同。
对于低浓度气体混合物单组分物理吸收过程,计算公式如下。
气相内传质的吸收速率:)(i y A y y F k N -=液相内传质的吸收速率:)(x x F k N i x A -=气、液相相际传质的吸收速率:)()(**x x F K y y F K N x y A -=-=式中:y ,y i ——气相主体和气相界面处的溶质摩尔分数;x ,x i ——液相主体和液相界面处的溶质摩尔分数; x *,y *——与x 和y 呈平衡的液相和气相摩尔分数;k x ,K x ——以液相摩尔分数差为推动力的液相分传质系数和总传质系数; k y ,K y ——以气相摩尔分数差为推动力的气相分传质系数和总传质系数; F ——传质面积,m 2。
对于难溶气体的吸收过程,称为液膜控制,常用液相摩尔分数差和液相传质系数表达吸收速率式。
对于易溶气体的吸收过程,称为气膜控制,常用气相摩尔分数差和气相传质系数表达吸收速率式。
本实验为一解吸过程,将空气和富氧水接触,因富氧水中氧浓度高于同空气处于平衡的水中氧浓度,富氧水中的氧向空气中扩散。
解吸是吸收的逆过程,传质方向与吸收相反,其原理和计算方法与吸收类似。
但是传质速率方程中的气相推动力要从吸收时的(y -y *)改为解吸时的(y *-y ),液相推动力要从吸收时的(x *-x )改为解吸时的(x -x *)。
2) 吸收系数和传质单元高度吸收系数和传质单元高度是反映吸收过程传质动力学特性的参数,是吸收塔设计计算的必需数据。
氧解析实验实验报告

一、实验目的1. 通过氧解析实验,了解氧气的性质和制备方法。
2. 掌握氧气的收集和检验方法。
3. 提高实验操作技能和观察分析能力。
二、实验原理氧气是一种无色、无味、无臭的气体,是空气中含量最多的气体之一。
实验室中,常用高锰酸钾或过氧化氢分解等方法制备氧气。
本实验采用过氧化氢分解法制备氧气,并利用排水法收集氧气。
三、实验仪器与试剂1. 仪器:锥形瓶、玻璃棒、集气瓶、水槽、酒精灯、火柴、铁夹、铁架台、胶塞、导管等。
2. 试剂:过氧化氢溶液、硫酸铜溶液、水。
四、实验步骤1. 将锥形瓶洗净、干燥,并加入适量的过氧化氢溶液。
2. 用玻璃棒搅拌均匀,观察锥形瓶内是否有气泡产生。
3. 将锥形瓶固定在铁架台上,用胶塞将锥形瓶和导管连接好。
4. 将导管插入集气瓶中,确保集气瓶底部有少量水。
5. 点燃酒精灯,将锥形瓶加热至约40℃,观察锥形瓶内气泡产生情况。
6. 收集氧气:当气泡连续均匀地产生时,将导管插入集气瓶中,收集氧气。
7. 检验氧气:用火柴点燃一根小木条,将燃烧的木条插入集气瓶中,观察木条燃烧情况。
五、实验现象与结论1. 实验现象:锥形瓶内产生气泡,气泡连续均匀地产生;集气瓶中的水被气泡顶出,木条在集气瓶中燃烧更旺。
2. 实验结论:(1)过氧化氢在加热条件下分解产生氧气,反应方程式为:2H2O2 → 2H2O +O2↑。
(2)氧气具有助燃性,能使木条燃烧更旺。
六、注意事项1. 实验过程中,注意安全,防止过氧化氢溶液溅入眼睛或皮肤。
2. 加热锥形瓶时,注意控制温度,防止过热。
3. 收集氧气时,注意调整导管位置,确保集气瓶底部有少量水。
4. 实验结束后,将实验器材洗净、晾干,放回原处。
七、实验拓展1. 探究不同浓度的过氧化氢溶液分解产生氧气的速率。
2. 研究催化剂对过氧化氢分解产生氧气的影响。
3. 通过实验,了解氧气的工业制备方法。
八、实验总结通过本次氧解析实验,我们掌握了氧气的制备方法、收集和检验方法。
实验过程中,培养了我们的实验操作技能和观察分析能力。
氧解吸实验报告 北京化工大学

北京化工大学化工原理实验报告实验名称:氧解吸实验班级:化工姓名:学号:序号:同组人:设备型号:第套实验日期:2014-4-01一、实验摘要本实验测定不同气速下干塔和湿塔的压降,得到了填料层压降—空塔气速关系曲线,确定塔的处理能力及找到最佳操作点。
然后用吸收柱使水吸收纯氧形成富氧水,送入解析塔再用空气进行解吸,进而可计算出不同气液流量比下液相体积总传质系数K x a ,液相总传质单元高度H OL ,液相总传质单元数N OL 。
关键词:氧气 解吸 液相体积总传质系数 液相总传质单元高度 液相总传质单元数二、实验目的1、测量填料塔的流体力学性能;2、测量填料塔的吸收-解吸传质性能;3、比较不同填料的差异。
三、实验原理1、填料塔流体力学性能为保证填料塔的正常运行,通常需要控制操作气速处于液泛气速的0.5~0.8倍之间。
如图1,在双对数坐标系下,气体自下而上通过干填料层时,塔压降ΔP 与空塔气速u 复合关系式ΔP=u 1.8~2.0。
当有液体喷下,低气速操作时,ΔP ∝u 1.8~2.0,此时的ΔP 比无液体喷淋时要高。
气速增加到d 点,气液两相的流动开始相互影响,ΔP ∝u 0.2以上,此时的操作点成为载液2点。
气速再增加到e 点时,气液两相的交互影响恶性发展,导致塔内大量积液且严重返混,ΔP ∝u 10以上,此时的操作点称为液泛点,对应的气速就是液泛气速。
本实验直接测量填料塔性能参数,确定其液泛气速,还可用公式法、关联图法等确定。
全塔压降直接读仪表,空塔气速u 由孔板流量计测定:s P A V u /m 1.07854.025.110002(018.07854.061.025.02⨯÷⨯∆⨯⨯⨯⨯==)孔板。
2、填料塔传质性能——考察氧解吸过程的液相体积传质系数K x a 。
以氧气为溶质,解吸塔内空气、水的摩尔流率不变,水温恒定。
根据低含量气体吸收解吸全塔传质速率方程可知:⎰-⋅=⨯=21;x x ex OL O x x dx a K L N H H 。
吸收实验

化工基础实验报告实验名称 氧吸收/解吸系数测定班级 分2 姓名 李上 学号 2012011849 成绩 实验时间 12月18日 同组成员 董昊、李寒松 1.实验目的1了解吸收(解吸)操作的基本流程和操作方法。
2测定氧解吸塔内空塔气速和液体流量对传质系数的影响。
2.实验原理吸收是工业上常用的操作,常用于气体混合物的分离。
在吸收操作中,气体混合物和吸收剂分别从塔底和塔顶进入塔内,气、液两相在塔内实现逆流接触,使气体混合物中的溶质较完全地溶解在吸收剂中,于是塔顶获得较纯的惰性组分,从塔底得到溶质和吸收剂组成的溶液(通称富液)。
当溶质有回收价值或吸收价格较高时,把富液送入再生装置进行解吸,得到溶质或再生的吸收剂(通称贫液),吸收剂返回吸收塔循环使用。
(1)吸收速率吸收是气、液相际传质过程,所以吸收速率可用气相内、液相内或两相间的传质速率来表示。
在连续吸收操作中,这三种传质速率表达式计算结果相同。
对于低浓度气体混合物单组分无力吸收过程,计算公式如下。
气相内传质的吸收速率:)y y (F k N i y A -=液相内传质的吸收速率:)x x (F k N i x A -=气、液两相相际传质的吸收速率:)x x (F K )y y (F K N *x *y A -=-=式中:y 、i y ——气相主体和气相界面处的溶质摩尔分数;x 、i x ——液相主体和液相界面处的溶质摩尔分数;*x 、*y ——与y 和x 呈平衡的液相和气相摩尔分数;x k 、x K ——以液相摩尔分数差为推动力的液相分传质系数和总传质系数; y k 、y K ——以气相摩尔分数差为推动力的气相分传质系数和总传质系数;F ——传质面积,2m 。
对于难溶溶质的吸收过程,称为液膜控制,常用液相摩尔分数差和液相传质系数表达的吸收速率式。
对于易溶气体的吸收过程,称为气膜控制,常用气相摩尔分数差和气相传质系数表达的吸收速率式。
本实验为一解吸过程,将空气与富氧水接触,因富氧水中养的浓度高于同空气处于平衡的水中的氧浓度。
氧解吸实验(ok)

五、数据处理:1.干塔压降标况:101.325kpa,273.15K原始数据:干塔 1 2 3 4 5 6空气流量 m3/h 9 12 15 18 21 24空塔压降 Pa 100 150 220 300 400 490空气温度20 22 22 23 24 25空气压强 Pa 1140 1210 1330 1500 1670 1820解吸塔塔径:0.1m 吸收塔塔径:0.032m 填料高度:0.8m处理后数据:干塔 1 2 3 4 5 6空气流量(标)m3/h 9.050 12.03 15.05 18.04 21.03 24.01 空气流速 m/h 1152.3 1531.8 1915.8 2297.0 2677.5 3057.1 ln空气流速 [m/h] 7.0496 7.3342 7.5579 7.7394 7.8926 8.0252 ln空塔压降 [Pa] 4.8283 5.2338 5.6167 5.9269 6.2146 6.4175从图中拟合可得直线斜率为1.655.2.湿塔压降原始数据:湿塔 1 2 3 4 5 6空气流量 m3/h 9 12 15 18 21 24空塔压降 Pa 160 290 430 610 840 1130空气温度35 35 34 34 35 35空气压强 Pa 1320 1340 1580 1830 2100 2460湿塔7 8 9 10 11空气流量 m3/h 27 29 30 31 液泛(31.5)空塔压降 Pa 1490 1880 2540 3250 3660空气温度36 37 38 39 40空气压强 Pa 2910 3330 3750 4710 5140处理后数据:湿塔 1 2 3 4 5 6空气流量(标)m3/h 8.835 11.78 14.77 17.74 20.69 23.69 空气流速 m/h 1124.9 1500.1 1880.3 2259.1 2634.8 3016.4 ln空气流速 [m/h] 7.0255 7.3133 7.5392 7.7227 7.8766 8.0118 ln空塔压降 [Pa] 5.0752 5.6699 6.0638 6.4134 6.7334 7.0300 湿塔7 8 9 10 11空气流量(标) m3/h 26.67 28.65 29.65 30.73 31.24空气流速 m/h 3395.3 3648.3 3775.6 3912.9 3977.7ln空气流速 [m/h] 8.1302 8.2020 8.2363 8.2720 8.2885ln空塔压降 [Pa] 7.3065 7.5390 7.8399 8.0864 8.2052实验实测得空气流量约为31m3/h左右时,填料塔内出现较剧烈的液泛现象。
氧解吸实验报告

氧解吸实验报告化原实验报告实验题⽬:氧解吸实验班级:化⼯0907班姓名:学号:同组⼈:y 12氧解吸实验⼀、实验⽬的1. 熟悉填料塔的构造与操作。
2. 观察填料塔流体⼒学状况,测定压降与⽓速的关系曲线。
3. 掌握液相体积总传质系数 K x a 的测定⽅法并分析影响因素。
4. 学习⽓液连续接触式填料塔,利⽤传质速率⽅程处理传质问题的⽅法。
⼆、实验原理本装置先⽤吸收柱将⽔吸收纯氧形成富氧⽔后(并流操作),送⼊解吸塔顶再⽤空⽓进⾏解吸,实验需测定不同液量和⽓量下的解吸总传质系数K x a ,并进⾏关联,得到K x a =AL a V b 的关联式,同时对四种不同填料的传质效果及流体⼒学性能进⾏⽐较。
本实验引⼊了计算机在线数据采集技术,加快了数据记录与处理的速度。
1、填料塔流体⼒学特性⽓体通过⼲填料层时,流体流动引起的压降和湍流流动引起的压降规律相⼀致。
在双对数坐标系中,此压降对⽓速作图可得⼀斜率为1.8~2 的直线(图中aa 线)。
当有喷淋量时,在低⽓速下(c 点以前)压降也正⽐于⽓速的1.8~2 次幂,但⼤于同⼀⽓速下⼲填料的压降(图中bc 段)。
随⽓速的增加,出现载点(图1 中c 点),持液量开始增⼤,压降-⽓速线向上弯,斜率变陡(图中cd 段)。
到液泛点(图中d 点)后,在⼏乎不变的⽓速下,压降急剧上升。
2、传质实验填料塔与板式塔⽓液两相接触情况不同。
在填料塔中,两相传质主要是在填料有效湿表⾯上进⾏,需要计算完成⼀定吸收任务所需填料⾼度,其计算⽅法有:传质系数法、传质单元法和等板⾼度法。
本实验是对富氧⽔进⾏解吸,如右图所⽰。
由于富氧⽔浓度很图2 富氧⽔解析实验⼩,可认为⽓液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以⽤对数平均浓度差计算填料层传质平均推动⼒。
整理得到相应的传质速率⽅式为:G A =K x aV p?x m即K x a=G A/V p?x m式中x m=x2?x e2?(x1?x e1)lnx2?x e2x1?x e1G A=L(x2?x1)V P=ZΩ相关填料层⾼度的基本计算式为:Z=LK x aΩdxx e?xx2x1=H OL N OLH OL=Z NOL式中,N OL=dxx e?xx2x1=x2?x1Δx m H OL=LK x aΩ式中:GA—单位时间内氧的解吸量,[kmol/h];Kxa —总体积传质系数,[kmol/m3hΔx];VP—填料层体积,[m3]Δxm—液相对数平均浓度差;x1—液相进塔时的摩尔分率(塔顶);xe1—与出塔⽓相y1平衡的液相摩尔分率(塔顶);x2—液相出塔的摩尔分率(塔底);xe2—与进塔⽓相y2平衡的液相摩尔分率(塔底);Z —填料层⾼度,[m];Ω—塔截⾯积,[m2];L —解吸液流量,[kmol/h];HOL—以液相为推动⼒的传质单元⾼度,[m];NOL—以液相为推动⼒的传质单元数。
氧气的吸收与解吸实验报告

氧气的吸收与解吸实验报告一、实验目的探究氧气在水中的溶解与解吸过程,了解氧气在水中的溶解度与温度、压强的关系。
二、实验原理氧气在水中的溶解度与温度、压强和溶液中其他物质浓度有关。
当温度升高或压强降低时,氧气的溶解度会减小;而当温度降低或压强增加时,氧气的溶解度会增大。
此外,当水中其他物质浓度增加时,也会影响氧气的溶解度。
三、实验器材1. 水槽2. 水银汞柱3. 热水器4. 水银汞球四、实验步骤1. 将水槽内注满水,并放入一个水银汞柱。
2. 将热水器接通电源,将其放入水槽内加热。
3. 在热水器加热过程中,用手持式吸管将一只装有少量水银汞球的试管倒置于水槽内。
4. 观察试管内汞球变化情况,并记录下时间和温度。
5. 等热水器加热至一定温度后,关闭电源,等待水温下降。
6. 当水温下降至一定程度时,观察试管内汞球变化情况,并记录下时间和温度。
7. 将实验数据整理并进行分析。
五、实验结果在加热过程中,试管内的汞球逐渐变小;而在停止加热后,试管内的汞球逐渐变大。
随着时间的推移,汞球的大小逐渐趋于稳定。
六、实验分析根据实验结果可以得出结论:氧气在水中的溶解度与温度有关。
当水温升高时,氧气的溶解度减小;而当水温降低时,氧气的溶解度增大。
此外,在压强不变的情况下,溶液中其他物质浓度增加也会导致氧气的溶解度减小。
七、实验注意事项1. 实验过程中要注意安全。
2. 水槽内应注满水,并保持水平。
3. 实验过程中要注意控制热水器加热时间和温度。
4. 实验结束后要将器材清洗干净。
八、实验总结通过本次实验,我们了解了氧气在水中的溶解与解吸过程,并探究了氧气的溶解度与温度、压强和溶液中其他物质浓度的关系。
同时,我们也学会了如何进行实验并分析数据。
这些知识对我们深入理解化学原理和应用化学具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 氧解吸实验
一、实验目的及任务:
1、熟悉填料塔的构造与操作。
2、观察填料塔流体力学状况,测定压降与气速的关系曲线。
3、掌握总传质系数K x a 的测定方法并分析影响因素。
4、学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。
5、两种不同填料的传质性能比较(选做)。
二、基本原理:
本装置先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶行关联,得到K x a=AL a ·V b 的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。
本实验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。
1、填料塔流体力学特性:
气体通过干填料层时,流体流动引起的压降和湍流流
动引起的压降规律相一致。
在双对数坐标系中,此压降对
气速作图可得一斜率为1.8~2的直线(图中aa 线)。
当有
喷淋量时,在低气速下(c 点以前)压降也正比于气速的
1.8~2次幂,但大于同一气速下干填料的压降(图中bc 段)。
随气速的增加,出现载点(图1中c 点),持液量开始增大,压降-气速线向上弯,斜率变陡(图中cd 段)。
到液泛点 (图中d 点)后,在几乎不变的气速下,压降急剧上升。
2、传质实验:
填料塔与板式塔气液两相接触情况不同。
在填料塔中,两相
传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。
本实验是对富氧水进行解吸。
由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。
整理得到相应的传质速率方式为:
m p x A x V a K G ∆∙∙=
m p A x x V G a K ∆∙=
其中 2
2112211ln )()(e e e e m x x x x x x x x x -----=∆ ()21x x L G A -= Ω∙=Z V p
相关的填料层高度的基本计算式为:
图1 填料层压降塔气速关系示意图
OL OL x x e x N H x
x dx a K L Z ∙=-Ω∙=⎰12 即 OL OL N Z H /= 其中 m x x e OL x x x x x dx N ∆-=-=⎰211
2 , Ω
∙=a K L H x OL 式中:
G A —单位时间内氧的解吸量
[Kmol/h] K x a —总体积传质系数[Kmol/m 3•h •Δx]
V P —填料层体积[m 3]
Δx m —液相对数平均浓度差
x 1 —液相进塔时的摩尔分率(塔顶)
x e1 —与出塔气相y 1平衡的液相摩尔分率(塔顶)
x 2 —液相出塔的摩尔分率(塔底)
x e2 —与进塔气相y 2平衡的液相摩尔分率(塔底)
Z —填料层高度[m]
Ω —塔截面积[m 2]
L —解吸液流量[Kmol/h]
H OL —以液相为推动力的传质单元高度
N OL —以液相为推动力的传质单元数
由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即K x =k x , 由于属液膜控制过程,所以要提高总传质系数K x a ,应增大液
相的湍动程度。
在y —x 图中,解吸过程的操作线在平衡线下方,本实验中还是一条平行于横坐标的水平线(因氧在水中浓度很小)。
备注:本实验在计算时,气液相浓度的单位用摩尔分率而不用摩尔比,这是因为在y —x 图中,平衡线为直线,操作线也是直线,计算比较简单。
三、装置说明与操作:
1.基本数据:
解吸塔径Φ=0.1m ,吸收塔径Φ=0.032m ,填料层高度0.8m (陶瓷拉西环、陶瓷波纹板、金属波纹丝网填料)和0.83m (金属θ环)。
填料参数:
2.实验流程:
图2是氧气吸收解吸装置流程图。
氧气由氧气钢瓶供给,经减压阀2进入氧气缓冲罐4,稳压在0.03~0.04[Mpa],为确保安全,缓冲罐上装有安全阀6,由阀7调节氧气流量,并经转子流量计8计量,进入吸收塔9中,与水并流吸收。
含富氧水经管道在解吸塔的顶部喷淋。
空气由风机13供给,经缓冲罐14,由阀16调节流量经转子流量计17计量,通入解吸塔底部解吸富氧水,解吸后的尾气从塔顶排出,贫氧水从塔底经平衡罐19排出。
自来水经调节阀10,由转子流量计17计量后进入吸收柱。
由于气体流量与气体状态有关,所以每个气体流量计前均有表压计和温度计。
空气流量计前装有计前表压计23。
为了测量填料层压降,解吸塔装有压差计22。
在解吸塔入口设有入口采出阀12,用于采集入口水样,出口水样在塔底排液平衡罐上采出阀20取样。
两水样液相氧浓度由9070型测氧仪测得。
图2、氧气吸收与解吸实验流程图
1、氧气钢瓶 9、吸收塔 17、空气转子流量计
2、氧减压阀 10、水流量调节阀 18、解吸塔
3、氧压力表 11、水转子流量计 19、液位平衡罐
4、氧缓冲罐 12、富氧水取样阀 20、贫氧水取样阀
5、氧压力表 13、风机 21、温度计
6、安全阀 14、空气缓冲罐 22、压差计
7、氧气流量调节阀 15、温度计 23、流量计前表压计
8、氧转子流量计 16、空气流量调节阀 24、防水倒灌阀
3.操作要点
①、流体力学性能测定
(1)测定干填料压降时,塔内填料务必事先吹干。
(2)测定湿填料压降
a.测定前要进行预液泛,使填料表面充分润湿。
b.实验接近液泛时,进塔气体的增加量要减小,否则图中泛点不容易
找到。
密切观察填料表面气液接触状况,并注意填料层压降变化幅
度,务必让各参数稳定后再读数据,液泛后填料层压降在几乎不变
气速下明显上升,务必要掌握这个特点。
稍稍增加气量,再取一、
两个点即可。
注意不要使气速过分超过泛点,避免冲破和冲跑填料。
(3)注意空气转子流量计的调节阀要缓慢开启和关闭,以免撞破玻璃管。
②、传质实验
(1)氧气减压后进入缓冲罐,罐内压力保持0.03~0.04[Mpa],不要过高,并
注意减压阀使用方法。
为防止水倒灌进入氧气转子流量计中,开水前要
关闭防倒灌阀24,或先通入氧气后通水。
(2)传质实验操作条件选取
水喷淋密度取10~15[m3/m2•h],空塔气速0.5~0.8[m/s]氧气入塔流量
为0.01~0.02[m3/h],适当调节氧气流量,使吸收后的富氧水浓度控制
在≤19.9[ppm]。
(3)塔顶和塔底液相氧浓度测定:
分别从塔顶与塔底取出富氧水和贫氧水,用测氧仪分析各自氧的含量。
(测氧仪的使用见附录)
(4)实验完毕,关闭氧气时,务必先关氧气钢瓶总阀,然后才能关闭减压阀
2及调节阀8。
检查总电源、总水阀及各管路阀门,确实安全后方可离开。
四、报告要求
1、计算并确定于填料及一定喷淋量下的湿填料在不同空塔气速下,lg△P与
lgu的关系曲线,并找出泛点与载点。
2、计算实验条件下(一定喷淋量、一定空塔气速)的液相体积总传质系数
K x a及液相总传质单元高度H
OL。
五、思考题
1、阐述干填料压降线和湿填料压降线的特征。
2、工业上,吸收在低温、加压下进行,而解析在高温、常压下进行,为什么?
3、为什么易溶气体的吸收和解吸属于气膜控制过程,难溶气体的吸收和解吸属于液膜控制过程?
4、填料塔结构有什么特点?
附录一孔板流量计的计算公式与参数
1.孔板流量计计算公式
V=C1 R C2
V:流量,单位m3/h
R:孔板压差,单位kPa
2.孔板流量计参数C1=26.8; C2=0.54
附录二:溶氧仪使用说明书
1、开启磁力搅拌器,液体流速约16 cm/s;
2、将探头插入待测液中,液面超过不锈钢段5mm;
3、读数稳定后,记录数据。
注意事项:
1、维护电极,清洗探头等;
2、不用时将探头放入海绵标定室/保存室。