2018年高考数学破解命题陷阱专题27快速解决直线与圆锥曲线综合问题的解题技巧

合集下载

2018年高考数学圆锥曲线的综合问题

2018年高考数学圆锥曲线的综合问题
1 又∵直线l不平行于坐标轴,∴kl=
y y2 x x 2x 1 =-9· 1 2 =-9· M =(-9)· ,kl· kOM=-9(常数). 2 yM x1 x2 y1 y2 kOM
所以直线OM的斜率与l的斜率的乘积为定值. 解法二:设A(x1,y1),B(x2,y2),中点M(x0,y0),
(去伪存真).
2.(2015课标Ⅱ,20,12分,0.145)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与
C有两个交点A,B,线段AB的中点为M.
(1)证明:直线OM的斜率与l的斜率的乘积为定值; (2)若l过点 , m ,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜 率;若不能,说明理由.
因为直线l过点 , m ,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.
由(1)得OM的方程为y=- x. 设点P的横坐标为xP.
9 km k 2 m2 y x, 2 x 由 得 = ,即xP= 2 . k P 2 9 k 81 2 2 2 3 k 9 9 x y m m(3 k ) m 的坐标代入l的方程得b= 将点 , ,m 3 3 k ( k 3)m . 因此xM= 3(k 2 9)
m 3
解析 (1)解法一:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM). 将y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,故
x x2 kb 9b = ,yM=kxM+b= . 2 2 k 9 k 9 2 yM 9 于是直线OM的斜率kOM= =- ,即kOM· k=-9. xM k

2018版高考数学一轮总复习高考大题冲关系列5圆锥曲线的综合问题课件文

2018版高考数学一轮总复习高考大题冲关系列5圆锥曲线的综合问题课件文

y0-1 直线 PB 的方程为 y= x+1. x0
x0 令 y=0,得 xN=- , y0-1
x0 从而|AN|=|2-xN|=2+y -1 . 0 x 2y 0 0 2 + 1 + 所以|AN|· |BM|= · y0-1 x0-2 2 2 x + 4y 0+4x0 y0-4x0-8y0+4 0 = x0y0-x0-2y0+2
解得 a=2,b=1.
x2 所以椭圆 C 的方程为 +y2=1. 4
(2)证明:由(1)知,A(2,0),B(0,1).
2 设 P(x0,y0),则 x2 0+4y0=4.
y0 当 x0≠0 时,直线 PA 的方程为 y= (x-2). x0-2 2y0 令 x=0,得 yM=- , x0-2
2y 0 从而|BM|=|1-yM|= 1+ . x - 2 0
1 直线 OM 的方程为 y=- x, 2
2 x +y2=1, 4 由方程组 1 y=- x, 2

C -
2 2 , D 2, 2 ,- . 2 2
5 5 5 所以|MC|· |MD|= (-m+ 2)· ( 2+m)= (2-m2). 2 2 4 1 1 5 2 2 2 又 |MA|· |MB| = |AB| = [(x1 - x2) + (y1 - y2) ] = [(x1 + 4 4 16 5 5 2 2 x2) -4x1x2]= [4m -4(2m -2)]= (2-m2), 所以|MA|· |MB| 16 4
题型 1 例 1
直线与圆锥曲线的位置关系 x2 y2 [2016· 四川高考]已知椭圆 E: 2+ 2=1(a>b>0)的 a b

2018届高三理科数学解析几何解答题解题方法规律技巧详细总结版

2018届高三理科数学解析几何解答题解题方法规律技巧详细总结版

2018届高三理科数学解析几何解题方法规律技巧详细总结版【简介】圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现. 【3年高考试题比较】通过比较近三年的高考题,不难发现,集中考察的是抛物线和椭圆,椭圆出现的较多,均主要考察的是直线与椭圆或抛物线的位置关系,近几年也出现了与圆的综合问题,难度没有特别大的跳跃,比较平稳,都是以运算为主要考察对象.从考查形式上分析,主要是求解圆锥曲线方程,轨迹问题(也涉及到挖点),定点问题,范围问题等.【必备基础知识融合】一、椭圆1.椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质二、双曲线1.双曲线的定义平面内与两个定点F1,F2(|F1F2|=2c>0)的距离差的绝对值等于常数(小于|F1F2|且大于零),则点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:(1)若a<c时,则集合P为双曲线;(2)若a=c时,则集合P为两条射线;(3)若a>c时,则集合P为空集.2.双曲线的标准方程和几何性质曲线的虚轴,它的长三、抛物线1.抛物线的定义(1)平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(2)其数学表达式:|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质3. 的焦点的直线与抛物线交于1122(1)y 1y 2=-p 2,x 1x 2=p 24;(2)若直线AB 的倾斜角为θ,则|AB |=2psin 2θ;|AB |=x 1+x 2+p ; (3)若F 为抛物线焦点,则有1|AF |+1|BF |=2p. 四、曲线与方程 1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上点的坐标与一个二元方程f (x ,y )=0的实数解满足如下关系: (1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 2.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系. (2)设点——设轨迹上的任一点P (x ,y ). (3)列式——列出动点P 所满足的关系式.(4)代换——依条件式的特点,将其转化为x ,y 的方程式,并化简. (5)证明——证明所求方程即为符合条件的动点轨迹方程.3.两曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎪⎨⎪⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解. 若此方程组无解,则两曲线无交点. 五、直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程,即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2|=1+1k2·|y 1-y 2|【解题方法规律技巧】典例1:已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又|OM |=|OP |=22,O 到l 的距离为4105,所以|PM |=4105,S △POM =12×4105×4105=165, 故△POM 的面积为165.【规律方法】求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法,直接根据题目提供的条件列出方程; (2)定义法,根据圆、直线等定义列方程; (3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等. 典例2:已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.(2)证明由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2), 将y =kx +b 代入y 2=8x 中, 得k 2x 2+(2bk -8)x +b 2=0. 其中Δ=-32kb +64>0.由根与系数的关系得,x 1+x 2=8-2bkk 2,①x 1x 2=b 2k2,②因为x 轴是∠PBQ 的角平分线,所以y 1x 1+1=-y 2x 2+1,即y 1(x 2+1)+y 2(x 1+1)=0, (kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0③将①,②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),即直线l 过定点(1,0). 【规律方法】利用直接法求轨迹方程(1)利用直接法求解轨迹方程的关键是根据条件准确列出方程,然后进行化简. (2)运用直接法应注意的问题①在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的.②若方程的化简过程是恒等变形,则最后的验证可以省略.典例3:已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.【规律方法】(1)求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程.(2)理解解析几何中有关曲线的定义是解题关键.(3)利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.典例4:如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D四点.点A 1,A 2分别为C 2的左,右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程.【规律方法】“相关点法”的基本步骤:(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 0,y 0);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 0=f (x ,y ),y 0=g (x ,y );(3)代换:将上述关系式代入主动点满足的曲线方程,便可得到所求被动点的轨迹方程. 典例5:已知点M (6,2)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△PAB 的面积.【规律方法】(1)求椭圆方程的基本方法是待定系数法,先定形,再定量,即首先确定焦点所在位置,然后根据条件建立关于a,b的方程组,如果焦点位置不确定,可设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),求出m,n的值即可.(2)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.(3)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率). 提醒 利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.典例6:已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8. (1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△FAB 的面积.【规律方法】(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.(3)涉及弦的中点、斜率时,一般用“点差法”求解.典例7:已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x+3与椭圆E 有且只有一个公共点T . (1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A ,B ,且与直线l 交于点P .证明:存在常数λ,使得|PT |2=λ|PA |·|PB |,并求λ的值.(1)解 由已知,a =2b ,则椭圆E 的方程为x 22b 2+y 2b 2=1. 由方程组⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =-x +3,得3x 2-12x +(18-2b 2)=0.① 方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为x =2,所以椭圆E 的方程为x 26+y 23=1.点T 的坐标为(2,1).【规律方法】有关圆锥曲线弦长问题的求解方法:涉及弦长的问题中,应熟练的利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.典例8:设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围.又点P ⎝⎛⎭⎫-12,y 0在弦MN 的垂直平分线上,所以y 0=-12k +m . 所以m =y 0+12k =34y 0.由点P ⎝⎛⎭⎫-12,y 0在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0. 【规律方法】处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.典例9:已知椭圆x 2a 2+y 2b2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于Q ,P ,与椭圆分别交于点M ,N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.典例10:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形.(1)求椭圆的方程;(2)过点S ⎝⎛⎭⎫0,-13的动直线l 交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标;若不存在,请说明理由.A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -13,x 2+2y 2-2=0,得(9+18k 2)x 2-12kx -16=0, Δ=144k 2+64(9+18k 2)>0,x 1+x 2=12k 18k 2+9,x 1x 2=-1618k 2+9, QA →=(x 1,y 1-1),QB →=(x 2,y 2-1),QA →·QB →=x 1x 2+(y 1-1)(y 2-1)=(1+k 2)x 1x 2-4k 3(x 1+x 2)+169=(1+k 2)·-169+18k 2-4k 3·12k 9+18k 2+169=0, ∴QA →⊥QB →,即以线段AB 为直径的圆恒过点Q (0,1).【规律方法】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.典例11:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.从而|BM |=|1-y M |=⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪2+x 0y 0-1. ∴|AN |·|BM |=⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4. 当x 0=0时,y 0=-1,|BM |=2,|AN |=2,所以|AN |·|BM |=4.故|AN |·|BM |为定值.【规律方法】圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.典例12:设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e |FA |,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.由(1)知F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k 24k 2+3,12k 4k 2+3. 由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k . 因为直线MH 的方程为y =-1k x +9-4k 212k . 设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k消去y ,解得x M =20k 2+912(k 2+1). 在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1, 解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝⎛⎦⎤-∞,-64或⎣⎡⎭⎫64,+∞. 典例13:已知圆x 2+y 2=1过椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点,与椭圆有且仅有两个公共点,直线l :y =kx +m 与圆x 2+y 2=1相切,与椭圆x 2a 2+y 2b 2=1相交于A ,B 两点.记λ=OA →·OB →,且23≤λ≤34. (1)求椭圆的方程;(2)求k 的取值范围;(3)求△OAB 的面积S 的取值范围.由12≤k 2≤1,得62≤|AB |≤43. 设△OAB 的AB 边上的高为d ,则S =12|AB |d =12|AB |,所以64≤S ≤23. 即△OAB 的面积S 的取值范围是⎣⎡⎦⎤64,23. 【规律方法】解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.典例14:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x +4y +6=0与圆x 2+(y -b )2=a 2相切.(1)求椭圆C 的方程;(2)已知过椭圆C 的左顶点A 的两条直线l 1,l 2分别交椭圆C 于M ,N 两点,且l 1⊥l 2,求证:直线MN 过定点,并求出定点坐标;(3)在(2)的条件下求△AMN 面积的最大值.②m =±1时,l MN :x =-65,过点⎝⎛⎭⎫-65,0.∴l MN 恒过定点⎝⎛⎭⎫-65,0.(3)由(2)知S △AMN =12×45|y M -y N |=25⎪⎪⎪⎪4m m 2+4+4m 4m 2+1=8⎪⎪⎪⎪⎪⎪m 3+m4m 4+17m 2+4=8⎪⎪⎪⎪m +1m 4⎝⎛⎭⎫m +1m 2+9=84⎪⎪⎪⎪m +1m +9⎪⎪⎪⎪m +1m . 令t =⎪⎪⎪⎪m +1m ≥2,当且仅当m =±1时取等号, ∴S △AMN ≤1625,且当m =±1时取等号. ∴(S △AMN )max =1625. 【规律方法】处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.【归纳常用万能模板】1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,证明:直线OM的斜率与直线l 的斜率的乘积为定值.A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入x 28+y 24=1得(2k 2+1)x 2+4kbx +2b 2-8=0.7分故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b 2k 2+1.10分 于是直线OM 的斜率k OM =y M x M=-12k , 即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.12分❶列出方程组,解出a 2,b 2得4分.❷设出直线l 的方程后与椭圆方程联立消去y 得到关于x 的方程准确者得4分.❸求出点M 的坐标得1分,再得到直线OM 的斜率与直线l 的斜率的乘积为定值得2分. ❹结论得1分.解答圆锥曲线中的定点、定值问题的一般步骤第一步:研究特殊情形,从问题的特殊情形出发,得到目标关系所要探求的定点、定值. 第二步:探究一般情况.探究一般情形下的目标结论.第三步:下结论,综合上面两种情况定结论.2. (本小题满分12分)(2016·全国Ⅰ卷)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPN Q 面积的取值范围.由题设得A (-1,0),B (1,0),所以|AB |=2,由椭圆定义可得点E 的轨迹方程为:x 24+y 23=1(y ≠0).4分得分点②(2)解 当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3, 所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3. 6分得分点③高考状元满分心得1.正确使用圆锥曲线的定义:牢记圆锥曲线的定义,能根据圆锥曲线定义判断曲线类型,如本题第(1)问就涉及椭圆的定义.2.注意分类讨论:当用点斜式表示直线方程时,应分直线的斜率存在和不存在两种情况求解,易出现忽略斜率不存在的情况,导致扣分,如本题第(2)问中的得分10分,导致失2分.3.写全得分关键:在解析几何类解答题中,直线方程与圆锥曲线方程联立后得到的一元二次方程,根据一元二次方程得到的两根之和与两根之积、弦长、目标函数等一些关键式子和结果都是得分点,在解答时一定要写清楚.解题程序第一步:利用条件与几何性质,求|EA|+|EB|=4.第二步:由定义,求点E的轨迹方程x24+y23=1(y≠0).第三步:联立方程,用斜率k表示|MN|.第四步:用k表示出|PQ|,并得出四边形的面积.第五步:结合函数性质,求出当斜率存在时S 的取值范围.第六步:求出斜率不存在时面积S 的值,正确得出结论.【易错易混温馨提醒】一、忽视椭圆的焦点轴导致方程出错.易错1:已知椭圆2222:1(0)y x W a b a b +=>>的焦距与椭圆22:14x y Ω+=的短轴长相等,且W 与Ω的长轴长相等,这两个椭圆在第一象限的交点为A ,直线l 与直线OA (O 为坐标原点)垂直,且l 与W 交于,M N 两点.(1)求W 的方程;(2)求MON ∆的面积的最大值.【答案】(1)22143y x +=(2联立223{ 143y x my x =-++=得2231183120x mx m -+-=,设()()1122,,,M x y N x y ,分别计算MN 和O 到直线l 的距离为d 得MON ∆的面积)221312S d MN m m =≤+-=进而得解.二、多解问题的取舍.易错2:已知椭圆2222:1(0)x yC a ba b+=>>的左、右焦点分别为1F,2F,B为椭圆的上顶点,12BF F∆为A 为椭圆的右顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于,M N 两点(,M N 不是左、右顶点),且满足MA NA ⊥,试问:直线l 是否过定点?若过定点,求出该定点的坐标,否则说明理由.【答案】(Ⅰ) 22143x y +=;(Ⅱ)直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,.解得: 12m k =-, 227k m =-,且均满足22340k m +->, 当12m k =-时, l 的方程为()2y k x =-,直线过定点()20,,与已知矛盾; 当227k m =-时, l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点207⎛⎫ ⎪⎝⎭,. 所以,直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,.三、巧用均值不等式求最值,避免大量运算.易错3:已知椭圆()222210x y a b a b +=>>的离心率e =左、右焦点分别为12,F F ,且2F 与抛物线24y x =的焦点重合.(1)求椭圆的标准方程;(2)若过1F 的直线交椭圆于,B D 两点,过2F 的直线交椭圆于,A C 两点,且AC BD ⊥,求AC BD +的最小值.【答案】(1)椭圆的标准方程为22132x y +=;(2)AC BD +的最小值为5.解析:(1)抛物线24y x =的焦点为()1,0,所以1c =,又因为1c e a a ===a = 所以22b =,所以椭圆的标准方程为22132x y +=. (2)(i )当直线BD 的斜率k 存在且0k ≠时,直线BD 的方程为()1y k x =+,代入椭圆方程22132x y +=, 并化简得()2222326360k x k x k +++-=. 设()11,B x y , ()22,D x y ,则2122632k x x k +=-+, 21223632k x x k -=+,四、多元的最值问题.易错4:平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO交椭圆E 于点Q . (ⅰ)求|OQ ||OP |的值;(ⅱ)求△ABQ 面积的最大值.解 (1)由题意知3a 2+14b 2=1.又a 2-b 2a =32,解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1.(ⅰ)设P (x 0,y 0),|OQ ||OP |=λ,由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1,又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2.五、不能完全用韦达定理代换的坐标的处理..易错5:已知椭圆2222:1(0)x yC a ba b-=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点1F,2F为顶点的三角形的周长为)41.(1)求椭圆C的标准方程;(2)设该椭圆C与y轴的交点为M,N (点M位于点N的上方),直线y=kx+4与椭圆C相交于不同的两点,A B ,求证:直线MB与直线NA的交点D在定直线上.【答案】(1)22184x y+= (2)见解析直线NA的方程62AAkxy xx+=-②联立①②,得()233A B A B B Akx x x x y x x ++==- 222241622212116421B B k k x k k K x K -⎛⎫++ ⎪++⎝⎭--+ 82221116421B B k x k k x k ⎛⎫+ ⎪+⎝⎭==++,即1cy =∴直线MB 与直线NA 的交点D 在定直线1y =上 六、求曲线方程时的挖点问题易错6:已知定点()3,0A -、()3,0B ,直线AM 、BM 相交于点M ,且它们的斜率之积为19-,记动点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)设直线l 与曲线C 交于P 、Q 两点,若直线AP 与AQ 斜率之积为118-,求证:直线l 过定点,并求定点坐标.【答案】(1)曲线C 的方程为2219x y += ()3x ≠±;(2)直线l 过定点,定点坐标为()1,0.故曲线C 的方程为2219x y += ()3x ≠±. (Ⅱ)由已知直线l 斜率为0时,显然不满足条件。

2018年高考数学破解命题陷阱方法总结 含参数的导数问题解题方法

2018年高考数学破解命题陷阱方法总结 含参数的导数问题解题方法

2018年高考数学破解命题陷阱方法总结 含参数的导数问题解题方法一、陷阱类型 1.导数与不等式证明 2.极值点偏移问题 3.导函数为0的替换作用 4.导数与数列不等式的证明 5.变形后求导 6.讨论参数求参数7.与三角函数有关的含参数的求导问题 8.构造函数问题 9.恒成立求参数二、陷阱类型分析及练习 1.导数与不等式证明例1. 已知函数()f x =ln x +ax 2+(2a +1)x .(1)讨论()f x 的单调性; (2)当a ﹤0时,证明()324f x a≤--.(2)由(1)知,当a <0时,f (x )在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=---. 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设g (x )=ln x -x +1,则’11g x x =-.当x ∈(0,1)时, ()0g x '>;当x ∈(1,+∞)时, ()0g x '<.所以g (x )在(0,1)单调递增,在(1,+∞)单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时, 11ln 1022a a -++≤,即324fx a≤--. 【放陷阱措施】利用导数证明不等式的常见类型及解题策略:(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.练习1设函数()1ln x xbe f x ae x x-=+,曲线y=f(x)在点(1, f(1))处的切线方程为y=e(x-1)+2.(1)求,a b (2)证明: ()1f x > 【答案】(I )1,2a b ==;(II )详见解析.试题解析:(1)函数()f x 的定义域为()0,+∞,()112'ln x x x x a b bf x ae x e e e x x x--=+-+.由题意可得()12f =, ()'1f e =.故1a =, 2b =. (2)证明:由(1)知, ()12ln x x f x e x e x-=+, 从而()1f x >等价于2ln x x x xe e->-. 设函数()ln g x x x =,则()'1ln g x x =+. 所以当10,x e ⎛⎫∈ ⎪⎝⎭, ()'0g x <;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()'0g x >.故()g x 在10,e ⎛⎫ ⎪⎝⎭上单调递减, 1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,从而()g x 在()0,+∞上的最小值为11g e e⎛⎫=- ⎪⎝⎭.设函数()2x h x xe e-=-,则()()'1xh x e x -=-. 所以当()0,1x ∈时, ()'0h x >;当()1,x ∈+∞时, ()'0h x <.故()h x 在()0,1上单调递增,在()1,+∞上单调递减,从而()h x 在()0,+∞上的最大值为()11h e=-. 综上,当0x >时, ()()g x h x >,即()1f x >. 2.极值点偏移问题例2. .函数()()2ln 1f x x m x =++ .(1)当0m >时,讨论()f x 的单调性;(2)若函数()f x 有两个极值点12,x x ,且12x x <,证明: ()21122ln2f x x x >-+ . 【答案】(1)答案见解析;(2)证明见解析. 【解析】试题分析:(2)由题意结合函数的性质可知: 12,x x 是方程2220x x m ++=的两根,结合所给的不等式构造对称差函数()()()()()21241ln 1112ln2,(0)2x x x x x x x ϕ=-++-+--<< ,结合函数的性质和自变量的范围即可证得题中的不等式. 试题解析:函数()f x 的定义域为()()2221,,1x x mf x x++-+∞'=+,(1)令()222g x x x m =++,开口向上, 12x =-为对称轴的抛物线, 当1x >-时, ①11022g m ⎛⎫-=-+≥ ⎪⎝⎭,即12m ≥时, ()0g x ≥,即()0f x '≥在()1,-+∞上恒成立,②当102m <<时,由()222g x x x m =++,得1211,2222x x =--=-+,因为()10g m -=>,所以111122x -<<-<-,当12x x x <<时, ()0g x <,即()0f x '<,(2)若函数()f x 有两个极值点12,x x 且12x x <, 则必有102m <<,且121102x x -<<-<<,且()f x 在()12,x x 上递减,在()11,x -和()2,x +∞上递增, 则()()200f x f <=,因为12,x x 是方程2220x x m ++=的两根, 所以12122,2mx x x x +=-=,即12121,2,x x m x x =--=, 要证()21122ln2f x x x >-+又()()()222222122222ln 124ln 1f x x m x x x x x =++=++()()()()()222222222241ln 1121ln2121ln2x x x x x x x x =+++>--++--=+-+,即证()()()()222222241ln 1112ln20x x x x x -++-+->对2102x -<<恒成立, 设()()()()()21241ln 1112ln2,(0)2x x x x x x x ϕ=-++-+--<< 则()()()4412ln 1ln x x x eϕ=-++-' 当102x -<<时, ()4120,ln 10,ln 0x x e +>+,故()0x ϕ'>,所以()x ϕ在1,02⎛⎫-⎪⎝⎭上递增,故()()1111124ln 12ln2024222x ϕϕ⎛⎫>=⨯-⨯⨯--=⎪⎝⎭, 所以()()()()222222241ln 1112ln20x x x x x -++-+->, 所以()21122ln2f x x x >-+.【防陷阱措施】:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 练习1. 已知函数()bf x ax x=+(其中,a b R ∈)在点()()1,1f 处的切线斜率为1. (1)用a 表示b ;(2)设()()ln g x f x x =-,若()1g x ≥对定义域内的x 恒成立,求实数a 的取值范围; (3)在(2)的前提下,如果()()12g x g x =,证明: 122x x +≥. 【答案】(1)1b a =-;(2)[)1,+∞;(III )证明见解析. 【解析】试题分析:(1)由题意()11f a b '=-=即得; (2)()()1ln ln 1a g x f x x ax x x-=-=+-≥在定义域()0,+∞上恒成立,即()min 1g x ≥,由()1g x ≥恒成立,得1a ≥,再证当1a ≥时, ()()min 1g x g =即可;(3)由(2)知1a ≥,且()g x 在()0,1单调递减;在()1,+∞单调递增,当()()12g x g x =时,不妨设1201x x <≤≤,要证明122x x +≥,等价于2121x x ≥-≥,需要证明()()()1212g x g x g x -≤=,令()()()(]2,0,1G x g x g x x =--∈,可证得()G x 在(]0,1上单调递增, ()()10G x G ≤=即可证得.试题解析:(1)()2bf x a x-'=,由题意()111f a b b a =-=⇒=-' (2)()()1ln ln 1a g x f x x ax x x-=-=+-≥在定义域()0,+∞上恒成立,即()min 1g x ≥。

专题26 快速解决圆锥曲线的方程与性质-决胜2018年高考

专题26 快速解决圆锥曲线的方程与性质-决胜2018年高考

一.命题陷阱: 1.圆锥曲线定义陷阱 ;2.焦点位置不同,造成的标准方程不同;3.圆锥曲线性质的应用陷阱;4.在求距离、弦长时繁杂的运算陷阱;5.在圆锥曲线中与三角形面积有关的运算技巧陷阱. 二.知识点回顾1.椭圆定义:平面内与两个定点12,F F 的距离的和等于常数(大于12,F F 之间的距离)的点的轨迹叫做椭圆,这两个定点12,F F 叫做焦点,两焦点间的距离叫做焦距. 2.椭圆的标准方程(1) 22221,(0)x y a b a b +=>>,焦点12(,0),(,0)F c F c -,其中c =(2) 22221,(0)x y a b b a +=>>,焦点12(0,),(0,)F c F c -,其中c =3.椭圆的几何性质以22221,(0)x y a b a b+=>>为例(1)范围:,a x a b y b -≤≤-≤≤.(2)对称性:对称轴:x 轴,y 轴;对称中心:(0,0)O(3)顶点:长轴端点:12(,0),(,0)A a A a -,短轴端点:12(0,),(0,)B b B b -;长轴长12||2A A a =,短轴长12||2B B b =,焦距12||2F F c =. (4)离心率,01,ce e e a=<<越大,椭圆越扁,e 越小,椭圆越圆. (5) ,,a b c 的关系:222c a b =-.4.双曲线的定义:平面内与两个定点12,F F 的距离的差的绝对值等于常数(小于12,F F 之间的距离)的点的轨迹叫做双曲线,这两个定点12,F F 叫做焦点,两焦点间的距离叫做焦距. 5.双曲线的标准方程(1) 22221,(0,0)x y a b a b -=>>,焦点12(,0),(,0)F c F c -,其中c =(2) 22221,(0,0)x y a b b a -=>>,焦点12(0,),(0,)F c F c -,其中c =6.双曲线的几何性质以22221,(0,0)x y a b a b-=>>为例(1)范围:,x a x a ≥≤-.(2)对称性:对称轴:x 轴,y 轴;对称中心:(0,0)O(3)顶点:实轴端点:12(,0),(,0)A a A a -,虚轴端点:12(0,),(0,)B b B b -;实轴长12||2A A a =,虚轴长12||2B B b =,焦距12||2F F c =.(4)离心率,1ce e a=> (5) 渐近线方程by x a=±.7.抛物线的定义:平面内与一个定点和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,直线l 叫抛物线的准线.8.抛物线的标准方程(1) 22222,2,2,2,(0)y px y px x py x py p ==-==->.对应的焦点分别为:(,0),(,0),(0,),(0,)2222p p p p F F F F --. (2)离心率1e =. 三.例题分析 1、圆锥曲线定义陷阱例1. 设椭圆22:1259x y C +=的左、右焦点分别为12,F F , P 是C 上任意一点,则12PF F ∆的周长为 A. 9 B. 13 C. 15 D. 18 【答案】D【解析】由题意12PF F ∆的周长为: 121210818PF PF F F ++=+=,故选D 防陷阱措施:在有关焦点三角形中注意运用圆锥曲线的定义.练习1.椭圆221925x y +=上的点A 到一个焦点F 的距离为2, B 是AF 的中点,则点B 到椭圆中心O 的距离为( ).A. 2B. 4C. 6D. 8 【答案】B练习2. 设12,F F 分别是椭圆2222:1x y C a b+=(0a b >>)的左、右焦点,过1F 的直线l 交椭圆于,A B 两点,l 在y 轴上的截距为1,若113AF F B =,且2AF x ⊥轴,则此椭圆的长轴长为( )【答案】D【解析】2AF x ⊥轴, l 在y 轴上的截距为1,则(),2A c , 113AF F B =,则52,33B c ⎛⎫--⎪⎝⎭, 22241c a b +=, 222254199c a b += , 2225441199b b⎛⎫-+= ⎪⎝⎭ , 26b =, 22b a = , 232b a ==, 26a =.选D .例2. 已知12,F F 分别为双曲线22221(0,0)x y a b a b -=>>的左、右焦点,P 为双曲线右支上的任意一点,若12PF PF 的最小值为8a ,则双曲线的离心率e 的取值范围是( ) A. (1,+∞) B. (1,2] C. (1,【答案】D防陷阱措施:在有关问题中注意运用圆锥曲线的定义和平面几何性质.练习1. 已知F 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点, P 是y 轴正半轴上一点,以OP 为直径的圆在第一象限与双曲线的渐近线交于点M (O 为坐标原点).若点,,P M F 三点共线,且MFO ∆的面积是PMO ∆的面积的3倍,则双曲线C 的离心率为( )2 【答案】D【解析】由题意可得, ,:1:3OM PF PM MF ⊥=, 2211,,,,,33OF c OM a MF b MP b a b =====即223,2b e a ===,选D.练习2. 设1F 、2F 分别为双曲线2221x y a b -=(0a >, 0b >)的左、右焦点, P 为双曲线右支上任一点.若212PF PF 的最小值为8a ,则该双曲线离心率e 的取值范围是( ).A. ()0,2B. (]1,3C. [)2,3D. []3,+∞ 【答案】B又双曲线的离心率1e >,](1,3 e ∴∈故答案选B例3. 已知抛物线22(0)y px p =>,过点()4,0C -作抛物线的两条切线,CA CB , ,A B 为切点,若直线AB 经过抛物线22y px =的焦点, CAB ∆的面积为24,则以直线AB 为准线的抛物线标准方程是( ) A. 24y x = B. 24y x =- C. 28y x = D. 28y x =- 【答案】D防陷阱措施:在有关问题中注意运用圆锥曲线的定义和平面几何性质.练习1. 设F 为抛物线24y x =的焦点, A B C 、、为该抛物线上三点,若0FA FB FC ++=,那么FA FB FC ++= ( )A. 9B. 6C. 4D. 3【答案】B【解析】设()()()(),,,,,,1,0A A B B C C A x y B x y C x y F ,则由0FA FB FC ++=可得1110A B C x x x -+-+-=,即3A B C x x x ++=,所以由抛物线的定义可得111336A B C FA FB FC x x x ++=+++++=+=,应选答案B 。

2018年浙江高考:圆锥曲线综合问题(共18张PPT)

2018年浙江高考:圆锥曲线综合问题(共18张PPT)

令 x=0,得 yM=-x02-y02,从而|BM|=1-yM=1+x02-y02.
直线 PB 的方程为 y=y0x-0 1x+1.
3分 5分 6分
9分
例题解析:
令 y=0,得 xN=-y0x-0 1,从而|AN|=2-xN=2+y0x-0 1. ∴四边形 ABNM 的面积 S=12|AN|·|BM|
难度 较难 正常 较难 正常 较难
备注
提1+压1椭最 基2+压1椭最
基1+提1+压1 椭范 基1+压1抛最 基1+压2抛范
二、考点解析:
比较5年来的圆锥曲线的题型和分值,浙江高考 的圆锥曲线主要有以下的特点及趋势:1、在高考提 高题与压轴题中一直占有重要的比例;2、计算等级 要求很高、整体换元等需巧妙运算;3、椭圆、抛物 线在综合应用部分出现频率很高,最值问题、求范围 问题出现频率很高。
复习专题 圆锥曲线综合
⊙积极进取
v ⊙勇攀高分
汤家桥 陈建才
一:最近5年浙江高考圆锥曲线综合应用的分析:
2014 2015 2016 2017 2018
圆锥曲线 T16,T21等 T5,T9,T19等 T7,T9,T19等 T2,T21等 T2,T17,T21等
分值 约19分 约25分 约25分 约19分 约23分
2、着重提高分析问题与运算能力。圆锥曲线训练综合题时, 一般鼓励学生“敢算、会算、巧算”!
3、重点关注最值类、取值范围类问题,平时训练注重同类型 方法的演变,不同方法间的总结。
t2+1·
-2t2t+4+122t2+32,
且 O 到直线 AB 的距离为 d= t2+12 . t2+1
10 分
设△AOB 的面积为 S(t),所以 S(t)=12|AB|·d=12 -2t2-122+2≤ 22,

【高考冲刺】2018高考数学专题 突破点13 圆锥曲线中的综合问题 Word版含答案

【高考冲刺】2018高考数学专题 突破点13 圆锥曲线中的综合问题 Word版含答案

突破点13 圆锥曲线中的综合问题(对应学生用书第47页)[核心知识提炼]提炼1 解答圆锥曲线的定值、定点问题,从三个方面把握 (1)从特殊开始,求出定值,再证明该值与变量无关. (2)直接推理、计算,在整个过程中消去变量,得定值.(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标.提炼2 用代数法求最值与范围问题时从下面几个方面入手(1)若直线和圆锥曲线有两个不同的交点,则可以利用判别式求范围.(2)若已知曲线上任意一点、一定点或与定点构成的图形,则利用圆锥曲线的性质(性质中的范围)求解.(3)利用隐含或已知的不等关系式直接求范围. (4)利用基本不等式求最值与范围. (5)利用函数值域的方法求最值与范围. 提炼3 与圆锥曲线有关的探索性问题(1)给出问题的一些特殊关系,要求探索出一些规律,并能论证所得规律的正确性.通常要对已知关系进行观察、比较、分析,然后概括出一般规律.(2)对于只给出条件,探求“是否存在”类型问题,一般要先对结论作出肯定存在的假设,然后由假设出发,结合已知条件进行推理,若推出相符的结论,则存在性得到论证;若推出矛盾,则假设不存在.[高考真题回访]回访 直线与圆锥曲线的综合问题1.(2017·浙江高考)如图13­1,已知抛物线x 2=y ,点A -12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )-12<x <32.过点B 作直线AP 的垂线,垂足为Q .图13­1(1)求直线AP 斜率的取值范围.(2)求|PA |·|PQ |的最大值.[解](1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1). 6分(2)联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +3k 2+. 9分因为|PA |=1+k 2⎝ ⎛⎭⎪⎫x +12=1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-k -k +2k 2+1,所以|PA |·|PQ |=-(k -1)(k +1)3.12分 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,⎝ ⎛⎭⎪⎫12,1上单调递减,因此当k =12时,|PA |·|PQ |取得最大值2716.15分2.(2016·浙江高考)如图13­2,设椭圆x 2a2+y 2=1(a >1).图13­2(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. [解] (1)设直线y =kx +1被椭圆截得的线段为AM ,由⎩⎪⎨⎪⎧y =kx +1,x 2a2+y 2=1得(1+a 2k 2)x 2+2a 2kx =0,3分故x 1=0,x 2=-2a 2k1+a 2k2.因此|AM |=1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. 5分(2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足|AP |=|AQ |.7分记直线AP ,AQ 的斜率分别为k 1,k 2,且k 1,k 2>0,k 1≠k 2. 由(1)知,|AP |=2a 2|k 1|1+k 211+a 2k 21, |AQ |=2a 2|k 2|1+k 221+a k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22, 9分所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0. 由于k 1≠k 2,k 1,k 2>0得 1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝ ⎛⎭⎪⎫1k 21+1⎝ ⎛⎭⎪⎫1k 22+1=1+a 2(a 2-2).①因为①式关于k 1,k 2的方程有解的充要条件是 1+a 2(a 2-2)>1, 所以a > 2.13分因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤ 2.由e =c a =a 2-1a ,得0<e ≤22.所求离心率的取值范围为0<e ≤22.15分3.(2015·浙江高考)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).图13­3[解] (1)由题意知m ≠0, 可设直线AB 的方程为y =-1mx +b .3分由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.5分因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0.将线段AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m 2.② 由①②得m <-63或m >63.7分(2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1. 10分设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22.15分4.(2014·浙江高考)已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM →.(1)若|PF |=3,求点M 的坐标; (2)求△ABP 面积的最大值.图13­4[解] (1)由题意知焦点F (0,1),准线方程为y =-1.2分设P (x 0,y 0),由抛物线定义知|PF |=y 0+1,得到y 0=2,所以P (22,2)或P (-22,2). 由PF →=3FM →得M ⎝ ⎛⎭⎪⎫-223,23或M ⎝ ⎛⎭⎪⎫223,23. 6分(2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0). 由⎩⎪⎨⎪⎧y =kx +m ,x 2=4y得x 2-4kx -4m =0.8分于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m ,所以AB 的中点M 的坐标为(2k,2k 2+m ). 由PF →=3FM →,得(-x 0,1-y 0)=3(2k,2k 2+m -1),所以⎩⎪⎨⎪⎧x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0,得k 2=-15m +415.10分由Δ>0,k 2≥0,得-13<m ≤43.又因为|AB |=41+k 2·k 2+m , 点F (0,1)到直线AB 的距离为d =|m -1|1+k2,所以S △ABP =4S △ABF =8|m -1|k 2+m =16153m 3-5m 2+m +1.记f (m )=3m 3-5m 2+m +1⎝ ⎛⎭⎪⎫-13<m ≤43,令f ′(m )=9m 2-10m +1=0,解得m 1=19,m 2=1.12分可得f (m )在⎝ ⎛⎭⎪⎫-13,19上是增函数,在⎝ ⎛⎭⎪⎫19,1上是减函数,在⎝ ⎛⎭⎪⎫1,43上是增函数. 又f ⎝ ⎛⎭⎪⎫19=256243 >f ⎝ ⎛⎭⎪⎫43,所以,当m =19时,f (m )取到最大值256243,此时k =±5515.所以,△ABP 面积的最大值为2565135.15分(对应学生用书第49页) 热点题型1 圆锥曲线中的定值问题题型分析:圆锥曲线中的定值问题是近几年高考的热点内容,解决这类问题的关键是引入变化的参数表示直线方程、数量积、比例关系等,根据等式恒成立,数式变换等寻找不受参数影响的量.【例1】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点P ⎝ ⎛⎭⎪⎫1,32与椭圆右焦点的连线垂直于x 轴,直线l :y =kx +m 与椭圆C 相交于A ,B 两点(均不在坐标轴上). (1)求椭圆C 的标准方程;(2)设O 为坐标原点,若△AOB 的面积为3,试判断直线OA 与OB 的斜率之积是否为定值? [解] (1)由题意知⎩⎪⎨⎪⎧1a 2+94b2=1,a 2=b 2+1,解得⎩⎪⎨⎪⎧a 2=4,b 2=3,3分∴椭圆C 的标准方程为x 24+y 23=1.4分(2)设点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m ,得(4k 2+3)x 2+8kmx +4m 2-12=0,5分由Δ=(8km )2-16(4k 2+3)(m 2-3)>0,得m 2<4k 2+3. 6分∵x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3,∴S △OAB =12|m ||x 1-x 2|=12|m |·434k 2+3-m24k 2+3=3, 8分 化简得4k 2+3-2m 2=0,满足Δ>0,从而有4k 2-m 2=m 2-3(*),9分∴k OA ·k OB =y 1y 2x 1x 2=kx 1+m kx 2+m x 1x 2=k 2x 1x 2+km x 1+x 2+m 2x 1x 2=-12k 2+3m 24m 2-12=-34·4k 2-m 2m 2-3,由(*)式,得4k 2-m2m 2-3=1, 12分 ∴k OA ·k OB =-34,即直线OA 与OB 的斜率之积为定值-34.15分[方法指津]求解定值问题的两大途径1.由特例得出一个值此值一般就是定值→证明定值:将问题转化为证明待证式与参数某些变量无关2.先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值.[变式训练1] 已知椭圆C :x 2a 2+y 2b2=1过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值. [解] (1)由题意得a =2,b =1, ∴椭圆C 的方程为x 24+y 2=1.3分 又c =a 2-b 2=3,∴离心率e =c a =32. 5分(2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4. 6分又A (2,0),B (0,1),∴直线PA 的方程为y =y 0x 0-2(x -2).令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2. 9分直线PB 的方程为y =y 0-1x 0x +1. 令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1. 12分∴四边形ABNM 的面积S =12|AN |·|BM |=12⎝ ⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2.从而四边形ABNM 的面积为定值.15分热点题型2 圆锥曲线中的最值、范围问题题型分析:圆锥曲线中的最值、范围问题是高考重点考查的内容,解决此类问题常用的方法是几何法和代数法.【例2】 设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.[解] (1)因为|AD |=|AC |,EB ∥AC , 所以∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |, 故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4, 所以|EA |+|EB |=4.2分由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0).4分(2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k x -,x 24+y23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0,则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3.所以|MN |=1+k 2|x 1-x 2|=k 2+4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k(x -1),点A 到直线m 的距离为2k 2+1,6分所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN || PQ |=121+14k 2+3. 8分可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).12分 当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,故四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为[12,83). 15分[方法指津]与圆锥曲线有关的取值范围问题的三种解法1.数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解. 2.构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解. 3.构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.[变式训练2] (名师押题)已知抛物线C :x 2=2py (p >0),过其焦点作斜率为1的直线l 交抛物线C 于M ,N 两点,且|MN |=16. (1)求抛物线C 的方程;(2)已知动圆P 的圆心在抛物线C 上,且过定点D (0,4),若动圆P 与x 轴交于A ,B 两点,求|DA ||DB |+|DB ||DA |的最大值. 【导学号:68334132】 [解] (1)设抛物线的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,则直线l :y =x +p2.由⎩⎪⎨⎪⎧y =x +p 2,x 2=2py ,得x 2-2px -p 2=0,∴x 1+x 2=2p ,∴y 1+y 2=3p , ∴|MN |=y 1+y 2+p =4p =16,∴p =4, ∴抛物线C 的方程为x 2=8y .4分(2)设动圆圆心P (x 0,y 0),A (x 1,0),B (x 2,0),则x 20=8y 0,且圆P :(x -x 0)2+(y -y 0)2=x 20+(y 0-4)2, 令y =0,整理得x 2-2x 0x +x 20-16=0, 解得x 1=x 0-4,x 2=x 0+4,6分设t =|DA ||DB |=x 0-2+16x 0+2+16=x 20-8x 0+32x 20+8x 0+32=1-16x 0x 20+8x 0+32,当x 0=0时,t =1, ①7分当x 0≠0时,t =1-16x 0+8+32x 0.∵x 0>0,∴x 0+32x 0≥82,∴t ≥1-168+82=3-22=2-1,且t <1, ② 综上①②知2-1≤t ≤1.11分∵f (t )=t +1t在[2-1,1]上单调递减,∴|DA ||DB |+|DB ||DA |=t +1t ≤2-1+12-1=22, 当且仅当t =2-1,即x 0=42时等号成立. ∴|DA ||DB |+|DB ||DA |的最大值为2 2.15分热点题型3 圆锥曲线中的探索性问题题型分析:探索性问题一般分为探究条件和探究结论两种类型,若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,否则不存在.若探究结论,则应先写出结论的表达式,再针对表达式进行讨论,往往涉及对参数的讨论.【例3】 如图13­5,在平面直角坐标系xOy 中,已知F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A ,B 分别是椭圆E 的左、右顶点,D (1,0)为线段OF 2的中点,且AF 2→+5BF 2→=0.图13­5(1)求椭圆E 的方程;(2)若M 为椭圆E 上的动点(异于点A ,B ),连接MF 1并延长交椭圆E 于点N ,连接MD ,ND 并分别延长交椭圆E 于点P ,Q ,连接PQ ,设直线MN ,PQ 的斜率存在且分别为k 1,k 2.试问是否存在常数λ,使得k 1+λk 2=0恒成立?若存在,求出λ的值;若不存在,说明理由.[解题指导] (1)D 为OF 2的中点→求c →=0→a 与c 的关系→椭圆方程(2)假设存在常数λ→设点M ,N ,P ,Q 的坐标→直线MD 的方程与椭圆方程联立→用点M 的坐标表示点P ,Q 的坐标→点M ,F 1,N 共线→得到点M ,N 坐标的关系→求k 2→得到k 1与k 2的关系[解] (1)∵AF 2→+5BF 2→=0,∴AF 2→=5F 2B →,∵a +c =5(a -c ),化简得2a =3c ,又点D (1,0)为线段OF 2的中点,∴c =2,从而a =3,b =5,左焦点F 1(-2,0),故椭圆E 的方程为x 29+y 25=1.4分(2)假设存在满足条件的常数λ,使得k 1+λk 2=0恒成立, 设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4),则直线MD 的方程为x =x 1-1y 1y +1,代入椭圆方程x 29+y 25=1,整理得,5-x 1y 21y 2+x 1-1y 1y -4=0,6分∵y 1+y 3=y 1x 1-x 1-5,∴y 3=4y 1x 1-5,从而x 3=5x 1-9x 1-5,故点P ⎝ ⎛⎭⎪⎫5x 1-9x 1-5,4y 1x 1-5,同理,点Q ⎝⎛⎭⎪⎫5x 2-9x 2-5,4y 2x 2-5.10分∵三点M ,F 1,N 共线,∴y 1x 1+2=y 2x 2+2, 从而x 1y 2-x 2y 1=2(y 1-y 2),从而k 2=y 3-y 4x 3-x 4=4y 1x 1-5-4y 2x 2-55x 1-9x 1-5-5x 2-9x 2-5=x 1y 2-x 2y 1+y 1-y 2x 1-x 2=y 1-y 2x 1-x 2=7k 14,故k 1-4k 27=0,从而存在满足条件的常数λ,λ=-47.15分[方法指津]探索性问题求解的思路及策略1.思路:先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在. 2.策略:(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.[变式训练3] 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦点分别为F 1(-3,0),F 2(3,0),点P在椭圆C 上,满足|PF 1|=7|PF 2|,tan ∠F 1PF 2=4 3. (1)求椭圆C 的方程;(2)已知点A (1,0),试探究是否存在直线l :y =kx +m 与椭圆C 交于D ,E 两点,且使得|AD |=|AE |?若存在,求出k 的取值范围;若不存在,请说明理由.【导学号:68334133】[解] (1)由|PF 1|=7|PF 2|,PF 1+PF 2=2a 得PF 1=7a 4,PF 2=a4.2分由余弦定理得cos ∠F 1PF =17=⎝ ⎛⎭⎪⎫7a 42+⎝ ⎛⎭⎪⎫a 42-322×7a 4×a 4,∴a =2,∴所求C 的方程为x 24+y 2=1.4分(2)假设存在直线l 满足题设,设D (x 1,y 1),E (x 2,y 2),将y =kx +m 代入x 24+y 2=1并整理得(1+4k 2)x 2+8kmx +4m 2-4=0,由Δ=64k 2m 2-4(1+4k 2)(4m 2-4)=-16(m 2-4k 2-1)>0,得4k 2+1>m 2.① 6分又x 1+x 2=-8km1+4k2.设D ,E 中点为M (x 0,y 0),M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2,k AMk =-1,得m =-1+4k 23k ,②将②代入①得4k 2+1>⎝ ⎛⎭⎪⎫1+4k 23k 2,化简得20k 4+k 2-1>0⇒(4k 2+1)(5k 2-1)>0,解得k >55或k <-55,所以存在直线l ,使得|AD |=|AE |,此时k 的取值范围为⎝⎛⎭⎪⎫-∞,-55∪⎝ ⎛⎭⎪⎫55,+∞.15分。

2018年高考数学二轮复习第二部分高考22题各个击破专题七解析几何7.2直线圆圆锥曲线小综合题专项练课件文

2018年高考数学二轮复习第二部分高考22题各个击破专题七解析几何7.2直线圆圆锥曲线小综合题专项练课件文

������ 0 ������ ������ 2
+
=1; − =1(a>0,b>0)上一点 M(x 0,y 0)的切线方程为 −
������0 ������ ������ 2
(4)过双曲线 =1;
(5)设点 P(x 0,y 0)是圆锥曲线 C:Ax 2+Bxy+Cy2+Dx+Ey+F=0 上的任 意一点,则过点 P 的切线方程为 ������ ������ +������������0 ������ +������ ������ +������ Ax0x+B 0 +Cy0y+D 0 +E 0 +F=0.
7.2 直线、圆、圆锥曲线小综合题专项练
-2-
1.直线与圆、圆与圆的位置关系 (1)直线与圆的位置关系判定: ①几何法:利用圆心到直线的距离与圆的半径大小关系判定. ������������ + ������������ + ������ = 0, ②代数法:解方程组 2 2 2 利用方程组解的个数判定. (������-������ ) + (������-������ ) = ������ ,
A.y=± x C.y=±
3 21 7
3
B.y=± 3x D.y=±
21 3
x
x
解析:∵F1,F2,P(0,2b)是正三角形的三个顶点,设F1(-c,0),F2(c,0),则
|F1P|= ������ 2 + 4������ 2 ,∴ ������ 2 + 4������ 2 =2c,
∴c2+4b2=4c2, ∴c2+4(c2-a2)=4c2,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题27 快速解决直线与圆锥曲线综合问题的解题技巧一.命题陷阱1.不用韦达定理与用韦达定理的选择陷阱2.范围不完备陷阱3.圆锥曲线中三角形面积公式选取陷阱4.不用定义直接化简的陷阱(圆锥曲线定义的灵活运用)5.圆锥曲线中的求定点、定直线只考虑一般情况不考虑特殊位置陷阱6.圆锥曲线中的求定值只考虑一般情况不考虑特殊位置陷阱 二、知识回顾 1.椭圆的标准方程(1) 22221,(0)x y a b a b +=>>,焦点12(,0),(,0)F c F c -,其中c =(2) 22221,(0)x y a b b a+=>>,焦点12(0,),(0,)F c F c -,其中c =2.双曲线的标准方程(1) 22221,(0,0)x y a b a b -=>>,焦点12(,0),(,0)F c F c -,其中c .(2) 22221,(0,0)x y a b b a-=>>,焦点12(0,),(0,)F c F c -,其中c3.抛物线的标准方程(1) 22222,2,2,2,(0)y px y px x py x py p ==-==->.对应的焦点分别为:(,0),(,0),(0,),(0,)2222p p p p F F F F --. 三.典例分析1.不用韦达定理与用韦达定理的选择陷阱例1. 设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程. 【答案】 (1)22413y x +=, 24y x =.(2)3630x y +-=,或3630x y --=.(Ⅱ)解:设直线AP 的方程为1(0)x my m =+≠,与直线l 的方程1x =-联立,可得点2(1,)P m --,故2(1,)Q m-.将1x my =+与22413y x +=联立,消去x ,整理得22(34)60m y my ++=,解得0y =,或2634my m -=+.由点B 异于点A ,可得点222346(,)3434m m B m m -+-++.由2(1,)Q m-,可得直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+,故2223(,0)32m D m -+.所以2222236||13232m m AD m m -=-=++.又因为APD △的面积为62,故221626232||2m m m ⨯⨯=+,整理得2326||20m m -+=,解得6||3m =,所以63m =±. 所以,直线AP 的方程为3630x y +-=,或3630x y --=. 【陷阱防范】:分析题目条件与所求关系,恰当选取是否使用韦达定理练习1. 已知椭圆()2222:10x y C a b a b+=>>,且椭圆上任意一点到左焦点的最大距离为21+,最小距离为21-.(1)求椭圆的方程;(2)过点10,3S ⎛⎫- ⎪⎝⎭的动直线l 交椭圆C 于,A B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标:若不存在,请说明理由.【答案】(1)椭圆方程为2212x y +=;(2) 以线段AB 为直径的圆恒过点()0,1Q .下面证明()0,1Q 为所求:若直线l 的斜率不存在,上述己经证明. 若直线l 的斜率存在,设直线1:3l y kx =-, ()()1122,,,A x y B x y , 由221{ 3220y kx x y =-+-=得()2291812160k x kx +--=,()22144649180k k ∆=++>,1212221216,189189k x x x x k k -+==++, ()()1122,1,,1QA x y QB x y =-=-u u u v u u u v , ()()121211QA QB x x y y ⋅=+--u u u v u u u v()()21212416139k k x x x x =+-++ ()22216412161091839189k k k k k -=+⋅-⋅+=++. ∴QA QB ⊥u u u v u u u v,即以线段AB 为直径的圆恒过点()0,1Q .练习2.设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程.【答案】 (1)22413y x +=, 24y x =.(2)3630x y +-=,或3630x y --=. 【解析】(Ⅰ)设F 的坐标为(,0)c -.依题意,12c a =,2p a =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=.所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =.练习3. 已知椭圆1C : 2214x y +=,曲线2C 上的动点(),M x y 满足: ()()2222232316x y x y +++-=.(1)求曲线2C 的方程;(2)设O 为坐标原点,第一象限的点,A B 分别在1C 和2C 上, 2OB OA =u u u r u u u r,求线段AB 的长.【答案】(1) 221164y x +=2105【解析】(1)由已知,动点M 到点()0,23P-, ()0,23Q 的距离之和为8,且8PQ <,所以动点M 的轨迹为椭圆,而4a =, 23c =,所以2b =,故椭圆2C 的方程为221164y x +=. (2),A B 两点的坐标分别为()(),,,A A B B x y x y ,由2OB OA =u u u r u u u r及(1)知, ,,O A B 三点共线且点,A B 不在y 轴上,因此可设直线AB 的方程为y kx =.将y kx =代入2214x y +=中,得()22144k x +=,所以22414A x k =+, 将y kx =代入221164y x +=中,得()22416k x +=,所以22164B x k=+, 又由2OB OA =u u u r u u u r ,得224B A x x =,即22164414k k =++, 解得222441,5,5,5,55555k A B ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭易得, 故224242255551055555AB ⎛⎫⎛⎫=-+-= ⎪ ⎪⎝⎭⎝⎭2.范围不完备陷阱例2. 已知椭圆C : 22221(0)x y a b a b +=>>的离心率为12,以椭圆长、短轴四个端点为顶点为四边形的面积为43.(Ⅰ)求椭圆C 的方程;(Ⅱ)如图所示,记椭圆的左、右顶点分别为A 、B ,当动点M 在定直线4x =上运动时,直线AM BM 、分别交椭圆于两点P 、Q ,求四边形APBQ 面积的最大值.【答案】(Ⅰ)22143x y +=;(Ⅱ) 6.【解析】(Ⅰ)由题设知, 2,243ac ab ==, 又222a b c =+,解得2,3,1a b c ===,故椭圆C 的方程为22143x y +=. 故四边形APBQ 的面积为1•22P Q P Q S AB y y y y =-=-= 221862273tt tt ⎛⎫+ ⎪++⎝⎭ ()()()()()22222222248948948912273912)9t t t t t tt tt t t t ++===+++++++.由于296t t λ+=≥,且12λλ+在[)6,+∞上单调递增,故128λλ+≥, 从而,有48612S λλ=≤+. 当且仅当6λ=,即3t =,也就是点M 的坐标为()4,3时,四边形APBQ 的面积取最大值6. 【陷阱防范】:涉及含参数问题,求最值或范围时要注意运用均值不等式还是运用函数的单调性. 练习1.设点10,4F ⎛⎫ ⎪⎝⎭,动圆A 经过点F 且和直线14y =-相切,记动圆的圆心A 的轨迹为曲线C . (1)求曲线C 的方程;(2)设曲线C 上一点P 的横坐标为(0)t t >,过P 的直线交C 于一点Q ,交x 轴于点M ,过点Q 作PQ 的垂线交C 于另一点N ,若MN 是C 的切线,求t 的最小值. 【答案】(1)2x y =(2)min 23t =【解析】(1)过点A 作直线AN 垂直于直线14y =-于点N ,由题意得AF AN =,所以动点A 的轨迹是以F 为焦点,直线14y =-为准线的抛物线.所以抛物线C 得方程为2x y =. ()()()()210,10kx x k t k k t kx k k t x k t ⎡⎤⎡⎤⎡⎤+---+=+-+--=⎣⎦⎣⎦⎣⎦,解得()1k k t x k-+=-,或x k t =-.()()()()()()2222222221111,,11MN k k t k kt k k t k k t k N k k k t k k t kt k t k k k⎡⎤-+⎣⎦⎛⎫-+⎡⎤-+-+⎣⎦ ⎪∴-∴==-+ ⎪-+----⎝⎭. 而抛物线在点N 的切线斜率, '|k y = ()()122k k t k k t x kk-+---=-=, MN 是抛物线的切线,()()()22221221k kt k k t kk t k -+---∴=--,整理得()2222120,4120k kt t t t ++-=∴∆=--≥,解得23t ≤-(舍去),或min 22,33t t ≥∴=. 练习2. 已知双曲线22221x y C a b-=:33,0)是双曲线的一个顶点。

(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30︒的直线l ,直线l 与双曲线交于不同的,A B 两点,求AB 的长。

相关文档
最新文档