动态内存分配(C语言)

合集下载

c语言的动态内存分配题目

c语言的动态内存分配题目

以下是一个使用C语言动态内存分配的题目示例:
题目:给定一个长度为n的整数数组,要求将其划分为若干个长度为k的连续子数组,使得所有子数组的和尽可能接近。

请你实现一个函数,返回划分后的所有子数组的最大和。

示例输入:
输入:n = 5, k = 2
输出:8
解释:将数组[1, 2, 3, 4, 5] 划分为[1, 2], [3, 4], [5] 三个子数组,它们的和分别为3, 7, 5,和为15,接近于最大和。

实现这个函数可以使用动态规划的思想。

首先定义一个长度为n的数组dp,其中dp[i]表示以第i个元素结尾的子数组的最大和。

然后从左到右遍历数组,对于每个位置i,计算dp[i]的值。

如果i-1位置的子数组和大于0,则将dp[i]设置为dp[i-1]加上当前元素的值;否则,将dp[i]设置为当前元素的值。

最后返回dp[n-1]即可。

c语言动态分配的用法

c语言动态分配的用法

c语言动态分配的用法C语言中,动态内存分配是通过使用malloc、calloc和realloc等函数来实现的。

动态分配内存可以根据程序运行时的需要来动态分配和释放内存空间,提高程序的灵活性和效率。

1. malloc函数:用于在堆(heap)中分配指定大小的内存空间。

其函数原型为void* malloc(size_t size),其中size为要分配的内存空间的大小(以字节为单位)。

例如,以下代码动态分配了一个包含5个整数的整型数组的内存空间,并将其地址赋给指针变量p:```cint* p = (int*)malloc(5 * sizeof(int));```2. calloc函数:用于在堆中分配指定数量和大小的连续内存空间,并将其初始化为零值。

其函数原型为void* calloc(size_t num,size_t size),其中num为要分配的元素个数,size为每个元素的大小。

例如,以下代码动态分配了一个包含5个整数的整型数组的内存空间,并将其地址赋给指针变量p:```cint* p = (int*)calloc(5, sizeof(int));```3. realloc函数:用于重新分配已分配内存空间的大小。

其函数原型为void* realloc(void* ptr, size_t size),其中ptr为指向已分配内存空间的指针,size为重新分配的内存空间的大小。

例如,以下代码将已分配内存空间的大小重新设置为10个整数,并将其地址赋给指针变量p:```cint* p = (int*)malloc(5 * sizeof(int));int* q = (int*)realloc(p, 10 * sizeof(int));if (q != NULL) {p = q;}```4. free函数:用于释放由malloc、calloc和realloc函数分配的内存空间。

其函数原型为void free(void* ptr),其中ptr为指向要释放的内存空间的指针。

c语言中内存分配的几种方式

c语言中内存分配的几种方式

c语言中内存分配的几种方式
1.静态内存分配:在程序编译时就已经分配好了一块固定大小的内存空间,程序运行时一直存在。

例如:全局变量和静态变量。

2. 栈式内存分配:在函数调用时,在栈上分配一块固定大小的内存空间,函数执行完毕后,内存自动释放。

例如:局部变量。

3. 堆式内存分配:程序在运行时动态地分配内存空间,可以根据需要分配和释放内存,由程序员控制。

例如:动态分配内存的函数malloc()和free()。

4. 内存映射文件:将文件映射到内存中,使得可以像访问内存一样读取文件中的数据。

例如:mmap()函数。

5. 共享内存:多个进程可以共享同一块内存空间,使得进程间通信更加高效。

例如:shmget()和shmat()函数。

6. 内存池:由程序员预先分配一块内存,然后使用内存池进行动态分配和释放内存,可以减小内存碎片化的问题。

例如:内存池库jemalloc。

注意:在程序中合理使用内存分配方式是提高程序效率和性能的重要一步。

- 1 -。

操作系统c语言设计程序模拟内存的动态分区内存管理方法.内存分区使用分区(说明)表

操作系统c语言设计程序模拟内存的动态分区内存管理方法.内存分区使用分区(说明)表

操作系统c语言设计程序模拟内存的动态分区内存管理方法.内存分区使用分区(说明)表1. 引言1.1 概述在计算机科学领域,内存管理是操作系统中至关重要的一个组成部分。

操作系统需要负责对内存资源进行合理的分配和释放,确保程序能够顺利执行,并且不会发生内存泄漏等问题。

本篇文章将介绍一种基于C语言设计程序模拟内存的动态分区内存管理方法。

该方法通过使用分区表来对内存空间进行动态管理。

我们将详细探讨这种方法的实现步骤、技巧以及性能评估和案例分析结果。

1.2 文章结构本文主要分为五个部分:引言、动态分区内存管理方法、C语言设计程序模拟内存的实现步骤与技巧、程序模拟内存动态分区内存管理方法性能评估和案例分析,以及结论与展望。

在引言部分,我们将首先介绍本文的概述,即主题和目标。

然后简要说明文章的结构,以便读者更好地理解全文内容。

1.3 目的本文旨在介绍一种使用C语言设计程序模拟内存的动态分区内存管理方法,并探讨该方法在实际应用中可能遇到的问题和优化建议。

我们希望通过本文的阐述,读者可以对动态分区内存管理方法有更深入的理解,并能够在实际项目中应用相关技术和知识。

通过对程序模拟动态分区内存管理方法进行性能评估和案例分析,我们也旨在为读者提供一个参考,帮助他们更好地理解该方法的优缺点,并从中获得一些有价值的启示。

总之,本文将为读者提供一种全面而深入的了解动态分区内存管理方法的途径,并希望能够激发读者们对内存管理领域研究的兴趣。

2. 动态分区内存管理方法2.1 内存管理概述在操作系统中,内存管理是一个关键的部分。

动态分区内存管理方法是一种常用的内存分配技术,它将可用的内存空间划分为多个不同大小的动态分区,以便满足不同程序对内存空间的需求。

2.2 动态分区内存管理算法原理动态分区内存管理算法主要包括三种:首次适应算法、最佳适应算法和最坏适应算法。

首次适应算法是指从空闲列表中选择第一个能满足所需内存大小的空闲块进行分配。

这种算法简单直观,但可能会产生较大的碎片化问题。

c语言new的用法

c语言new的用法

c语言new的用法在C语言中,没有内置的new关键字用于动态分配内存。

C 语言中通常使用malloc()函数来动态分配内存,并使用free()函数来释放已分配的内存。

malloc()函数的用法:```#include <stdlib.h>// 分配n个字节的内存空间,并返回一个指向分配内存起始位置的指针void* malloc(size_t size);```malloc()函数使用size_t类型的参数指定要分配的字节数。

成功分配内存后,返回一个指向分配内存起始位置的指针。

如果分配失败,malloc()函数将返回NULL。

示例:```c#include <stdio.h>#include <stdlib.h>int main() {int* p = (int*)malloc(sizeof(int)); // 分配一个int类型的内存空间if (p != NULL) {*p = 10;printf("Value of p: %d\n", *p);free(p); // 释放内存}return 0;}```另外,可以使用calloc()函数来分配并初始化内存,与malloc()函数类似:```cvoid* calloc(size_t num, size_t size);```calloc()函数接受两个参数,分别是要分配内存的数量和每个元素的大小。

它会分配num个元素的内存,并将每个元素初始化为0。

示例:```c#include <stdio.h>#include <stdlib.h>int main() {int* arr = (int*)calloc(5, sizeof(int)); // 分配5个int类型的内存空间,并初始化为0if (arr != NULL) {for (int i = 0; i < 5; i++) {printf("Value at index %d: %d\n", i, arr[i]);}free(arr); // 释放内存}return 0;}```请注意,使用malloc()或calloc()分配的内存必须使用free()函数进行释放,以避免内存泄漏。

C语言内存分配问题(整理)

C语言内存分配问题(整理)
程序代码区:用来存放程序的二进制代码。
我查了下资料,有说分四个,有说分五个加一个程序代码区,我没查到参考的专业书籍。所 以麻烦知道的告知一下,完善一下。
2、 内存分配方式 内存分配方式有三种:
1)从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整 个运行期间都存在。例如全局变量,static 变量。
4、动态分配释放内存举例 用 malloc 动态分配内存后一定要判断一下分配是否成功,判断指针的值是否为 NULL。 内存分配成功后要对内存单元进行初始化。 内存分配成功且初始化后使用时别越界了。 内存使用完后要用 free(p)释放,注意,释放后,p 的值是不会变的,仍然是一个地址值, 仍然指向那块内存区,只是这块内存区的值变成垃圾了。为了防止后面继续使用这块内存, 应在 free(p)后,立即 p=NULL,这样后面如果要使用,判断 p 是否为 NULL 时就会判断出 来。
NO.2
char *GetMemory(void) {
char Байду номын сангаас[] = hello world; retrun p; } void Test(void) { char *str = NULL; str = GetMemory(); printf(str); }
问题同 NO.1
NO.3
void GetMemory(char **p, int num) {
free(str); if(str != NULL) {
strcpy(str,"world"); printf(str); } }
问题同 NO.1 我对以上问题的分析:
NO.1:程序首先申请一个 char 类型的指针 str,并把 str 指向 NULL(即 str 里存的是 NULL 的地址,*str 为 NULL 中的值为0),调用函数的过程中做了如下动作: 1、申请一个 char 类型的指针 p, 2、把 str 的内容 copy 到了 p 里(这是参数传递过程中系统所做的), 3、为 p 指针申请了 100 个空间, 4、返回 Test 函数.最后程序把字符串 hello world 拷贝到 str 指向的内存空间里.到这里错 误出现了! str 的空间始终为 NULL 而并没有实际的空间.深刻理解函数调用的第 2 步,将不难发现问 题所在!(注意:传递的参数和消除的参数) NO.2:程序首先申请一个 char 类型的指针 str,并把 str 指向 NULL.调用函数的过程中做了 如下动作: 1申请一数组 p[]并将其赋值为 hello world(数组的空间大小为 12), 2返回数组名 p 付给 str 指针(即返回了数组的首地址). 那么这样就可以打印出字符串"hello world"了么?当然是不能的! 因为在函数调用的时候漏掉了最后一步.也就是在第2步 return 数组名后,函数调用还要 进行一步操作,也就是释放内存空间.当一个函数被调用结束后它会释放掉它里面所有的变 量所占用的空间.所以数组空间被释放掉了,也就是说 str 所指向的内容将不确定是什么东 西. NO.3:正确答案为可以打印出 hello.但内存泄漏了! 需要用 free()函数进行释放。

c语言的free函数

c语言的free函数

c语言的free函数C语言中的free函数是用于释放动态分配的内存空间的函数。

在C语言中,我们可以使用malloc、calloc等函数来动态分配内存空间,但是在不再需要使用该内存空间时,必须使用free函数来释放这些内存空间,以便让操作系统可以重新使用这些空间。

free函数的声明如下所示:void free(void 某ptr);其中,ptr是一个指向之前通过malloc、calloc等函数分配的内存块的指针。

通过调用free函数,我们可以将所分配的内存块返回给操作系统。

使用free函数的规则如下:1. 在使用malloc、calloc等函数分配内存后,当不再需要使用该内存时,必须使用free函数释放内存空间,以免造成内存泄漏。

2. 只能释放通过malloc、calloc等函数动态分配的内存空间,不能释放指针变量所指向的静态分配的内存空间或者常量字符串所占用的内存。

3. 当多次调用malloc、calloc等函数动态分配内存时,需要按照逆序调用free函数释放内存,以免造成内存覆盖。

4. 不要对同一个指针变量多次调用free函数,否则可能会导致程序崩溃或者出现其他错误。

5. 调用free函数后,不要再使用该指针变量,否则可能会导致程序崩溃或者出现其他错误。

6. 在调用free函数后,可以将指针变量赋值为NULL,以防止在后续的代码中误用该指针。

需要注意的是,调用free函数并不会立即将内存空间返回给操作系统,而是将该内存块标记为可用状态,以供后续的malloc、calloc等函数使用。

操作系统会在需要时将这些可用的内存块重新分配给请求内存的程序。

在使用free函数时,需要遵循上述规则,以确保程序的正确性和性能。

正确使用free函数可以有效避免内存泄漏,提高程序的资源利用率。

c语言动态分配内存函数

c语言动态分配内存函数

c语言动态分配内存函数C语言是一门很古老但依然强大的编程语言,作为一门底层语言,C语言与内存密不可分。

在C语言中,内存分配是一个非常重要的概念。

C语言提供了很多函数来进行内存管理,其中最为常用的便是动态分配内存函数。

本文将围绕动态分配内存函数来进行分步介绍。

1. malloc函数malloc函数是C语言中最为基本的动态分配内存函数,该函数会在堆内存中分配一块指定大小的内存块,并返回该内存块的首地址。

下面是malloc函数的基本语法:void* malloc(unsigned int size);其中,size参数表示要分配的内存块的大小,函数返回一个void型指针,该指针指向已分配的内存块的首地址。

使用malloc函数的方法如下所示:int* arr = (int*)malloc(sizeof(int) * 10);该语句将在堆内存中分配一块大小为40字节(即10个int型变量所占用的内存)的内存块,并将arr指针指向该内存块的首地址。

2. calloc函数calloc函数与malloc函数类似,也是用于动态分配内存的函数。

但与malloc函数不同的是,calloc函数还会对分配的内存块进行初始化。

同时,calloc函数的语法也略有不同:void* calloc(unsigned int num, unsigned int size);其中,num参数表示要分配的内存块的数量,size参数则表示每个内存块的大小。

使用calloc函数的方式如下所示:int* arr = (int*)calloc(10, sizeof(int));该语句将在堆内存中分配一块大小为40字节(即10个int型变量所占用的内存)的内存块,并将该内存块中每个字节都初始化为0,并将arr指针指向该内存块的首地址。

3. realloc函数realloc函数是用于重新分配已经分配的内存块的函数。

该函数接受两个参数,第一个参数是原内存块的地址,第二个参数是新的内存块大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告实验课程名称:动态内存分配算法年12月1日实验报告一、实验内容与要求动态分区分配又称为可变分区分配,它是根据进程的实际需要,动态地为之分配内存空间。

在实验中运用了三种基于顺序搜索的动态分区分配算法,分别是1.首次适应算法2.循环首次适应算法3.最佳适应法3.最坏适应法分配主存空间。

二、需求分析本次实验通过C语言进行编程并调试、运行,显示出动态分区的分配方式,直观的展示了首次适应算法循环首次适应算法、最佳适应算法和最坏适应算法对内存的释放和回收方式之间的区别。

首次适应算法要求空闲分区链以地址递增的次序链接,在分配内存时,从链首开始顺序查找,直至找到一个大小能满足要求的空闲分区为止,然后在按照作业的大小,从该分区中划出一块内存空间,分配给请求者,余下的空余分区仍留在空链中。

优点:优先利用内存中低址部分的空闲分区,从而保留了高址部分的大空闲区,为以后到达的大作业分配大的内存空间创造了条件。

缺点:低址部分不断被划分,会留下许多难以利用的、很小的空闲分区即碎片。

而每次查找又都是从低址部分开始的,这无疑又会增加查找可用空闲分区时的开销。

循环首次适应算法在为进程分配内存空间时,不是每次都从链首开始查找,而是从上次找到的空闲分区的下一个空闲分区开始查找,直到找到一个能满足要求的空闲分区。

优点:该算法能使内存中的空闲分区分布得更均匀,从而减少了查找空闲分区时的开销。

最佳适应算法该算法总是把能满足要求、又是最小的空闲分区分配给作业,避免大材小用,该算法要求将所有的空闲分区按其容量以从小到大的顺序形成一空闲分区链。

缺点:每次分配后所切割下来的剩余部分总是最小的,这样,在存储器中会留下许多难以利用的碎片。

最坏适应算法最坏适应算法选择空闲分区的策略正好与最佳适应算法相反:它在扫描整个空闲分区或链表时,总会挑选一个最大的空闲区,从中切割一部分存储空间给作业使用。

该算法要求,将所有的空闲分区,按其容量以大到小的顺序形成一空闲分区链。

查找时,只要看第一个分区能否满足作业要求即可。

优点:可使剩下的空闲区不至于太小,产生碎片的可能性最小,对中小作业有利,同时,最坏适应算法查找效率很高。

缺点:导致存储器中缺乏大的空闲分区三、数据结构为了实现动态分区分配算法,系统中配置了相应的数据结构,用以描述空闲分区和已分配分区的情况,常用的数据结构有空闲分区表和空闲分区链流程图当一个新作业要求装入主存时,必须查空闲分区表,从中找出一个足够大的空闲区。

若找到的空闲区大于作业需要量,这时应把它分成两部分,一部分为占用区,另一部分为空闲区。

当一个作业撤离时,归还的区域如果与其他空闲区相邻,则合并成一个较大的空闲区,登录在空闲区表中。

四、功能实现五、心得体会通过本次实验,对动态内存分配的相关知识有了更深的认识,中途也遇到了许多困难,但幸运的是最终的顺利的解决并完成了此次试验,也更加熟练地掌握了关于内存分配的使用。

六、源代码#include<iostream>using namespace std;int FreePartition[100];//空闲分区块数组int FirstPartition[100];//首次适应算法数组int CycleFirstPartition[100];//循环首次适应算法数组int BestPartition[100];//最佳适应算法数组int WorstPartition[100];//最坏适应算法数组int ProcessNeed[100];//每个作业的大小int PartitionNum,ProcessNum;//分区块数,作业数//首次适应算法void First(){int i,j;char str;for(i=0;i<PartitionNum;i++){FirstPartition[i]=FreePartition[i];}for(i=0;i<ProcessNum;i++)//找出第一块满足作业的分区for(j=0;j<PartitionNum;j++){if(ProcessNeed[i]>FirstPartition[j])continue;else{FirstPartition[j]-=ProcessNeed[i];//找到后把分区大小减去作业的大小 str='A'+i;cout<<"作业"<<str<<"在第"<<j+1<<"块分区中"<<endl;break;}}cout<<endl;cout<<"分配之后剩余情况:"<<endl;for(i=0;i<PartitionNum;i++)cout<<FirstPartition[i]<<" ";cout<<endl<<endl;}//循环首次适应算法void CycleFirst(){int i,j=1;char str;for(i=0;i<PartitionNum;i++){CycleFirstPartition[i]=FreePartition[i];}for(i=0;i<ProcessNum;i++)//for(j=0;j<PartitionNum;j++){j=j-1;while(j<PartitionNum){if(ProcessNeed[i]>CycleFirstPartition[j])//continue;j++;else{CycleFirstPartition[j]-=ProcessNeed[i];str='A'+i;cout<<"作业"<<str<<"在第"<<j+1<<"块分区中"<<endl; break;}//j++;//cout<<j<<" ";if(j==PartitionNum && i!=ProcessNum){i=-1;}}}cout<<endl;cout<<"分配之后剩余情况:"<<endl;for(i=0;i<PartitionNum;i++)cout<<CycleFirstPartition[i]<<" ";cout<<endl<<endl;}//最佳适应算法void Best(){int i,j,k;char str;for(i=0;i<PartitionNum;i++){BestPartition[i]=FreePartition[i];}for(i=0;i<ProcessNum;i++){k=0;for(j=0;j<PartitionNum;j++){//cout<<BestPartition[j]<<" "<<ProcessNeed[i]<<endl;if(BestPartition[j]>=ProcessNeed[i]){k=j;break;}}for(int n=0;n<PartitionNum;n++){if(BestPartition[n]<BestPartition[k] && BestPartition[n]>=ProcessNeed[i])//找最佳的k=n;}BestPartition[k]-=ProcessNeed[i];str='A'+i;cout<<"作业"<<str<<"在第"<<j+1<<"块分区中"<<endl;}cout<<endl;cout<<"分配之后剩余情况:"<<endl;for(i=0;i<PartitionNum;i++)cout<<BestPartition[i]<<" ";cout<<endl<<endl;}//最坏适应算法void Worst(){int i,j,k;char str;for(i=0;i<PartitionNum;i++){WorstPartition[i]=FreePartition[i];}for(i=0;i<ProcessNum;i++){k=0;for(j=0;j<PartitionNum;j++){if(WorstPartition[j]>WorstPartition[k])//找到最大的分区k=j;}WorstPartition[k]-=ProcessNeed[i];str='A'+i;cout<<"作业"<<str<<"在第"<<j+1<<"块分区中"<<endl;}cout<<endl;cout<<"分配之后剩余情况:"<<endl;for(i=0;i<PartitionNum;i++)cout<<WorstPartition[i]<<" ";cout<<endl<<endl;}void main(){int i;cout<<"输入分区块数:"<<endl;cin>>PartitionNum;cout<<"输入每个分区的大小:"<<endl;for(i=0;i<PartitionNum;i++)cin>>FreePartition[i];cout<<"输入作业数:"<<endl;cin>>ProcessNum;cout<<"输入每个作业的大小:"<<endl;for(i=0;i<ProcessNum;i++)cin>>ProcessNeed[i];cout<<"------------首次适应算法-----------------"<<endl; First();cout<<"------------循环首次适应算法-------------"<<endl; CycleFirst();cout<<"------------最佳适应算法-----------------"<<endl; Best();cout<<"------------最坏适应算法-----------------"<<endl; Worst();}。

相关文档
最新文档