等差数列简单应用数学思维训练
四年级下册数学试题-思维训练专题:03图形与等差数列(学生版+教师版)全国通用

用两根长是5厘米、两根长是7厘米的小棒围成的四边形,则它的周长是_______厘米。
一个长方形的周长为dm 36,它的宽是dm 3,那么这个长方形的面积是_______2dm 。
一个长方形长10米,宽6米,如果宽增加3米,长不变,这个长方形的面积增加_______平方米.一间房间长7米5分米、宽5米4分米,在房内地面上铺长3分米,宽5厘米的长方形木板。
共需________块。
下图是由8个小正方形拼成一个大长方形,面积是64平方厘米,图中阴影部分(梯形)的面积是_______平方厘米。
把12个边长为2分米的正方形拼成长方形,那么长方形的周长最小是_______分米,周长最大是_______分米。
一根长20厘米的铁丝围成一个正方形的面积是( )。
A.40平方厘米B.4平方分米C.80平方厘米D.4平方米用4个边长是1厘米的小方块分别拼成长方形和正方形,它们的周长是( )。
A.长方形长 B.正方形长 C.一样长 D.无法比较把4个小正方形,拼成3种图形,下列说法中,正确的是()。
①③②A.三个图形的周长一样长B.图②的周长最长C.图①图②的周长相等D.图②图③的周长相等用24块一样大小的正方形能拼成周长不同的长方形有()种。
A.2B.3C.4D.5有一个长方形与一个正方形的纸片,它们重叠一部分(如下图的阴影部分)。
求空白部分的面积和周长。
(单位:cm)如图是用4个相同的直角三角形拼成的一个大正方形。
求大正方形的周长和面积。
40cm30cm数串中每两个相邻的差都相等,像这样一串数,我们称它为等差数列.其中每一个数都叫做这个等差数列的一项,第一个数叫做第一项或首项,用1a 表示,第二个数叫第二项,用2a 表示……;第n 个数叫做第n 项,用n a 表示.n a a ,1又分别叫做等差数列的首项和末项,字母n 表示等差数列的项数.等差数列中,从第2项开始,后边一项与前面一项的差始终相等,用字母d 表示这个差,即1212312----=-==-=-=n n n n a a a a a a a a d Λ,我们把d 叫做等差数列的公差.等差数列有以下几个重要的公式:①等差数列的通项公式:d n a a n ⨯-+=)1(1. ②等差数列的公差:)1()(1-÷-=n a a d n .③等差数列的项数:1)(1+÷-=d a a n n )(1n a a <. ④差数列的求和公式:2)(121÷⨯+=+++n a a a a a n n Λ. ⑤等差数列(奇数个数)的总和:中间项×项数.求等差数列3,7,11,15,19,……的第10项和第25项.已知等差数列4、9、14、19、24 …,问264是其中第几项?从1开始的奇数:1,3,5,7,……其中第100个奇数是________。
四年级数学思维能力拓展专题突破系列(三)等差数列

四年级数学思维能力拓展专题突破系列(三)等差数列------等差数列基础(1)温馨提示:该文档包含本课程的讲义和课后测试题,课后测试题即每一部分内容对应的“课后练习”。
等差数列的认识、通项公式的使用1.熟悉等差数列通项公式2.应用等差数列通项公式计算例题1:判断下面哪些是等差数列?⑴1、0、1、0、1、0 …⑵2、8、14、20、26 …⑶1、2、2、3、4、5 …⑷95、90、85、80、75 …例题2:一只小虫沿笔直的树干跳着往上行,每跳一次都比上一次升高4厘米。
第一次跳了10厘米,它一共跳了100次,问它第100次跳多高?例题3:一只小虫沿笔直的树干跳着往上行,每跳一次都比上一次升高2厘米。
第5次跳了10厘米,它一共跳了60次,问它第60次跳多高?例4:一个等差数列共13项。
每一项都比它的前一项大7,并且末项为125。
求首项是多少?(即使该课程的课后测试)练习1:判断下面哪些是等差数列,是的画√,不是的画×。
(1)4、8、12、16、20、24 …()(2)1、2、3、5、8、13 …()(3)3、3、3、3、3、3、3 …()(4)40、38、37、36、34、32 …()练习2:在等差数列中4、10、16、22、……中,第48项是多少?练习3:求等差数列2、5、8、11…的第100项?练习4:求1、5、9、13、…这个等差数列的第30项?练习5:一个等差数列共20项。
每一项都比它的前一项大3,并且末项为125。
求首项是多少?练习1:判断下面哪些是等差数列是的画√,不是的画×。
(1)4、8、12、16、20、24 … ( √ ) 公差为4(2)1、2、3、5、8、13 … ( × ) 相邻两项分别差1、 1、 2 、3 、5(3)3、3、3、3、3、3、3 … ( √ ) 公差为0(4)40、38、37、36、34、32 … ( × ) 相邻两项分别差2、1、1、2、2练习2:在等差数列中4、10、16、22、……中,第48项是多少?分析:1(1)n a a n d =+-481(481)64476286a a =+-⨯=+⨯=练习3:求等差数列2、5、8、11…的第100项?分析:1(1)n a a n d =+-1001(1001)32993299a a =+-⨯=+⨯=练习4:求1、5、9、13、…这个等差数列的第30项?分析:1(1)n a a n d =+-301(301)41294117a a =+-⨯=+⨯=练习5:一个等差数列共20项。
数列求和练习题等差数列的应用

数列求和练习题等差数列的应用数列求和练习题-等差数列的应用在数学中,数列是一组按照一定规律排列的数。
等差数列是一种常见的数列,其特点是相邻两项之间的差都是相等的。
本文将通过一些练习题来探讨等差数列的应用,并讨论如何求解数列的和。
练习题一:求等差数列的第n项已知等差数列的首项为a₁,公差为d,请问如何求解等差数列的第n项aₙ?解答:根据等差数列的定义,我们知道每一项之间的差都是相等的。
所以,第n项与首项之间的差可以表示为(n-1)d。
因此,可以得到等差数列的通项公式:aₙ = a₁ + (n-1)d练习题二:求等差数列的前n项和已知等差数列的首项为a₁,公差为d,请问如何求解等差数列的前n项和Sₙ?解答:我们可以通过求和公式来求解等差数列的前n项和。
根据等差数列的性质,我们知道首项和末项的和等于次末项和倒数第二项的和,以此类推。
所以,可以得到等差数列的前n项和公式:Sₙ = (a₁ + aₙ) * n / 2练习题三:求等差数列的部分项和已知等差数列的首项为a₁,公差为d,请问如何求解等差数列的第m项到第n项的和Smn?解答:我们可以利用等差数列的前n项和公式来求解等差数列的部分项和。
根据等差数列的性质,第m项到第n项的和等于第n项的总和减去第m-1项的总和。
所以,可以得到等差数列的部分项和公式:Smn = Sₙ - Sₙ₋₁通过以上练习题的解答,我们对等差数列的应用有了更深入的理解。
总结:等差数列是一种常见的数列,通过求解等差数列的第n项和前n项和,我们可以应用于各种数学问题中,如数学建模、物理问题中的位移、速度等。
而等差数列的求和公式则是我们处理等差数列问题的重要工具。
在实际应用中,我们可以根据已知条件,利用等差数列的性质和公式,快速求解问题,提高解题效率。
希望通过本文的讲解,读者可以更好地理解等差数列的应用,并能够灵活运用相关知识解决各种问题。
同时,也希望读者能够在数学学习中保持积极的态度,善于思考,勇于探索,不断提升自己的数学水平。
等差数列的性质及简单应用

即时训练1-1:(1)如果等差数列{an}中,a3+a4+a5=12,那么a1+a2+…+a7等于 ()
(A)14
(B)21
(C)28
(D)35
解析:(1)因为a3+a4+a5=12, 所以3a4=12,则a4=4, 又a1+a7=a2+a6=a3+a5=2a4, 故a1+a2+…+a7=7a4=28.故选C.
=-6(n-9)2+864.
显然,当n=9时,f(n)max=f(9)=864. 答:在相同的时间内生产第9档次的产品可以获得最大利润.
因为 am+an=a1+(m-1)d+a1+(n-1)d=2a1+(m+n-2)d, 2ak=2a1+2(k-1)d=2a1+(m+n-2)d, 所以 am+an=2ak(m,n,k∈N*).
6.若{an}是有穷等差数列,则与首末两项等距离的两项之和都相等,且等于首 末两项之和,即a1+an=a2+an-1=…=ai+an-i+1=…. 7.数列{λ an+b}(λ ,b是常数)是公差为λ d的等差数列. 因为λ an+b=λ [a1+(n-1)d]+b=(λ a1+b)+(n-1)λ d, 所以公差为λ d. 8.下标成等差数列且公差为m的项ak,ak+m,ak+2m,…(k,m∈N*)组成公差为md的 等差数列.
9.若数列{bn}为等差数列,则{an±bn},{kan+bn}(k为非零常数)也是等差数列. 10.项数间隔相等或连续等长的项之和仍构成等差数列.例如:a1,a3,a5,…构 成等差数列,再比如a1+a2+a3,a4+a5+a6,a7+a8+a9,…仍构成等差数列.
(全面版)等差数列的应用举例和实际问题总结

(全面版)等差数列的应用举例和实际问题总结等差数列是数学中常见且重要的数列之一。
它在实际生活和各个领域中有着广泛的应用。
本文将通过举例和问题总结,介绍等差数列在实际中的应用。
1. 等差数列的应用举例1.1. 购物优惠某商场推出了一种特殊的购物优惠活动:购买第一个商品60% off,第二个商品50% off,第三个商品40% off,以此类推。
假设小明购买了5个商品,依次为 A、B、C、D、E。
A 商品原价为100元。
我们可以通过等差数列来计算小明购买这5个商品的总价格。
设第 n 个商品的价格为 An,其中 n 表示商品的顺序。
已知 A1 = 100,公差 d = -10%(每个商品的折扣比例递减10%)。
则 An 可以表示为 An = A1 + (n-1)d。
我们将这个等差数列列出来:A1 = 100A2 = 100 + (2-1)(-10) = 90A3 = 100 + (3-1)(-10) = 80A4 = 100 + (4-1)(-10) = 70A5 = 100 + (5-1)(-10) = 60小明购买的5个商品的总价格为 100 + 90 + 80 + 70 + 60 = 400 元。
1.2. 运动训练假设一个人每天进行跑步训练,每天的距离比上一天增加相同的固定值。
设这个人第一天跑了1公里,而第n(n>1)天跑的距离为An。
假设固定增加的距离为d = 0.5公里。
我们可以通过等差数列来计算这个人连续7天的训练距离。
A1 = 1A2 = 1 + (2-1)(0.5) = 1.5A3 = 1 + (3-1)(0.5) = 2A4 = 1 + (4-1)(0.5) = 2.5A5 = 1 + (5-1)(0.5) = 3A6 = 1 + (6-1)(0.5) = 3.5A7 = 1 + (7-1)(0.5) = 4这个人连续7天的训练距离分别为 1公里,1.5公里,2公里,2.5公里,3公里,3.5公里和4公里。
四年级数学等差数列的应用

如图,把边长为1的小
正方形叠成“金字塔形”
图,其中黑白相间染色.
如果最底层有15个正方形,
问其中有多少个染白色的
正方形,有多少个染黑色
第
的正方形?
6
关
第7关
在右图中,每个最小的等边三角形的 面积是12平方厘米,边长是1根火柴棍。 如果最大的三角形共有8层。 问:(1)最大三角形的面积是多少平方 厘米? (2)整个图形由多少根火柴棍摆成?
第
而这个体育馆最后一排座位是78个,请问:
3
第一排座位是多少个?整个体育馆共有多少 个座位?
关
第1排
第28排 第29排 第30排
7?8,,7…6,…7,4,7…4 ,…7,6第,一7排8
求末项(第N项) 第一排(末项)=78-(30-1)×2 = 20
求和 和=(78+20)×30÷2 =1470
答:第一排座位有20个,整个体育馆共有1470个座位。
建筑工地有一批砖,码成下图形状,最上
层有两块砖,第2层6块砖,第3层10块
第 砖,……,依次每层都比其上面一层多4块
4
砖。已知最下层2106块砖,这堆砖共有多
关 少块?中间一层有多少块?
构成等差数列:
2,6,10,14,……,2106
求和
先求项数=(2106-2)÷4+1= 527
和=(2+2106)×527÷2= 555458 求中间项
项数=(25-3)÷2+1=12
答:队伍里一共有12人。
第2 关
在第1关中,如果泡泡报17,迈斯报 150,每位同学报的数都比前一位多7, 那么队伍里一共有多少人?
泡泡
……
迈斯
小升初数学思维拓展专项训练 专题10等差数列和等比数列

专题10-等差数列和等比数列小升初数学思维拓展计算问题专项训练(知识梳理+典题精讲+专项训练)1、等差数列。
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示.(1)学会观察和归纳,找出相连两个数之间的关系。
(2)确定首项和项数,熟练掌握高斯求和公式,即等差数列通项公式:(首数+尾数)×项数÷2=和。
2、等比数列。
等比数列是说如果一个数列从第2项起,每一项与它的前一项的比值等于同一个常数.这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0.(1)先观察数列之间的关系,判断相连两数之间是否恒等于一个比值,就此判断为等比数列。
(2)求等比数列的和,把原式乘以公比作为第二式子,与原式进行相减消项,得出结果再除以(公比-1)。
【典例一】有21根圆木,堆成宝塔形,最上面一层放一根,下面每一层都比上一层多1根,想想看,最下面一层有()根.A、5B、6C、7D、8【分析】由题意“下面每一层都比上一层多1根”知堆的层数与最下面一层的根数相等,即项数与尾数相等,设为n;又因为“最上面一层放一根”即首数=1;又因为“每层相差1根”知公差=1;所以由等差数列求和公式:(首数+尾数)×项数÷2=和,可求出最下一层的根数.【解答】解:设最下一层有n根,由题意得:(1+n)×n÷2=21,解得(1+n)×n=42,因为n和n+1是相邻的两个自然数,又因为6×7=42,所以n=6.答:最下一层有6根.故选:B.【点评】此题是等差数列,解答的关键一步是理解堆的层数与最下面一层的根数相等.【典例二】小刚读一本书,第一天读10页,以后每天都比前一天多读5页,最后一天读40页正好读完.他一共读了多少天?【分析】根据“第一天读10页,从第二天起,每天读的页数都比前一天多5页,最后一天读40页,”可知芳芳每天读课外书的页数是一个等差数列,数列的首项是10,末项是40,公差是5,所以可以求出等差数列的项数,也就是读的天数,列式为:(4010)517-÷+=(天).【解答】解:(4010)51-÷+3051=÷+=+617=(天)答:他一共读了7天.【点评】本题考查了高斯求和知识在实际生活中的应用,用到的公式是:项数=(末项-首项)÷公差1+.【典例三】小明同学想登陆到学校的网站,查看自己的期末考试成绩,可他却忘了登陆网站的密码,但他记得密码是隐含在下面的诗里的:“远望巍巍塔七层,红灯点点倍加增.共计三百八十一,请问底层几盏灯?”请你根据诗的意思,帮小明找回密码.(提示:底层的灯数就密码)【分析】根据题意,假设顶层的红灯有x盏,则第二层有2x盏,第三层有4x盏,第四层有8x盏,第五层有16x盏,第六层有32x盏,第七层有64x盏,总共381盏,列出等式,解方程即可求出顶层灯的数量,进而求出底层有多少盏灯即可.【解答】解:设顶层的红灯有x盏,则++++++=248163264381x x x x x x xx=127381x÷=÷127127381127x=3⨯=(盏)643192答:底层有192盏灯,登陆网站的密码的密码是192.【点评】此题主要考查了等比数列的求和问题.一.选择题(共6小题)1.“QQ空间”等级是用户资料和身份的象征,按照空间积分划分不同的等级.当用户在10级以上,每个等级与对应的积分有一定的关系.现在知道第10级的积分是90,第11级的积分是160,第12级的积分是250,第13级的积分是360,第14级的积分是490⋯若某用户的空间积分达到1000,则他的等级是()A.15B.16C.17D.182.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).若这种细菌由1个分裂成16个,这个过程要经过()A.1小时B.2小时C.3小时D.4小时3.《庄子⋅天下篇》中有一句话;“一尺之棰,日取其半,万世不竭”意思就是;一根一尺(尺,中国古代长度单位)长的木棒,第一天取它的一半,第二天取剩下的一半,第三天再取剩下的一半⋯⋯第四天取的长度是这根木棒的()A.12B.14C.18D.1164.与13579531+++++++表示相同结果的算式是()A.24B.23C.2253+D.2253-5.一个报告厅第一排有20个座位,后面一排都比前面一排多2个座位,那么第n 排有()个座位。
小学四年级奥数第4课等差数列及其应用试题附答案-精品

小学四年级上册数学奥数知识点讲解第4课《等差数列及其应用》试题附答案例1下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.①6,10,14,18,22, (98)⑤100,95,90,85,80,75,70.⑥20,18,16,14,12,10,8.例2求等差数列1,6,11,16…的第20项.例3已知等差数列2,5,8,11,14-,问例是其中第几项?例4如果一等差数列的第4项为21,第6项为33,求它的第8项.例5计算1+5+9+13+17+ (1993)例6建筑工地有一批转,码成如右图形状,最上层两块待,第2层6块砖,第3 层10块存…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,间中间一层多少块枝?这堆待共有多少块?例7求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.例8连续九个自然数的和为54,则以这九个自然数的末项作为首项的九个连续自然数之和是多少?例9100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第 1 个,第3个…第99个,再把剩下的50个数相加,得多少?例10把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?例11把27枚棋子放到7个不同的空盒中,如果要求每个盒子都不空,且任意两个盒子里的棋子数目都不一样多,问能否办到,若能,写出具体方案,若不能,说明理由.答案例1下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.①6,10,14,18,22, 98;⑤100,95,90,85,80,75,70.⑥20,18,16,14,12,10,8.这六个数列有一个共同的特点,即相邻两项的差是一个固定的数,像这样的数列就称为等差数列.其中这个固定的数就称为公差,一般用字母d表示, 如:数列①中,d=2-l=3-2=4-3=-=l;数列②中,d=3-l=5-3--=13-11=2;数列⑤中,*100-95二95-90=…=75-70二5;数列⑥中,d=20-l8=18-16='-'=10-8=2.例1下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.①6,10,14,18,22,98;⑥不是,因为第1项减去第2项不等于笫2项减去第3项.一般地说,如果一个数列是等差数列,那么这个数列的每一项或者都不小于前面的项,或者每一项都大于前面的项,上述例1的数列⑥中,第1项大于第2 项,第2项却又小于第3项,所以,显然不符合等差数列的定义.为了叙述和书写的方便,通常,我们把数列的第1项记为a,第2项记为抵,…,第n项记为an,an。