双草酸硼酸锂(LiBOB)电解质性能研究
多氟多 双草酸硼酸锂bob 产能

多氟多双草酸硼酸锂(简称"bob")是一种新型的锂电池正极材料,具有高能量密度和长循环寿命的特点。
随着新能源汽车和储能市场的快速发展,对锂电池正极材料的需求量不断增加,而多氟多双草酸硼酸锂作为一种性能优越的正极材料,其产能也备受关注。
1. 产能需求背景新能源汽车的普及和发展,驱动了锂电池产业的快速增长。
储能领域的需求也在不断增加。
而多氟多双草酸硼酸锂作为锂电池正极材料,具有高能量密度、长循环寿命等优点,成为了备受青睐的产品。
由于需求量大,生产商需要提高产能,以满足市场需求。
2. 产能扩建措施针对多氟多双草酸硼酸锂的产能扩建,主要有以下几个方面的措施:(1)技术创新:通过技术创新,提高生产工艺的效率,降低生产成本,从而提高产能。
(2)设备更新:引进先进的生产设备和生产线,提高生产效率,减少能耗,增加产能。
(3)规模扩大:通过扩大生产规模,增加生产线数量,扩大生产基地,来提高产能。
(4)人力资源投入:加大对人力资源的投入,培训专业技术人员,提高生产效率,从而增加产能。
3. 产能扩建效果产能扩建的效果主要体现在以下几个方面:(1)提高产量:产能扩建后,企业的产量得到了大幅度的提高,可以更好地满足市场需求。
(2)降低成本:产能扩建后,生产效率得到了提高,生产成本得到了一定程度的降低,提高了企业的竞争力。
(3)增加收入:产能扩建后,企业的产值得到了大幅度的增加,为企业带来了更多的收入。
4. 未来发展趋势多氟多双草酸硼酸锂作为锂电池正极材料,具有广阔的市场前景。
未来,随着新能源汽车和储能市场的不断扩大,对多氟多双草酸硼酸锂的需求将会不断增加。
产能扩建将是企业的长期发展战略,提高产能,满足市场需求,实现自身的可持续发展。
多氟多双草酸硼酸锂的产能扩建是锂电池产业发展的必然趋势,企业需要密切关注市场需求,不断提高产能,以适应新的市场形势。
产能扩建也需要企业了解市场动态,把握市场需求,制定合理的发展战略,做好产能规划,实现企业的可持续发展。
双草酸硼酸锂(LiBOB)电解质性能研究(精)

锂离子电池
锂离子电池高的工 作电压高、能量密度, 长的循环寿命和小的自 放电率等优点,成为目 前所有电池产品中最有 前途的体系之一。
存在的问题
但锂离子电池 被用作动力电源时 还存在一定的问题, 如大功率充放电性 能有待提高,成本 问题,安全性问题 等。
改进锂离子电池关键材料的性能!
正极
电解质
负极
锂离子电池电解液
W.Qiu et al./ Electrochimica Acta 52(2007)4907-4910
LiB3; EC+共溶剂
LiBOB溶解度以 及电导率都低 于LiPF6,电池 高倍率放电特 性不好; 有很强的吸湿 性,空气和溶 剂中的杂质会 影响LiBOB基电 解液的性能
锂盐与水反应的热力学计算
商品化锂盐LiPF6对水比较敏感,容易水解,在与大气的水或 溶剂的残余水接触时,会发生如下反应。
LiPF6(sol.)+H2O POF3(sol.)+LiF(s)+2HF(sol.)
+
(式1) + +
与LiPF6相似,新型锂盐LiBOB容易水解,水解反应式如下:
LiB(C2O4)2 (sol.)+2H2O LiBO2(sol.)+2H2C2O4(sol.)
EC+DMC(1:1) 6
contour plot experimental data boundary point
7
12.5 12.0 11.8
5 DMC:EC:PC=4:5:1 4 DMC:EC:PC=3:5:2 3 DMC:EC:PC=2:5:3 2 DMC:EC:PC=1:5:4
9.50 9.00
合成并提纯有机硼酸酯锂盐二草酸硼酸锂244761-29-3的工艺简述—亚科解密

合成并提纯有机硼酸酯锂盐二草酸硼酸锂| 244761-29-3 |的工艺简述—亚科解密摘要:LiBOB作为一种新型电解质锂盐,其热稳定性及化学稳定性都较好,且具有较高电导率及较宽的电化学窗口,即使在纯的PC溶液中,仍能在负极表面形成稳定的SEI膜;其对锰及铁系的正极材料几乎无溶解侵蚀;另外,它不含卤素,为环境友好型锂盐。
目前,合成二草酸硼酸锂的工艺主要有(1) 液相合成法和(2) 非液相合成法。
但产品纯度不高,所以本文还介绍了二草酸硼酸锂的提纯方法,主要为重结晶法和溶剂热法。
关键词:二草酸硼酸锂,有机硼酸酯锂盐,合成工艺,提纯前言新型锂离子电解质盐双草酸硼酸锂(UBOB)与商用锂离子电解质盐六氟磷酸锂(LiPF6)相比,具有稳定性好、分解产物对环境污染小、分解电势高、能够更好地保护铝集流体和参与SEI 膜形成等优点,成为最有可能取代LiPF6而商业化应用于锂离子电池中的锂盐。
但是目前对其合成与提纯方法还不是很完善,因此改进双草酸硼酸锂的合成与提纯方法具有重要的实际意义[1]。
二草酸硼酸锂的合成工艺如何制备高纯度、性能优异的双草酸硼酸锂是目前困扰研究者和生产者的难题。
与六氟磷酸锂一样,双草酸硼酸锂的制备同样需要两个阶段,即合成和提纯。
合成即先制取粗产物,而提纯是制备出纯度高、性能优异的LiBOB 的关键,也是目前研究领域的难点。
1.双草酸硼酸锂的合成目前LiBOB 的合成方法有许多种,根据反应介质的不同可将其分为液相合成法和非液相合成法。
(1) 液相合成法所谓液相合成,即以有机溶剂或水为反应介质合成LiBOB,其中有旋转蒸发法和水相合成法。
Lischka[2]在专利中首次报道了双草酸硼酸锂的合成方法。
该专利采用氢氧化锂或碳酸锂、草酸、硼酸或氧化硼做原料,以水、甲苯或四氢呋喃为反应介质采用6种不同的路线合成LiBOB。
6中不同的工艺路线中,最经济、环保的是以水为反应介质。
其反应式为:上述方法采用有机溶剂为反应介质,成本较高;采用水为介质则反应过程中水的存在严重威胁LiBOB 的稳定存在,欲得到电池级产品,其提纯过程相对比较繁琐。
二氟草酸硼酸锂的电化学性能、制备和表征

1 二氟草酸硼酸锂的电化学性能
LiBF4 的 390 ℃ 和 LiBOB 的 330 ℃ 低,但比 LiPF6 高 约 40 ℃[5]。
二氟草酸硼酸锂可以使电极表面附近的 Al3+ 和 B-O 键结合形成化学键在集流体铝箔上形成一 层致密的保护膜,不仅能钝化铝箔,而且能够很好地 抑制电解 液 的 氧 化 分 解。 邓 凌 峰[6] 研 究 了 电 解 液 对集流体的腐蚀性,发现 4. 2 V 开始首次对铝箔产 生腐蚀,第二次循环时,腐蚀电位出现在了 6. 0 V 以 后,说明对铝箔产生了很好的钝化作用。针对电解 液与正负极材料的相容性,研究了与电极材料石墨、 三元材料 LiCo1 /3 Ni1 /3 Mn1 /3 O2 组成电池的倍率性能 和高温循环性能,LiDFOB 基电池高温循环 100 次的 不可逆损失为 8% ,而 LiPF6 电池的不可逆损失为 15% 。付茂华[7]研究了电解液的高温性能,在 60 ℃ 高温下,使用 LiDFOB 电 解 液 的 电 池 其 LiFePO4 / G 电池 循 环 100 次,容 量 保 持 率 为 86. 7% ,而 使 用 LiPF6 电解液的电池其容量保持率为 67. 4% ,循环 后电池极片扫描图显示使用 LiPF6 电解液的极片粗 糙,而使用 LiDFOB 电解液的极片则平滑、致密,能 明显看到膜。LiDFOB 电解液的高温性能明显优于
锂离子电池电解质的新型锂盐_双乙二酸硼酸锂

收稿:2006年6月,收修改稿:2006年7月 3通讯联系人 e 2mail :sylilw @锂离子电池电解质的新型锂盐———双乙二酸硼酸锂李世友1,23 马培华1 滕祥国1,2 李法强1 任齐都1,2(1.中国科学院青海盐湖研究所 西宁810008;2.中国科学院研究生院 北京100039)摘 要 介绍了一种新型锂盐———双乙二酸硼酸锂(LiBOB )的基本性质及制备进展,并重点综述了其在锂电中应用的有关研究,包括基于LiBOB 电解液的导电性研究,对负极材料、正极材料的稳定性研究,与其他锂盐在锂离子电池中混合使用的性能研究等。
关键词 双乙二酸硼酸锂 锂盐 锂离子电池 电解液中图分类号:O614111;O61318+1;T M911 文献标识码:A 文章编号:10052281X (2007)0520695205A N e w Type of Lithium Salt Used as E lectrolyte Salt ofLithium Ion B attery —Lithium Bis(oxalate)borateLi Shiyou1,23 Ma Peihua 1 Teng Xiangguo1,2 Li Faqiang 1 Ren Qidu1,2(11Qinghai Institute of Salt Lakes ,Chinese Academy of Sciences ,X ining 810008,China ;21G raduate School of the Chinese Academy of Sciences ,Beijing 100039,China )Abstract The basic characteristics and preparation of lithium bis (oxalate )borate (LiBOB )as a new lithium salt for lithium 2ion batteries are summarized.The studies on application of this new salt in lithium 2ion batteries ,such as the conductance of LiBOB 2based electrolytes ,the stability of LiBOB 2based electrolytes to the anode or cathode materials ,the performance of LiBOB mixed with other lithium are reviewed.K ey w ords lithium bis (oxalate )borate (LiBOB );lithium salt ;lithium 2ion batteries ;electrolytes 目前商品化的锂离子电池所用的锂盐主要为LiFP 6,它的热稳定性较差,易水解,且基于它的电解液的低温电导率较低。
锂电池电解液二草酸硼酸锂的结构及基本性能研究

锂电池电解液二草酸硼酸锂|244761-29-3|的结构及基本性能研究摘要:尽管LiPF6电解质体系具有较好的电导率以及能形成稳定SEI 膜等优点,是当前锂离子电池电解质领域的主要产品,但是这种电解质对水分过于敏感,热稳定性差。
随着锂离子电池在高温等诸多领域的应用拓展,尽快研究具有发展前景并可逐步取代LiPF6的新型电解质锂盐,是当前重大的科研需求。
LiBOB 具有良好的热稳定性和电化学稳定性,为此,本文对其的结构进行了研究,并阐述了它的基本性能。
关键词:二草酸硼酸锂, 锂电池电解液, 结构,基本性能前言二草酸硼酸锂(LiBOB),分子式为LiB(C2O4)2,分子量为193.79,白色粉末,CAS号: 244761-29-3,[1]是目前研究开发的新型锂盐中有可能替代LiPF6广泛应用于商品化锂离子电池的锂盐。
它也是目前锂盐研究中的热点之一。
二草酸硼酸锂的结构简述LiBOB 为配位螯合物,是正交晶体,空间点群属Pnma。
其结构式和晶体结构分别如图所示。
LiBOB 各键键长为:O(2)-C(1):1.200Å;O(1)-B:1.478Å;C(1)-C(1):1.550Å;C(1)-O(1):1.330Å。
LiBOB 晶体由镜面对称的链状结构单元堆积成三维框架,如图1-2(b)示。
Li+与草酸根中的两个氧原子螯合,另一部分氧原子与Li+形成-O-Li-O-键,将单元链连接起来,Li-O 键键角接近90°。
Li+的配位多面体是四角锥形,Li+位于底面内,这种五重配位导致LiBOB 很容易与水发生反应而形成更稳定的六重配位Li[B(C2O4)2]·H2O,同时,Li+的五重配位结构导致难以实现在溶液中以化学方法制备无溶剂化的LiBOB。
LiBOB 中不含-F、SO3-、-CH 等基团,从而使其具有优于其它锂盐的热稳定性。
硼原子与草酸根中的氧原子相连,这些氧原子具有强烈的吸电子能力,使得LiBOB 本身电荷分布比LiBOB的合成及性能研究6较分散。
双草酸硼酸锂libob是一种新型的锂盐具有很

论文题目:锂离子电池新型电解质的研究作者简介:余碧涛,女,1977年6月出生,2003年9月师从于北京科技大学李福燊教授,于2007年3月获博士学位。
中文摘要随着人们环境保护意识的日渐增强,对绿色能源的渴求越来越迫切。
锂离子电池以其工作电压高,体积小、质量轻、比能量高、无记忆效应、无污染、自放电小,循环寿命长等优点,成为目前所有电池产品中最有前途的体系之一。
目前商品锂离子电池所用的锂盐为LiPF6。
LiPF6易水解且热稳定性不好,与大气的水分或溶剂的残余水接触时,会立即形成氢氟酸HF,对电池的性能有不利的影响;而且,LiPF6通常与碳酸乙烯酯(EC)合用配成电解液才能在负极形成有效SEI膜,但是EC的熔点较高(37℃),这限制了电池的低温使用性能。
双草酸硼酸锂(LiBOB)是一种新型的锂盐,具有很好的成膜性能和热稳定性,是一种很有潜力替代现有商品化锂盐LiPF6的物质。
本文创造性地采用固相反应法合成了LiBOB,并对反应过程进行了动力学和热力学分析;研究了所得LiBOB的基本性质,将其配制成电解液,研究了LiBOB在各种正极材料和石墨负极材料中的应用情况;考察了LiBOB的独特成膜性能,研究LiBOB-PC基电解液体系在锂离子电池中的应用性能;测定了不同LiBOB电解液的电导率,并引入了质量三角形模型对LiBOB电解液的电导率进行预报计算;采用密度泛函理论分析了LiBOB的分子结构与其物理化学性能之间的关系。
此外,还研究了亚硫酸酯类物质在锂离子电池中的应用。
已有的LiBOB合成方法都是在溶液体系中制备,其中采用草酸、氢氧化锂和硼酸在水相中制备LiBOB较具优势,但是,此种合成方式比较复杂,反应过程不好控制。
在此基础上,本研究提出了一种崭新的LiBOB合成方法 固相反应法,TG/DTA曲线表明固相反应合成LiBOB经历五个不同的温度段,结合原料草酸、氢氧化锂和硼酸的热重曲线和XRD分析,推测了各温度段发生的化学反应。
锂离子电池LiBOB电解质盐研究进展

收稿:2006年1月,收修改稿:2006年3月 3通讯联系人 e 2mail :puwh @锂离子电池LiBOB 电解质盐研究蒲薇华3 何向明 王 莉 万春荣 姜长印(清华大学核能与新能源技术研究院 北京100084)摘 要 本文介绍了可用于锂离子电池的新型锂盐———双乙二酸硼酸锂(LiBOB )的基本性质,包括结构组成、合成方法、物理化学性能及其与结构的关系。
综述了近年来在LiBOB 新型电解质锂盐研究与探索方面的新成果,重点评价了BOB 2阴离子对于石墨负极和金属氧化物正极材料表面的电化学性能。
讨论了这种盐在锂离子系统中杂质和安全性等问题,归纳了其优缺点,指出今后电解质锂盐的研究发展方向。
关键词 双乙二酸硼酸锂 电解质 锂离子电池中图分类号:T M911;T M912;O614.11 文献标识码:A 文章编号:10052281X (2006)1221703207LiBOB 2B ased E lectrolyte for Lithium B atteriesPu Weihua3 He Xiangming Wang Li Wan Chunrong Jiang Changyin(Institute of Nuclear Energy &New Energy T echnology ,Tsinghua University ,Beijing 100084,China )Abstract A new salt LiBOB (lithium bis (oxalato )borate )as the electrolyte s olute for lithium ion battery and its con figuration ,preparation ,physical and chemical properties ,especially electrochemical properties are introduced in this paper.The preliminary results and recent finding on LiBOB 2based electrolyte are summarized.Em phasis is placed on the electrochemistry of the BOB 2anion on both graphite anode and metal 2oxide 2based cathode surfaces.Certain issues ass ociated with the im purity and safety of the salt in lithium ion systems are als o discussed.The advantages and disadvantages of LiBOB are generalized.Finally ,the em phases and strategies for R&D of electrolyte of im proved performance in future are indicated.K ey w ords lithium bis (oxalato )borate ;electrolyte ;lithium ion batteries1 引言 锂离子电池自从1990年代问世以来就成为最重要的可充电电池系统之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
biao02 #3896 RT: 12.83 AV: 1 T: + c Full ms [ 29.00-650.00] 100 90 80 70 60 50 40 30 20 10 0 50 110.37 100 85.67
AV: 5
SB: 12 3889-3894 3898-3903
NL: 1.95E7
Xu K, ZhangS S, Jow T R, et al. Electrochemical and Solid-State Letters, 2002, 5(1): A26~A29
B.Yu, W.Qiu et al./ J.of Poower Sources166(2007)499-502
S.Wang,
锂离子电池
锂离子电池高的工 作电压高、能量密度, 长的循环寿命和小的自 放电率等优点,成为目 前所有电池产品中最有 前途的体系之一。
存在的问题
但锂离子电池 被用作动力电源时 还存在一定的问题, 如大功率充放电性 能有待提高,成本 问题,安全性问题 等。
改进锂离子电池关键材料的性能!
正极
电解质
负极
锂离子电池电解液
双草酸硼酸锂(LiBOB) 电解质性能研究
仇卫华1,刘兴江2,邢桃峰1,黄佳原,连芳1
1北京科技大学材料科学与工程学院,北京,100083 2中国电子科技集团天津电源研究所,天津,300381
2009-10-17
1引言
化学电源
随着电子技术、能 源、交通、国防等领域 的高速发展,人们对高 能量密度、长寿命、高 安全性、廉价、环境友 好的高性能化学电源的 需求更加迫切起来。
Voltage/V vs. Li+/Li
图3 室温条件下 SS/0.8M LiBOB-GBL/SS电 池的循环伏安图(扫描速 率5mV/s)
5.GBL分解产物测试
RT: 0.00 - 23.05 SM: 7G 100 90 80 70 60 50 40 30 20 10 0 0 1.93 2.98 2 4 4.64 5.94 6 7.27 8 8.53 9.72 10.89 10 12 Time (min) 13.00
1。溶解度测试:
GBL LiBOB溶解度 2.6M PC 1.5 M
1.5M LiBOB-GBL 1.5M LiPF6-GBL 0.7M LiBOB-EC/DEC
-1
16 12 8 4
2。电导率测试:
0
20
40 60 Temperature / C
80
图1 1.5M LiBOB-GBL,1.5 M LiPF6-GBL以及0.7 M LiBOB-EC/DEC (1:1, wt.)电解液电导率随温度 的变化规律
8 11.3
11.5 11.0 10.8 10.5
9
10
10.3
10.0 9.80
11 PC+EMC(1:1)12
1 13 14 15 EC+PC(1:1)
The Conductivities of 0.7mol /l LiBOB EC/PC/DMC/EMC electrolytes at 60℃
▼
锂盐与水反应的热力学计算
商品化锂盐LiPF6对水比较敏感,容易水解,在与大气的水或 溶剂的残余水接触时,会发生如下反应。
LiPF6(sol.)+H2O POF3(sol.)+LiF(s)+2HF(sol.)
+
(式1) + +
与LiPF6相似,新型锂盐LiBOB容易水解,水解反应式如下:
LiB(C2O4)2 (sol.)+2H2O LiBO2(sol.)+2H2C2O4(sol.)
0.25
o
0.00
1.00
5.70 0.75 5.60
0.50
5.50
5.30
0.50
5.10
0.75
4.90 4.70
1.00
0.00 0.25 0.50
4.50
0.25
4.30 4.00 3.80
0.75 1.00
0.00
PC+EMC(1:1)
EC+PC(1:1)
The Conductivities of 0.7mol /l LiBOB EC/PC/DMC/EMC electrolytes at 20℃
很好的热稳定性,热分解温度较高可达300oC ——增强了电池的安全性; 不含有F元素,不会产生HF腐蚀电极材料及集流体,提 高了电池的循环寿命,——降低了电池的成本; 能够在碳负极表面形成较稳定的SEI膜,可以在纯PC溶 剂中使用, ——拓宽了电池使用温度范围; 合成原料廉价易得,制备 工艺简单,对环境友好。
6
4
2
Concentration mol/L
图 2. 电解液粘度随LiBOB浓度的变化
4。电化学稳定窗口的测试
0.10
Current Density / mAcm-2
0.08 0.06 0.04 0.02 0.00 -0.02 -0.04
0.8mol/L LiBOB-GBL
S1
S2
-0.06 -0.08 -0.10 0 1 2 3 4 5
350 m/z
O
O
图3。3 Rt=13.19 min的质谱图及其所对应的物质结构式(4–甲基–-丁内酯)
yeti #2585 RT: 8.53 AV: 1 AV: 5 SB: 12 2578-2583 2587-2592 NL: 4.69E5 T: + c Full ms [ 29.00-650.00] 100 90 80 70 60 50 40 30 20 10 0 50 100 132.99 150 207.84 200 250 280.09 300 354.82 400 430.46 450
各种锂盐在PC中配制成1mol· L-1 的电解液,在Li/C半电池中的充放电曲线 Jow T R, Ding M S, Xu K, et al. J. Power Sources, 2003, 119~121: 343~348
高温下电解液1mol· L-1LiPF6 EC/EMC(1:1) 与1mol· L-1LiBOB EC/EMC(1:1) 在LiNiO2/C电池中的放电容量比较
6 Li/LiFePO4半电池性能
150
Discharge capacity/ mAh g
用1.5
M LiBOB-GBL以及
-1
125 100 75 50 25 0 0 10 20 30 40 50 1.5M LiBOB-GBL 1.5M LiPF6-GBL
1.5 M LiPF6-GBL电解液分 测试电池充放电的循环性 能
W.Qiu et al./ Electrochimica Acta 52(2007)4907-4910
LiBOB基电解液存在的问题
LiBOB+ EC+共溶剂
LiBOB溶解度以 及电导率都低 于LiPF6,电池 高倍率放电特 性不好; 有很强的吸湿 性,空气和溶 剂中的杂质会 影响LiBOB基电 解液的性能
O O
493.35 500 562.55 550 610.11 600 650
350 m/z yeti #2949 RT: 9.72 AV: 1 AV: 5 SB: 12 2942-2947 2951-2956 NL: 8.54E5
T: + c Full ms [ 29.00-650.00] 100 90 80 70 60 50 40 30 20 10 0 50 100 76.65
O O
154.85 150
197.85 200
241.28 250
280.78
324.04
367.03
415.87 400 450 500
542.76 550
592.94 600
640.25 650
300
图3。2 Rt=12.84 min的质谱图及其所对应的物质结构式(GBL)
biao02 #4004 RT: 13.19 AV: 1 T: + c Full ms [ 29.00-650.00] 55.70 100 90 80 70 60 50 40 30 20 10 0 50 100 132.89 150 207.18 200 250 280.93 300 354.90 350 m/z 400.81 400 460.23 450 500 552.10 550 600 650 84.71 AV: 5 SB: 12 3997-4002 4006-4011 NL: 2.66E5
GBL
NL: 1.17E8 TIC F: MS yeti
EA
DMC
4–甲基–-丁内酯
14.41 14 16 16.78 18.06 18 19.95 20 21.87 22
图3。1 循环伏安扫描后的GBL溶液总离子色谱流出图(液相) Rt=8.53 min所对应的是EA Rt=9.72 min所对应的是DMC Rt=12.84 min所对应的是GBL Rt=13.19 min所对应的4–甲基–-丁内酯
+
(式2) +
LiB(C2O4)2(sol.)+3H2O LiOOCCOOH(sol.)+H3BO3(sol.)+H2C2O4(sol.)
(式3)
+
+
+
反应的能量变化及吉布斯自由能变化(298.15 K)
ΔE/ kJ·mol-1
式(1) 式(2) 式(3) -2.424 -65.444 -112.783
锂盐
有机溶剂
EC+共溶剂