概率论习题答案 第8章答案

合集下载

茆诗松《概率论与数理统计教程》(第2版)(课后习题 方差分析与回归分析)【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)(课后习题 方差分析与回归分析)【圣才出品】

第8章 方差分析与回归分析一、方差分析1.在一个单因子试验中,因子A有三个水平,每个水平下各重复4次,具体数据如下:表8-1试计算误差平方和s e、因子A的平方和S A与总平方和S T,并指出它们各自的自由度.解:此处因子水平数r=3,每个水平下的重复次数m=4,总试验次数为n=mr=12.首先,算出每个水平下的数据和以及总数据和:T1=8+5+7+4=24.T2=6+10+12+9=37.T3=0+1+5+2=8.T=T l+T2+T3=24+37+8=69.误差平方和S e由三个平方和组成:于是而2.在一个单因子试验中,因子A有4个水平,每个水平下重复次数分别为5,7,6,8.那么误差平方和、A的平方和及总平方和的自由度各是多少?解:此处因子水平数r=4,总试验的次数n=5+7+6+8=26,因而有误差平方和的自由度因子A的平方和的自由度总平方和的自由度3.在单因子试验中,因子A有4个水平,每个水平下各重复3次试验,现已求得每个水平下试验结果的样本标准差分别为1.5,2.0,1.6,1.2,则其误差平方和为多少?误差的方差σ2的估计值是多少?解:此处因子水平数r=4,每个水平下的试验次数m=3,误差平方和S e由四个平方组成,它们分别为于是其自由度为,误差方差σ2的估计值为4.在单因子方差分析中,因子A有三个水平,每个水平各做4次重复试验.请完成下列方差分析表,并在显著性水平α=0.05下对因子A是否显著作出检验.表8-2 方差分析表解:补充的方差分析表如下所示:表8-3 方差分析表对于给定的显著性水平,查表知,故拒绝域为,由于,因而认为因子A是显著的.此处检验的p值为5.用4种安眠药在兔子身上进行试验,特选24只健康的兔子,随机把它们均分为4组,每组各服一种安眠药,安眠时间如下所示.表8-4 安眠药试验数据在显著性水平下对其进行方差分析,可以得到什么结果?解:这是一个单因子方差分析的问题,根据样本数据计算,列表如下:表8-5于是根据以上结果进行方差分析,并继续计算得到各均方以及F 比,列于下表:表8-6在显著性水平下,查表得,拒绝域为,由于故认为因子A (安眠药)是显著的,即四种安眠药对兔子的安眠作用有明显的差别.此处检验的p 值为6.为研究咖啡因对人体功能的影响,特选30名体质大致相同的健康男大学生进行手指叩击训练,此外咖啡因选三个水平:每个水平下冲泡l0杯水,外观无差别,并加以编号,然后让30位大学生每人从中任选一杯服下,2h后,请每人做手指叩击,统计员记录其每分钟叩击次数,试验结果统计如下表:表8-7请对上述数据进行方差分析,从中可得到什么结论?解:我们知道,对数据作线性变换不会影响方差分析的结果,这里将原始数据同时减去240,并作相应的计算,计算结果列入下表:表8-8于是可计算得到三个平方和把上述诸平方和及其自由度填入方差分析表,并继续计算得到各均方以及F比:表8-9若取查表知,从而拒绝域为,由于.故认为因子A(咖啡因剂量)是显著的,即三种不同剂量对人的作用有明显的差别.此处检验的p值为7.某粮食加工厂试验三种储藏方法对粮食含水率有无显著影响.现取一批粮食分成若干份,分别用三种不同的方法储藏,过一段时间后测得的含水率如下表:表8-10(1)假定各种方法储藏的粮食的含水率服从正态分布,且方差相等,试在下检验这三种方法对含水率有无显著影响;(2)对每种方法的平均含水率给出置信水平为0.95的置信区间.解:(1)这是一个单因子方差分析的问题,由所给数据计算如下表:表8-11三个平方和分别为。

魏宗舒《概率论与数理统计教程》(第2版)(章节题库 方差分析及回归分析)【圣才出品】

魏宗舒《概率论与数理统计教程》(第2版)(章节题库 方差分析及回归分析)【圣才出品】

第8章 方差分析及回归分析1.今有某种型号的电池三批,它们分别是A、B、C三个工厂所生产的,为评比其质量,各随机抽取5只电池为样品,经试验得其寿命(h)如表8-1所示:表8-1试在显著性水平0.05下检验电池的平均寿命有无显著的差异,若差异是显著的,试求均值差和的置信水平为95%的置信区间。

解:以依次表示工厂A、B、C生产的电池的平均寿命。

提出假设:;:不全相等。

由已知得S T,S A,S E的自由度分别为n-1=15-1=14,s-1=2,n-s=15-3=12,从而得方差分析如表8-2所示:表8-2因=17.07>3.89=(2,14),故在显著性水平0.05下拒绝,认为平均寿命的差异是显著的。

由已知得,极限误差E为从而分别得和的一个置信水平为95%的置信区间为(±5.85)=(6.75,18.45),(±5.85)=(-7.65,4.05),(±5.85)=(-20.25,-8.55)。

2.为了寻找飞机控制板上仪器表的最佳布置,试验了三个方案,观察领航员在紧急情况的反应时间(以秒计),随机地选择28名领航员,得到他们对于不同的布置方案的反应时间如表8-3所示:表8-3试在显著性水平0.05下检验各个方案的反应时间有无显著差异,若有差异,试求的置信水平为0.95的置信区间。

解:提出假设::不全相等已知得又的自由度分别为n -1=28-1=27,s -1=3-1=2,n -s =28-3=25,从而得方差分析如表8-4所示:表8-4因=11.3>3.39=(2,14),故在显著性水平=0.05下拒绝,认为差异是显著的。

以下来求置信水平为1-=0.95的置信区间,今2.0595,则从而分别得的一个置信水平为0.95的置信区间为(±1.78)=(0.72,4.28),(±1.95)=(2.55,6.45),(±1.78)=(0.22,3.78)。

概率论与数理统计 第8章

概率论与数理统计  第8章
后所生产的灯管中抽取 25 只,测得平均寿命为 1675 小时。 问采用新工艺后,灯管寿命是否有显著性提高?
现在的问题就是要判别新产品的寿命是服从 μ >1500 的
正态分布,还是服从 μ ≤1500的正态分布? 若是前者,我们 就说新产品的寿命有显著性提高;若是后者,就说新产品的 寿命没有显著性提高。
定义 1 将对总体提出的某种假设称为原假设,记为 H 0 ; 将与原假设矛盾的假设称为备择假设,记为 H 1 。
在例 8-1 中,我们把涉及的两种情况用假设的形式表示
出来,第一个假设 μ ≤1500 表示采用新工艺后产品平均寿命没 有显著性提高,第二个假设 μ >1500 表示采用新工艺后产品平
均寿命有显著性提高。第一个假设为原假设,即“ H 0 :μ
定义 8 给定犯第一类错误的概率不大于 α 所作的假设 检验称为显著性检验,称 α 为显著性水平。 例 8-2 某车间用一台包装机包装食盐,每袋食盐的净 重是一个随机变量,它服从正态分布。当包装机正常时,其 均值为 0.5kg ,标准差为 0.015kg 。某日开工后为检查包装 机工作是否正常,随机地抽取它所包装的食盐 9 袋,称得样 本均值 ������ X =0. 511kg ,问在显著性水平 α =0.05 下,这 天包装机工作是否正常。
由于无论是第一类错误还是第二类错误都是作假设检验 时的随机事件,因此在假设检验中它们都有可能发生。我们 当然希望尽可能使犯两类错误的概率都很小,但一般来说, 当样本的容量固定时,若刻意地减少犯一类错误的概率,则 犯另一类错误的概率往往会增大。若要使两类错误的概率都 减小,就需增大样本的容量。在给定样本容量的情况下,我 们总是对犯第一类错误的概率加以控制,使它不大于 α , 而不关心犯第二类错误的概率 β是增大了还是减小了,这样 的假设检验就是显著性检验。

第八章试题答案 概率论与数理统计

第八章试题答案 概率论与数理统计

第八章试题一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是( ) A.n/s x 0μ- B.)(0μ-x n C.10-μ-n /s xD.)(10μ--x n答案:B2.设总体X~N (μ,σ2),X 1,X 2,…,X n 为来自该总体的一个样本,X为样本均值,S 2为样本方差.对假设检验问题:H 0:μ=μ0↔H 1:μ≠μ0,在σ2未知的情况下,应该选用的检验统计量为( ) A .nX σμ0- B .1--n X σμ C .nSX 0μ-D .1--n SX μ答案:C3.在假设检验问题中,犯第一类错误的概率α的意义是( ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率B .在H 0不成立的条件下,经检验H 0被接受的概率C .在H 0成立的条件下,经检验H 0被拒绝的概率D .在H 0成立的条件下,经检验H 0被接受的概率 答案:C4.设总体X~N (μ,σ2),σ2未知,X为样本均值,S n 2=n1∑=-n1i iXX()2,S 2=1n 1-∑=-n1i iXX()2,检验假设H 0:μ=μ0时采用的统计量是( ) A .Z=n/X 0σμ- B .T=n/S X n 0μ- C .T=n/S X 0μ-D .T=n/X 0σμ-答案:C4. .对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A.必接受H0B.可能接受H0,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0答案:A二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

概率论与数理统计课后习题答案 第八章

概率论与数理统计课后习题答案 第八章

有无显著差异(
).
解:检验假设
经计算
查表知
由于
故接受
即甲,乙两台车床加工的产品直径无显著差异.
8. 从甲地发送一个信号到乙地.设乙地接受到的信号值是一个服从正态分布
的随机变量,其
中 为甲地发送的真实信号值.现甲地重复发送同一信号 5 次,乙地接受到的信号值为
8.05
8.15
8.2
8.1
8.25
设接收方有理由猜测甲地发送的信号值为 8.问能否接受这一猜测? (

该机正常工作与否的标志是检验 是否成立.一日
试问:在检验水平
下,该日自动机工作是否正
查表知
,由于
故拒绝 ,即该日自动机工作不正常.
2. 假定考生成绩服从正态分布,在某地一次数学统考中,随机抽取了 36 位考生的成绩,算的平均成绩为 分,标准差 S=15 分,问在显著性水平 0.05 下,是否可以认为这次考试全体考生的平均成绩为
问这两台机床的加工精度是否一致?
解:该题无 值,故省略.(用 F 检验)
4. 对两批同类电子元件的电阻进行测试,各抽 6 件,测得结果如下(单位:Ω )
A 批 0.140 0.138 0.143 0.141 0.144 0.137
B 批 0.135 0.140 0.142 0.136 0.138 0.141
态分布
(单位:公斤).现抽测了 9 包,其重量为:
99.3
98.7
100.5 101.2 98.3
99.7
99.5
102.0 100.5
问这天包装机工作是否正常?
将这一问题化为一个假设检验问题,写出假设检验的步骤,设
解: (1)作假设

《概率论与数理统计》习题及答案第八章

《概率论与数理统计》习题及答案第八章

《概率论与数理统计》习题及答案第⼋章《概率论与数理统计》习题及答案第⼋章1. 设x.,x2,,%…是从总体X中抽岀的样本,假设X服从参数为兄的指数分布,⼏未知,给泄⼊〉0和显著性⽔平a(Ovavl),试求假设H o的⼒$检验统计量及否建域.解选统汁量*=2⼈⼯⼄=2如庆则Z2 -Z2(2n) ?对于给宦的显著性⽔平a,査z'分布表求出临界值加⑵",使加⑵2))=Q因z2 > z2 > 所以(F": (2/1)) => (/2 > /; (2n)),从⽽a = P{X2 > 加⑵“} n P{r > Za(2/0)可见仏:2>^的否定域为Z2>Z;(2?).2. 某种零件的尺⼨⽅差为O-2=1.21,对⼀批这类零件检查6件得尺⼨数据(毫⽶):,,,,,。

设零件尺⼨服从正态分布,问这批零件的平均尺⼨能否认为是毫⽶(a = O.O5).解问题是在/已知的条件下检验假设:“ = 32.50Ho的否定域为1“ l> u af2u0(n5 = 1.96 ,因1“ 1=6.77 >1.96,所以否泄弘,即不能认为平均尺⼨是亳⽶。

3. 设某产品的指标服从正态分布,它的标准差为b = 100,今抽了⼀个容量为26的样本,计算平均值1580,问在显著性⽔平a = 0.05下,能否认为这批产品的指标的期望值“不低于1600。

解问题是在b?已知的条件下检验假设://>1600的否定域为u < -u a/2,其中X-1600 r-r 1580-1600 c , “11 = ------------ V26 = ------------------- x 5.1 = —1.02.100 100⼀叫05 =—1.64.因为// =-1.02>-1.64 =-M005,所以接受H(>,即可以认为这批产品的指标的期望值“不低于1600.4. ⼀种元件,要求其使⽤寿命不低于1000⼩时,现在从这批元件中任取25件,测得其寿命平均值为950⼩时,已知该元件寿命服从标准差为o-=100 ⼩时的正态分布,问这批元件是否合格(<7=0.05)解设元件寿命为X,则X~N(“,IO。

《经济数学》第三篇概率论第8章随机变量与数字特征作业详解

《经济数学》第三篇概率论第8章随机变量与数字特征作业详解

《经济数学》第三篇概率论第8章随机变量与数字特征作业详解练习8.11.定点投篮1次,投中的概率是0.4,试用随机变量描述这一试验解,引入随机变量X,8发投篮命中的,令X=1;当不中时X=0,即P(X=1)=0.4,P(X=0)=1-0.4=0.6。

2.一次试验中,若某事件A必然产生、试用随机变量描述该现象,并指出此随机变量可能取多少个值?A出现,令X=1,有P(X=1)=1,A不出现,令X=0,有P(X=0)=0,X 可能取1,0两个值。

练习8.21.判断以下两表的对应值能否作为离散型随机变量的概率分布(1)(2)解:P k的概率之和为1,即∑P k=1。

现在第(1)情况,虽P k≥0,但。

所以不可以作为随机变量概率分布。

第(2)情况不仅P k≥0,且,所以能作为离散型随机变量的概率分布。

2.设随机变量Y的概率分布为,k=1,2,3,求P(Y=1),P(Y>2),P(≤3),P(1.5≤y≤5),P(y>)解:P(Y=1)=,P(Y>2)=P(Y=3)=P(1.5≤Y≤5)=P(Y=2)+P(Y=3)=;P(Y>)=P(Y=2)+P(Y=3)=3.气象记录表明,某地在11月份的30天中平均有3天下雪,试问明年11月份至多有3个下雪天的概率11月份下雪天的概率是,不下雪天的概率是,每次只有两种可能,要么下雪,要么不下雪,所以服从二项分布,X~B(30,0.1)X表示11月份下雪天数,解:P(X≤3)=P(X=0)+P(X=1)+P(X=2)+P(X=3)其中不下雪的概率P(X=0)==0.04239有一天下雪的概率P(X=1)==0.1413有二天下雪的概率P(X=2)==0.22766有三天下雪的概率P(X=3)==0.2361∴P(X≤3)=0.04239+0.1413+0.22766+0.2361≈0.6474.某车间有12台车床,每台车床由于装卸加工的零件等原因时常停车,设各台车床停车或开车是相互独立的每台车床在任一时刻处于停车状态的概率是0.3,求(1)任一时刻车间内停车台数X的分布;(2)车间内有3台车床停车的概率;(3)任一时刻车间内车床全部工作的概率。

概率论与数理统计习题解答(第8章)

概率论与数理统计习题解答(第8章)

第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差σ2 = 1.21,随机抽取6件,记录其长度(毫米)分别为32.46,31.54,30.10,29.76,31.67,31.23在显著性水平α = 0.01下,能否认为这批零件的平均长度为32.50毫米? 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Z σμ0-=为检验统计量,在显著水平α = 0.01下,0H 的拒绝域为:}|{|}|{|005.02Z z Z z ≥=≥α查表得 2.575829005.0=Z ,现由n =6, 31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:3.0581561.132.5-31.126670==-=nX z σμ005.0Z z >可知,z 落入拒绝域中,故在0.01的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。

EXCEL 实验结果:2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平α = 0.05下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异?解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:0:μμ=H1:μμ≠H由于方差未知,选取ns X T 0μ-=为检验统计量,在显著水平α = 0.05下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α查表得 2.26215716)9(025.0=t ,现由n =10, 67.411∑===n i i x n x , ()35.155555611122∑==--=n i i x x n s , 计算得2.45335761035.1555556724.670=-=-=nsX t μ)9(025.0t t >可知,t 落入拒绝域中,故在0.05的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.设马克吐温与思诺特格拉斯的小品文中由 3 个字母组成的词的比例分别为 x, y ,并且由题
意可设 x ~ N (μ1,σ 2 ) , y ~ N (μ2 ,σ 2 ) ,本题是在显著性水平α = 0.05 下检验假设:
H 0 : μ1 − μ2 = 0 ↔ H1 : μ1 − μ2 ≠ 0
由于两个总体的方差相等,故可取检验统计量为
t= x−y
sw
1+1 n1 n2
其中
s
2 w
=
(n1
− 1)s12
+
(n2

1)
s
2 2
n1 + n2 − 2
,拒绝域为 C
=
⎧ ⎨| t ⎩
|≥

2
(n1
+
n2

⎫ 2)⎬ .

已 知 n1 = 8, n2 = 10 , 查 表 得 t0.025 (16) = 2.1199, , 经 计 算 得 , x = 0.2319, s1 = 0.01456,
H0
:σ 2
=
σ
2 0

H1

>
σ
2 0
(其中σ 0 = 0.005 )
检 验 统 计 量 为 χ 2 = (n −1)s 2
σ
2 0
,




{χ 2
>
χ
2 α
(n
− 1)}
,

n
=
9, s
=
0.007,
χ
2 0.05
(8)
= 15.504
,算得
χ
2
= 15.68
> 15.504,
因此拒绝原假设
pˆ i
=
(2.8571)i i!
e −2.8571
i = 0,1,2,"
表 中 我 们 对 于 不 满 足 npi > 5 的 组 作 了 适 当 的 合 并 , 并 组 后 , k = 10 − 5 = 5 , 而
∑ α
= 0.05 , r
= 1,
χ
2 0.05
(5

1

1)
=
7.815,
因此有

由于 n1, n2 很大,故有 t0.025 (218) ≈ z0.025 = 1.96 将 x = 2805, y = 2680, 以上数据代入上式
计算可得 | t |= 8.206 > 1.96 ,故拒绝原假设 H 0 ,可以认为两个总体的平均值有显著差异,即
两种枪弹在速度方面有显著差异. 综上所述,两种枪弹在速度方面有显著差异但在均匀性方面没有显著差异.
故拒绝 H 0 , 即认为两个总体的均值有显著差异,即可以认为关紧闭对脑电波的影响显著.
10.设两台机器生产的部件的重量分别为
x,
y,
且设
x
~
N
(μ1

2 1
)
,
y
~
N (μ2 ,σ
2 2
)
.
由题意知,需在显著性水平下α = 0.05 检验:
H0
:
σ
2 1
=
σ
2 2

H1
:
σ
2 1
>
σ
2 2
检验统计量为 F = s12 ,拒绝域为
第 8 章习题解答 总 6 页第 1 页
第八章 假设检验
(一)基本题
1.此题是在显著性水平α = 0.05 下检验假设: H 0 : μ = μ0 ↔ H1 : μ ≠ μ0 其中 μ0 = 1600
检验统计量为
u
=
x − μ0 σ/ n
,拒绝域为| u
|≥

2
,已知 σ
= 150 , n
=
26,
=
(n −1)s 2
σ
2 0
(其中σ 0
= 0.04% ),拒绝域为
{χ 2

χ2 1−α
2
(n
−1)} ∪{χ 2

χα2 (n 2
− 1)}
查表得
χ
2 0.025
(9)
= 19.023,
χ
2 0.975
(9)
=
2.7 ,算得 χ 2
=
7.701 ,它没有落在拒绝域中,故接受
原假设 H 0 .
5.本题是在显著性水平α = 0.05 下检验假设:
s = 15,
t0.025 (36 − 1) = 2.0301, 算得
| t |= | 66.5 − 70 | 36 = 1.4 < 2.0301 15
所以接受原假设,即可以认为这次考试全体考生的平均成绩为 70 分.
3. 由 题 意 知 检 验 统 计 量 为
u = x −1000 σ/ n
,拒绝域为
F = s12 = 3.6615 > 3.5 s22
故拒绝原假设, 即可以认为第二台机器的加工精度比第一台机器的高.
9.
设没关禁闭和关禁闭的人的脑电波中的 x, y, 且设 x
~
N
(μ1

2 1
)
,
y
~
N
(
μ
2
,
σ
2 2
)
.
2
第 8 章习题解答 总 6 页第 3 页
(1)先在显著性水平下α = 0.05 检验:
H0
:
σ
2 1
=
σ
2 2

H1
:
σ
2 1

σ
2 2
检验统计量为 F
= s12
s
2 2
,拒绝域为
C
=
⎧ ⎨F ⎩

F1−α 2
(n1
−1, n2
− 1)或F


2
(n1
−1, n2
⎫ − 1)⎬

已知 n1
= n2
= 10, 经计算得 x
= 10.58,
y
= 9.78,
s12
= 0.21,
s
2 2
= 0.36,
F0.975 (109,109) < 0.6993 ,可以算得, F = 1.315 ,显然 0.6993 < F = 1.315 < 1.43, 故检验没
有落在拒绝域内,故可以认为两个总体的方差相等,即两种枪弹在均匀性方面没有差异.
其次我们需在显著性水平α = 0.05 检验两种枪弹在速度方面有无显著差异,即需检验:
为利用 χ 2 拟合检验法则,将相关的计算结果列表表示(见下表).
i
vi
pˆ i
npˆ i
vi − npˆ i (vi − npˆ i )2 / npˆ i
0
4
0.0574
3.62
-1.96
0.2752
1
8
0.1641
10.34
2
14
0.2344
14.77
-0.77
0.0401
3
19
0.2233
14.07
由于两个总体的方差相等,故可取检验统计量为
t= x−y
sw
1+1 n1 n2
其中
s
2 w
=
(n1
− 1)s12 + (n2 − 1)s22 n1 + n2 − 2
,拒绝域为 C
=
⎧ ⎨| t ⎩
|≥

2
(n1
+
n2
⎫ − 2)⎬ .

查表得 t0.025 (18) = 2.093 ,经计算得 sw = 0.5338, | t |= 3.35 > 2.093 = t0.025 (18)
设: H 0 : X ~ N (μ,σ 2 ) 对正态分布中的参数 μ,σ 2 用极大似然估计法估计可得 μ,σ 2 的估计值为
μˆ = x = 80.1
σˆ 2 = n −1 s 2 = 92.72 n
为利用 χ 2 拟合检验法则,将相关的计算结果列表表示(见下表).
χ
2
=
5 i =1
(vi
− npˆ i )2 npˆ i
= 2.5021 <
χ
2 0.95
(3)
,
所以接受 H 0 ,即可以认为一年的暴雨次数服从泊松分布. 12. 设事故发生在星期 X ,则本题是要在显著性水平α = 0.05 下检验:
H0
: P{X
= i} =
1 ,i 6
= 1,2,3,4,5,6
1/6
10.5
1.5
0.2143

1.6667
∑ 查表得
χ
2 0.05
(6

1)
=
11.071
,所以
χ
2
=
6 i =1
(vi
− npˆ i )2 npˆ i
=
1.6667
<
χ2 0.05
(5)
,所以接受
H0
,
所以可以认为事故的发生与星期几无关.
13. 设 考 试 成 绩 为 X , 则 由 题 意 知 需 在 显 著 性 水 平 α = 0.05) 下 检 验 假
x
= 1637, 查表得
zα = z0.025 = 1.96, 计算得 | u |= 1.258 < 1.96, 所以接受原假设 H 0 ,即认为这批产品的指标
相关文档
最新文档