力学性能测试中各因素的影响
机械结构材料力学性能分析

机械结构材料力学性能分析引言:机械结构材料的力学性能分析是一项重要的工程技术,它对于机械结构的设计和制造具有决定性的影响。
本文将探讨机械结构材料力学性能分析的基本流程和方法,以及其中的一些关键因素。
1. 材料力学性能的概念和分类在机械结构材料力学性能分析中,力学性能包括强度、刚度、塑性和韧性等指标。
强度是材料抵抗外力破坏的能力,刚度则与材料对变形的抵抗能力有关。
塑性指材料在受力下能够产生持久的塑性变形,而韧性则是材料在破坏前能够吸收的能量。
这些性能指标的好坏直接影响着机械结构的可靠性和安全性。
2. 材料力学性能测试方法材料力学性能的测试方法多种多样,常见的包括拉伸试验、压缩试验、弯曲试验和冲击试验等。
拉伸试验是最常用的一种材料性能测试方法,通过施加拉力来测量材料的强度和刚度。
压缩试验和弯曲试验则用来测试材料的抗压和抗弯性能。
冲击试验则关注材料的韧性和吸能能力。
3. 材料力学性能的分析方法在材料力学性能分析中,常用的分析方法包括应力-应变分析、断裂力学和疲劳寿命分析等。
应力-应变分析是一种通过施加力和测量应变来评估材料性能的方法。
断裂力学则研究材料在受到外力作用下破裂的机理和分析方法。
疲劳寿命分析则关注材料在反复加载下的耐久性能。
4. 材料力学性能的影响因素材料力学性能受多种因素影响,包括材料的成分、组织结构、加工工艺和环境等。
例如,不同金属合金的强度和刚度常常取决于合金中添加的合金元素和热处理工艺。
材料的组织结构也会对力学性能产生重要影响,晶粒大小和晶界分布等因素均会影响材料的强度和塑性。
此外,环境因素如温湿度对材料性能的稳定性也有一定影响。
5. 机械结构材料力学性能分析的应用机械结构的设计和制造需要考虑材料力学性能的影响。
例如,在汽车制造中,车身结构需要具备足够的强度和刚度,以保证驾乘人员的安全。
同时,在航空航天领域,飞机材料需要满足一定的韧性和疲劳寿命,以应对复杂的工作环境和飞行载荷。
结论:机械结构材料的力学性能分析是一项重要的工程技术,它能够评估材料的强度、刚度、塑性和韧性等指标。
力学性能测试中各因素的影响

力学性能测试中各因素的影响金属力学性能试验方法是检测和评定金属材料产品质量的重要手段之一。
其中拉伸试验则是应用最广泛的力学性能试验方法。
拉伸试验过程中的各项强度和塑性性能指标是反映金属材料力学性能的重要参数。
结合国家标准、工作中出现的问题及查阅相关资料,现对影响拉伸试验结果准确度的因素,如试样的形状、尺寸、表面加工精度、加载速度、夹持器具及周围环境等做一次总结。
1样品的制备1. 1样品制备对拉伸曲线和测试数据有影响样品制备是很关键,准确的制样是获得准确实验数据的前提,GB /T2975 – 1998和GB/T 228.1-2010对试样的取材、形状、尺寸、加工精度和方法等都作了统一的规定。
实际工作中,对于板材和管材的试样是平板和圆管弧板带肩试样,一是制样时一般采用铣削加工,在过渡圆处会停止进刀,如果最后一刀给尽量较大,在加工抗力的作用下,使平行段铣削时就有较多的让刀,到达过渡圆弧与平行段衔接处的截面积减小;二是过渡圆有应力集中的影响,拉伸中试样的标距外部分先进入屈服状态。
对于圆管弧板带肩试样在夹紧时,展平夹紧部分使得试样产生弯曲应力,其最大值集中在过渡圆处,拉伸时也会产生曲线异常的现象,会影响测试数据。
1. 2样品制备要求首先,根据要检验样品,按GB /T228.1 - 2010制备标准样品。
国家标准对试样的取材、形状、尺寸、加工精度、试验的手段和方法以及数据的处理等都作了统一的规定。
其次,对破坏性试验,如材料强度指标的测定,考虑到材料质地的不均匀性,为使实验结果能相互比较,获得准确可靠的数据,应制备多个试样,得出材料的性能指标,然后综合评定结果,对非破坏性试验,试样弹性模量、变形量等的测定,因为要借助于变形放大仪表,为减小测量系统引入的误差,一般也要采用多次重复,然后综合评定结果。
第三,样品制备时,应尽量使过渡圆衔接处面积相等,提高加工精度,修磨光滑,不要有加工刀痕,减小应力集中,以减少试验结果误差。
工程流体力学中的流体力学性能测试

工程流体力学中的流体力学性能测试工程流体力学中的流体力学性能测试是指对流体在工程应用中的性能进行测量和评估的一种方法。
通过对流体的流动、压力、速度、粘度等参数进行测量和分析,可以得到流体在不同工况下的性能指标,为工程设计和优化提供依据。
1. 流量测试:流量是流体在单位时间内通过某个截面的体积或质量,是流体性能测试中最常用的参数之一。
流量测试可以通过不同的方法进行,包括体积法、质量法和速度法等。
其中,体积法是通过测量流体通过管道或其他装置的体积来确定流量;质量法是通过测量流体通过装置前后的质量差来确定流量;速度法是通过测量流体通过截面的平均流速和截面积来确定流量。
2. 压力测试:压力是流体对单位面积的作用力。
在工程流体力学中,压力的测量对于流体的性能评估非常重要。
常见的压力测试方法包括压力传感器测量法和管道法。
压力传感器测量法是利用压力传感器将压力转化为电信号进行测量;管道法是通过在管道中安装压力计来测量流体的压力。
3. 速度测试:速度是流体的运动速率,对流体流动性能的测试也是工程流体力学中的重要任务。
速度测试可以通过不同的方法进行,包括流速计测量法、激光测速法和超声波测速法等。
其中,流速计测量法是通过测量流体通过截面的平均流速来确定速度;激光测速法是利用激光光束与流体相互作用来测量流体速度;超声波测速法是利用超声波在流体中传播的速度来测量流体速度。
4. 粘度测试:粘度是流体的阻力大小,用于描述流体的黏稠性。
粘度测试可以通过旋转式粘度计、滚动式粘度计和振荡式粘度计等方法进行。
旋转式粘度计是通过测量在某个转动条件下流体所产生的阻力来确定粘度;滚动式粘度计是利用流体在滚动条件下的滚动阻力来测量粘度;振荡式粘度计是利用流体在振荡条件下的阻尼特性来测量粘度。
5. 温度测试:流体的温度对流体性能有较大影响,因此在工程流体力学中对流体的温度进行测试也是必要的。
温度测试可以通过温度计、红外测温仪和热电偶等方法进行。
第五章-塑料力学性能测试

成型、压延成型或吹膜成型等; 不同方法制样的试验结果不具备可比性; 同一种制样方法,要求工艺参数和工艺过程也要相同; 试样制备好后,要按GB/T 2918-1998标准,在恒温
恒湿条件下放置处理。
(2)材料试验机
影响因素主要有:测力传感器精度、速度控制精度、 夹具、同轴度和数据采集频率等。
第五章 力学性能测试
第一节 拉伸性能
一、概念及测试原理
1.基本概念
应变:当材料受外力作用,而所处的条件使它不能产生惯 性移动时,它的几何形状和尺寸将发生变化,这种变化就 称为应变。
应力:在任何给定时刻,在试样标距长度内,每单位原始 横截面积上所受的拉伸负荷。
拉伸强度:是在拉伸试验过程中,试样承受的最大拉伸应 力。
L0 100
L0
L
100
L
X
(3)标准偏差值按下式(5-4)计算
S
(Xi X)2
n 1
式中:S,标准偏差值;X
,单个测定值;X
i
,组
测定值的算术平均值;n,测定个数。
计算结果以算术平均值表示,σt取三位有效数字,
εt、S取二位有效数字。
3.影响因素
(1)试样的制备与处理 拉伸试验要求做成哑铃形试样; 制样方式有两种:一是用原材料制样;另一种是从制
精密度更高的平均值,试样数量可多于5个。
推荐试验速度
速度
允许偏差 速度
允许偏差
(mm/min) (%) (mm/min) (%)
1
±20
50
±10
2
±20
100 ±10
5
±20
200 ±10
混凝土的力学性能及其影响因素

混凝土的力学性能及其影响因素一、引言混凝土是一种广泛应用于建筑工程中的材料,具有优良的性能,如承压、耐久、抗震等,是建筑结构中不可或缺的一部分。
混凝土的力学性能是决定其使用效果的关键,因此深入了解混凝土的力学性能及其影响因素对混凝土的设计、施工及维护有着重要的意义。
二、混凝土的基本力学性能1.抗压强度混凝土的抗压强度是指混凝土承受压力的能力。
一般情况下,混凝土的抗压强度与其材料的质量、配合比、水灰比、龄期等因素有关。
抗压强度的测试方法有标准试块法、小试块法、非标准试块法等。
2.抗拉强度混凝土的抗拉强度是指混凝土承受拉力的能力。
混凝土的抗拉强度较低,常常会出现裂缝。
为了提高混凝土的抗拉强度,通常采用钢筋等材料进行加固。
抗拉强度的测试方法有直接拉伸法、间接拉伸法等。
3.抗剪强度混凝土的抗剪强度是指混凝土承受剪切力的能力。
混凝土的抗剪强度与其抗压强度有一定的关系,但并不完全相同。
抗剪强度的测试方法有直接剪切法、间接剪切法等。
4.弹性模量混凝土的弹性模量是指混凝土在受力时所表现出来的弹性特性。
弹性模量越大,混凝土的刚性越大,反之则越柔软。
弹性模量的大小与混凝土的配合比、材料等因素有关。
5.泊松比混凝土的泊松比是指混凝土在受力时横向变形与纵向变形之间的比值。
泊松比的大小与混凝土的材料等因素有关。
三、混凝土的影响因素1.材料混凝土的材料包括水泥、骨料、砂子、水等。
这些材料的质量直接影响混凝土的力学性能。
一般来说,水泥的种类和品质、骨料的种类和粒径、砂子的种类和粒径以及水的质量等因素都会对混凝土的力学性能产生影响。
2.配合比混凝土的配合比是指混凝土中各材料的比例。
不同的配合比会影响混凝土的力学性能。
一般来说,配合比中水泥的比例越高,混凝土的抗压强度越大,但是若水泥的比例过高,混凝土的韧性和抗冻性会下降。
3.水灰比混凝土的水灰比是指混凝土中水和水泥的比例。
水灰比的大小对混凝土的力学性能有着重要的影响。
一般来说,水灰比越小,混凝土的抗压强度越大,但是若水灰比过小,混凝土的可加工性和耐久性会降低。
塑料的几种力学性能的测试

塑料常规力学性能的测试(拉伸冲击弯曲)影响塑料力学性能的因素•影响塑料力学性能的因素很多,有聚合物结构的影响(如:聚合物种类,分子量及其分布,是否结晶等),有成型加工的影响(如:成型加工的方式及加工条件导致结晶度、取向度的变化,试样的缺陷等);有测试条件的影响(如:测试温度,湿度,速度等),它们会导致实验重复性差等缺陷,所以力学性能的测试有严格的测试标准,如GB1042-92规定:环境温度为25±1℃,相对湿度为65±5%,样品的尺寸、形状均有统一规定,实验结果往往为五次以上平均。
拉伸实验•一实验目的•掌握塑料拉伸强度的测试原理及测试方法,并能分析影响因素;加深对应力----应变曲线的理解,并从中求出有用的多种机械性能数据;观察拉伸时出现的屈服,裂纹,发白等现象。
二实验原理•拉伸试验是对试样沿纵轴向施加静态拉伸负荷,使其破坏。
通过测定试样的屈服力,破坏力,和试样标距间的伸长来求得试样的屈服强度,拉伸强度和伸长率。
定义•拉伸应力:试样在计量标距范围内,单位初始横截面上承受的拉伸负荷。
•拉伸强度:在拉伸试验中试样直到断裂为止,所承受的最大拉伸应力。
•拉伸断裂应力:在拉伸应力-应变曲线上,断裂时的应力。
•拉伸屈服应力:在拉伸应力-应变曲线上,屈服点处的应力。
•断裂伸长率:在拉力作用下,试样断裂时,标线间距离的增加量与初始标距之比,以百分率表示。
•ε断=(L-L0)/L0×100%•式中:L0------试样标线间距离,mm•L-------试样断裂时标线间距离,mm•弹性模量:在比例极限内,材料所受应力与产生响应的应变之比。
应力-应变曲线•由应力-应变的相应值彼此对应的绘成曲线,通常以应力值作为纵坐标,应变值作为横坐标。
应力-应变曲线一般分为两个部分:弹性变形区和塑性变形区,在弹性变形区,材料发生可完全恢复的弹性变形,应力和应变呈正比例关系。
曲线中直线部分的斜率即是拉伸弹性模量值,它代表材料的刚性。
材料力学性能测试及其结果解读

材料力学性能测试及其结果解读材料力学性能测试是一种用来评估材料力学特性的有效方法。
通过测试不同材料的强度、硬度、韧性、延展性等性能参数,可以了解材料的力学性能,为材料的选用和设计提供重要依据。
本文将介绍材料力学性能测试的基本原理和常用方法,并对测试结果进行解读。
一、材料力学性能测试的基本原理材料力学性能测试主要依靠实验方法来获取材料的物理性质和力学性能。
其基本原理是通过施加一定的外力或载荷到材料上,测量材料在这种外力或载荷作用下的响应,以确定材料的力学特性。
常见的材料力学性能参数包括强度、硬度、韧性和延展性等。
强度是指材料在外力作用下所能承受的最大应力值,常用参数有抗拉强度、屈服强度和抗压强度等。
硬度是指材料抵抗外界物体穿透、切割、碾压的能力,常用参数有布氏硬度、洛氏硬度和维氏硬度等。
韧性是指材料能够吸收外力并进行塑性变形的能力,常用参数有断裂韧性和冲击韧性等。
延展性是指材料在外力作用下能够产生永久塑性变形的能力,常用参数有伸长率和断面收缩率等。
二、常用的材料力学性能测试方法1. 拉伸测试:拉伸测试是评估材料抗拉强度和延展性能的常用方法。
该方法将材料制成规定形状的试样,在拉伸机上施加外力,测量试样在拉伸过程中的应力和应变,进而得到材料的力学性能参数。
2. 压缩测试:压缩测试用于评估材料的抗压强度和韧性。
该方法将材料制成规定形状的试样,在压力机上施加外力,测量试样在压缩过程中的应力和应变,从而确定材料的力学性能。
3. 硬度测试:硬度测试是评估材料抵抗外界物体穿透、切割、碾压的能力的常用方法。
常见的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等,利用不同的硬度计测量试样在受载后的硬度值,以评估材料的硬度特性。
三、对材料力学性能测试结果的解读1. 强度解读:强度是评估材料在外力作用下的抵抗能力,通常以抗拉强度和屈服强度为指标。
抗拉强度是材料在拉伸过程中能够承受的最大应力值,屈服强度是材料开始产生塑性变形的临界点。
力学性能的测试

拉伸性能的测试
6.影响因素
(1)成型条件:由试样自身的微观缺陷和微观不同性引 起 (2)温度和湿度: (3)拉伸速度:塑料属于粘弹性材料,其应力松弛过程 与变形速率紧密相关,需要一ห้องสมุดไป่ตู้时间过程 (4)预处理:材料在加工过程中,由于加热和冷却的时 间和速度不同,易产生局部应力集中,经过在一定温 度下的热处理或称退火处理,可以消除内应力,提高 强度 (5)材料性质:结晶度、取向、分子量及其分布、交联 度 (6)老化:老化后强度明显下降
拉伸性能的测试
III试样(8字形)的制备和尺寸要求
拉伸性能的测试
IV型(长条形)试样及尺寸
拉伸性能的测试
3.实验速度:
拉伸性能的测试
塑料材料选择试样类型测试速度参考
拉伸性能的测试
4.操作步骤
①试样的状态调节和试验环境按国家标准规定。 ②在试样中间平行部分做标线,示明标距。 ③测量试样中间平行部分的厚度和宽度,精确到0.01mm, II型试样中间平行部分的宽度,精确到0.05mm,测3点,取 算术平均值。 ④夹具夹持试样时,要使试样纵轴与上下夹具中心连线重 合,且松紧适宜。 ⑤选定试验速度,进行试验。 ⑥记录屈服时负荷,或断裂负荷及标距间伸长。试样断裂 在中间平行部分之外时,此试样作
力学性能的测试拉伸性能的测试拉伸性能测试原理及国标试样速度操作步骤数据的处理影响因素拉伸性能的测试原理拉伸试验是对试样延期纵轴方向施加静态拉伸负荷使其破坏通过测量试样的屈服力破坏力和试样标距间的伸长来求得试样的屈服强度拉伸强度和伸长率
力学性能的测试
拉伸性能的测试
拉伸性能测试原理及国标 裁样 试样速度 操作步骤 数据的处理 影响因素
拉伸性能的测试
1.参照标准——国标GB/T 1040-92
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力学性能测试中各因素的影响
金属力学性能试验方法是检测和评定金属材料产品质量的重要手段之一。
其中拉伸试验则是应用最广泛的力学性能试验方法。
拉伸试验过程中的各项强度和塑性性能指标是反映金属材料力学性能的重要参数。
结合国家标准、工作中出现的问题及查阅相关资料,现对影响拉伸试验结果准确度的因素,如试样的形状、尺寸、表面加工精度、加载速度、夹持器具及周围环境等做一次总结。
1样品的制备
1. 1样品制备对拉伸曲线和测试数据有影响
样品制备是很关键,准确的制样是获得准确实验数据的前提,GB /T2975 – 1998和GB/T 228.1-2010对试样的取材、形状、尺寸、加工精度和方法等都作了统一的规定。
实际工作中,对于板材和管材的试样是平板和圆管弧板带肩试样,一是制样时一般采用铣削加工,在过渡圆处会停止进刀,如果最后一刀给尽量较大,在加工抗力的作用下,使平行段铣削时就有较多的让刀,到达过渡圆弧与平行段衔接处的截面积减小;二是过渡圆有应力集中的影响,拉伸中试样的标距外部分先进入屈服状态。
对于圆管弧板带肩试样在夹紧时,展平夹紧部分使得试样产生弯曲应力,其最大值集中在过渡圆处,拉伸时也会产生曲线异常的现象,会影响测试数据。
1. 2样品制备要求
首先,根据要检验样品,按GB /T228.1 - 2010制备标准样品。
国家标准对试样的取材、形状、尺寸、加工精度、试验的手段和方法以及数据的处理等都作了统一的规定。
其次,对破坏性试验,如材料强度指标的测定,考虑到材料质地的不均匀性,为使实验结果能相互比较,获得准确可靠的数据,应制备多个试样,得出材料的性能指标,然后综合评定结果,对非破坏性试验,试样弹性模量、变形量等的测定,因为要借助于变形放大仪表,为减小测量系统引入的误差,一般也要采用多次重复,然后综合评定结果。
第三,样品制备时,应尽量使过渡圆衔接处面积相等,提高加工精度,修磨光滑,不要有加工刀痕,减小应力集中,以减少试验结果误差。
2拉伸速度对试验结果的影响及控制要求
2. 1拉伸速度的影响
拉伸速度不仅对测试数据有影响,对拉伸曲线的形貌也有影响。
板状拉伸试样拉伸时,会出现这种情况,其拉伸曲线在上屈服点处不是先沿弹性曲线向上到达上屈服点,然后再向下进入屈服过程,而是出现在沿弹性直线向上到达下屈服点时,曲线先向左、向上、再向右、向下画圈,最后进入屈服流动过程的现象。
试样在被拉伸到屈服极限附近时,在引伸计标距范围内突然出现拉伸力几乎不变,引伸计测得的变形出现回弹,而不是快速增加这样的拉伸曲线现象,主要原因是:试样在被拉伸到屈服极限附近
时,由于某种原因引伸计标距范围外的部分首先进入了屈服状态,其轴向变形快速增加,如果此时试验机横梁位移速度过低,就不能满足试样的屈服流动伸长变形对横梁位移的要求,不能使用试样在引伸计标距范围内还处于线弹性状态的一段保持其变形的相应的增加,造成引伸计标距范围内这一段试样的变形回弹。
当适当的加快拉伸速度,拉伸曲线便基本正常。
2. 2拉伸速度的要求
在弹性变形阶段,金属变形量很小,而拉伸载荷迅速增大,这时如果用横梁位移控制来做拉伸试验,速度太快会导致整个弹性阶段很快被冲过去。
以弹性模量为200MPa的普通钢材为例,如果标距为50mm 的材料,在弹性阶段内以10mm/min的速度进行拉伸,实际的应力速率为200000N mm2s- 1×100mm/min ×1min /60s ×1/50mm = 666N / mm2 s- 1,一般钢材的屈服强度小于600MPa,只需要1秒钟就把材料拉到屈服状态,速度太快。
所以在弹性阶段一般选择采用应力速率控制或负荷控制。
塑性较好的材料试样过了弹性阶段后,载荷增加不大,而变形增加很快,为了防止拉伸速度过快,一般采用横梁位移控制和应力速率控制。
在GB /T228.1 - 2010中规定,“在弹性范围至上屈服强度,试验机夹头的分力速率应尽可能保持恒定并在规定的应力速率范围内(材料的弹性模量E • 150000N / mm2,应力速率应控制在2~20 (N /mm2 ) · s- 1范围内,材料的弹性模量E • 150000N / mm2,应力速率应控制在6~60(N / mm2 ) ·s- 1范围内)。
若仅测下屈服强度,在试样平行长度的屈服期间应变速率应在0. 00025/ s - 0. 0025/ s之间,平行长度内的;应变速率应尽可能保持恒定。
在塑性范围直至规定强度应变速率不应超过0. 0025/ s。
”应力速率和应变速率的切换点,最好在弹性阶段结束的点进行应力速度到应变速率的切换。
在切换过程中要没有冲击、没有掉力,这是拉伸试验的一个关键点。
3引伸计装卸、标定的影响及控制要求
3. 1引伸计的影响
引伸计是试验机的一个重要附件,主要用于试样变形较小的试验,如在测定材料弹性模量和规定非比例延伸强度时,必须安装引伸计。
如果不需要测定这两个性能指标,则不必安装引伸计。
引伸计装夹、跟踪与取下的方法、时机不正确,也会影响弹性阶段的试验结果和曲线形态。
3. 2引伸计装卸、标定的要求
1)目前常用的是电子引伸计,在装夹时,将引伸计轻拿,把标距杆垫片卡在力臂与标距杆之间,压紧两力臂,使两刀刃垂直接触试样,用弹簧或橡皮筋将引伸计绑在试样上,装好后取出标距杆垫片,使力臂与标距杆之间保持0. 5mm的间隙。
并保证上下两个刃口与试样垂直,手拿两个测量臂不要捏得太紧,防止两个测量臂产生弹性变形,当手松开时,两臂又弹回,致使初始变形时无读数。
另外,要保护好电子引伸计,不要摔碰,刃口保持锋利,标距杆两端的螺钉不要取下,以防两臂开度无限制张开,造成应变片及弹簧片永久变形,造成电子引伸计损坏。
还要注意引伸计装夹、跟踪与取下的时机。
如果要
求最大力下的总伸长,引伸计就必须跟踪到最大力以后再取下。
对于薄板试样,拉断后冲击不大,引伸计可以直接跟踪到试样断裂;但对于拉力较大的试样,最好是试验机拉伸到最大力以后开始保持横梁位置不动,等取下引伸计以后把试样拉断。
有的夹具在夹紧试样时会产生一个初始力,一定要把初始力消除后再夹持引伸计,这样引伸计夹持的标距才是试样在自由状态下的原始标距。
2)标定要求:标定是给引伸计两刀刃间以一定的标准位移,测出引伸计的相应电信号输出量,从而确定标准位移与输出量的对应关系。
标定过程为: ①将引伸计装夹到变形标准器上,将引伸计连接到测量系统中。
调整测量系统平衡,并选择好仪器的有关参数。
将X - Y记录仪的记录笔调到“零位”。
②转动校准器的刻度盘使精密螺杆移动,引伸计就能感受到给定的标准位移值。
③从X - Y记录仪上读出记录笔沿X坐标移动的格数,再用标准位移除以格数,便可得到每格所代表的位移值,此数值即为标定值。
3)测量要求: ①将引伸计夹在被测部位事先粘好的刀口上。
将调好的X - Y 记录仪开到记录位置,取X轴记录ΔL。
②加载使试件变形,在X - Y记录仪上即可指示出X 轴上的位移量。
通过标定过程确定的标准位移,便可读出对应的ΔL 值。
如果同时再取Y轴表示载荷P,X - Y记录仪上便可绘出P -ΔL 曲线。
③试验结束,整理仪器和机器。
4)注意事项: ①标定时,标准位移要按相应增量增加。
②标定一般要重复进行三次,每次都要把引伸计取下重新安装。
③测量时,测量系统的有关参数必须与标定时相同。
4夹持具及试样装夹对试验结果的影响及控制要求
4. 1夹持具选择、试样夹持的影响
装夹包括夹持具选择、试样的夹持和引伸计的装卸,夹持具选择、试样夹持和引伸计的装卸不正确会影响测试结果。
夹持具与试验的试样形状不匹配和夹具的表面外型花纹形状不适宜,会造成夹具和试样间不能形成足够的夹持面积,静摩擦力不够,导致拉伸过程中夹具和试样产生相对滑动,从而影响了拉伸结果。
另外如果夹持角度倾斜,在拉伸过程中会影响测试结果,倾斜试样受拉伸力时,会在倾斜方向上产生力的分解,金属材料在不同的方向上的弹性模量和强度等性能是不同的,会造成试验结果的误差。
4. 2夹持具选择、试样装夹的要求选择适合试样的夹具,对于特殊试样支配支特殊的夹持具,试样夹紧,圆试样夹在V 型夹块的中间,扁试样须垂直于夹块,不能倾斜,可制作一个垂直直角附件,装夹时比靠试样测量是否垂直。
夹持部分要足够长,最少要为夹块长度的3 /4。
上下夹头夹紧时,严禁升降横梁。
4.3偏心效应
由于试验机的加载轴线与试样的几何中心不一致,所以严格的轴抽载荷是很难获得的,这就造成了试样机的偏心加载、产生弯曲而引入测试误差。
4.4试验机的刚度效应
在材料的拉伸试验中,试验系统可视为试验机机身、夹具-加载系统和试样三部分构成的可变形的试验系统。
显然,试验机的机身刚度、夹具-加载系统的刚度和受拉试样的刚度共同构成了试验系统的刚度。
所以,试验机的弹性变形,夹具-加载系统的工作状态和试样本身的变形都会对试验产生影响。
因此在试验过程中,一定不能超过试验机的测试范围。
5 温度效应
随着试验温度的升高,金属材料的Rp0.2显著降低,如低碳钢材料,随着试验温度的升高,其屈服强度Rp0.2相应降低且屈服平台的长度逐渐缩短,直到某一温度屈服平台消失;由于温度升高,使材料的晶界由硬、脆变为软、弱,使其抗力降低。