第3讲 空间域图像增强汇总
ch3_空域增强

点运算
点运算的分类 点运算又称为“对比度增强”、“对比度拉伸”、“灰度
变换”等,按灰度变换函数T的性质,可将点运算分为:
线性灰度变换(线性点运算) 灰度变换增强 分段线性灰度变换(分段线性点运算) 点运算 非线性灰度变换(非线性点运算) 直方图增强
7
r ar b s
线性点运算
线性点运算的灰度变换函数形式可以采用线性方程描述,即
4
点运算
点运算:对一幅图像中每个像素点的灰度值进行计 算.设输入图像的灰度为f(x,y),输出图像的灰度为g(x,y),
则点运算可以表示为:
g ( x, y) T [ f ( x, y)]
灰度变换函数 其中T[ ]是对f 在(x,y)点值的一种数学运算,即点运 算是一种像素的逐点运算,是灰度到灰度的映射过程,故称 T[ ]为灰度变换函数。
(a) 原图;
11
(b) 反转变换结果图
线性点运算
3)如果a为负值,暗区域将变亮,亮区域将变暗
255
0
255
变换前 变换后
12
分段线性点运算
将感兴趣的灰度范围线性扩展,相对抑制不感兴趣的灰度区域。
设f(x,y)灰度范围为[0,Mf],g(x,y)灰度范围为[0,Mg],
g(x,y)
M g d [ f ( x, y ) b ] d M f b d c g ( x, y ) [ f ( x, y ) a ] c b a c a f ( x, y )
38
直方图均衡-示例2
500 400 300 200 100 0 0 100 200 300
500 400 300 200 100 0
第三章 空域图像增强

•由于我们处理的是数字量,最大灰度级的变化是有 限的,变换发生的最短距离是在两个相邻像素之间. • 用差分定义一元函数 f ( x ) 一阶微分:
f f ( x 1) f ( x) (3.6 1) x ( f ( x) ——前向差分)
•用差分定义一元函数的二阶微分:
2 f f ( x 1) f ( x 1) 2 f ( x) (3.6 2) 2 x
灰度映射原理
映射函数:t = T(s)
灰度差增大,对比增强
第3章
3.1 灰度映射
灰度映射原理
由上可见,利用一个映射函数可将原始图像 中每个像素的灰度都映射到新的灰度。如果恰当 的设计映射函数的曲线形状就可以通过统一的运 算得到所需要的增强效果。
灰度映射的关键是根据增强要求设计映射函 数。
第3章
3.1 灰度映射
灰度统计直方图
直方图是图象的一种统计表达 直方图反映了图中灰度的分布情况 1-D的离散函数
提供了图象象素的灰度值分布情况
计算:
设置一个
有 L 个元素的数 组,对原图的灰 度值进行统计
3.2 直方图修正
直方图均衡化
主要用于增强动态范围偏小的图像的反差。 基本思想是把原始图的直方图变换为在整个灰度 范围内均匀分布的形式,增加了像素灰度值的动 态范围,从而达到增强图像整体对比度的效果
第3章
空域图像增强
3.1 灰度映射 3.2 图像运算
3.3 直方图修正
3.4 空域滤波
3.1 灰度映射
一幅灰度图像的视觉效果取决于该图像中各 个像素的灰度。灰度映射通过改变图像中所有或 部分像素的灰度来达到改善图像视觉效果的目的 。
第3章
3.1 灰度映射
第三章 空间域图像增强

第三章 图像增强燕山大学电气工程学院 赵彦涛3.1图像增强的概念对于一般可理解的图像增强,是指使经过增强处理后的图像其视觉效果更好,如对于某些图像看起来比较灰暗,增强处理后使其亮度增强,人眼看起来更舒服;也就是说,改善曝光不足或曝光过度对图像的影响。
淡化背景,强化前景;广义的图像增强指处理后的图像比原始图像更适合于特定应用,更有利于后续图像处理,消除噪声干扰,强化有用信息等都可认为为后续的计算机处理、分析更有利。
根据其处理数据所进行空间不同,图像增强的方法可分为空域(空间域)图像增强方法和变换域(频域)增强方法。
空域图像增强方法是直接处理构成图像的像素点的灰度值,而变换域图像增强方法是经过图像变换后,增强方法在其变换域中间接进行。
图像增强是与具体问题紧密相联系的,增强的目的不同,图像类型不同,采用的方法也不同,没有一种增强算法能适用于所有的应用场合。
3.2图像增强的点运算所谓点运算就是输出图像上的每个像素的灰度值仅由相应输入像素点的值确定。
空域方法是指直接对图像的像素点的灰度值进行操作,空域处理可定义为)),((),(y x f T y x g = (1)式中,),(y x f 是输入图像,),(y x g 是处理后的图像,T 是一种操作方法。
3.2.1 直接灰度变换直接进行灰度变换是图像增强最简单的一类方法,设处理前后的图像的像素点的灰度值分别为r 和s ,变换方式为)(r T s = (2)式中,T 是把灰度值r 变换为s 的映射。
由于处理的是数字量,变换函数的值通常存储在一个一维向量中,通过函数或者查表将灰度值r 映射为s 。
对于8比特的灰度值,一个包含这种映射的查找表要有256个记录。
3.2.1.1 图像的直方图图像的直方图表示图像中各种灰度级的个数(或概率),反映了一幅图像中灰度级与出现这种灰度级的概率之间的关系。
对于一个8 bit (有256个灰度等级)的图像,直方图就是Nn r p k k =)( (4) 式中,k r 是第k 个灰度等级, k n 为图像中灰度等级为k r 的像素点的个数,N 是该图像中所有像素点的个数,这里]255,0[ k ,)(k r p 代表原始图像第k 个灰度级出现的概率。
第3章 空间域图像增强1——点、直方图处理

(a) (b) (c) (d)
图3.8 图像灰度切割
数字图像处理
色彩直方图
• 色彩直方图是高维直方图的特例,它统计色彩的出现频 率,即色彩的概率分布信息。 • 一般不直接在RGB色彩空间中统计,而是在将亮度分离 出来后,对代表色彩部分的信息进行统计,如在HSI空 间的HS子空间、YUV空间的UV子空间,以及其它反映 人类视觉特点的彩色空间表示中进行。 • 下图是统计肤色分布情况的例子。
j 0 j 0 k k
nj n
0 rk 1, k 0,1,...,l 1
• 均衡化后各像素的灰度值可直接由原图像的直方图算 出。
数字图像处理
直方图均衡化的计算步骤及实例
• 设64×64的灰度图像,共8个灰度级,其灰度 级分布见下表,现要求对其进行均衡化处理。
原始直方图数据
rk r0=0 r1=1/7 r2=2/7 r3=3/7 r4=4/7 nk 790 1023 850 656 329 nk / n 0.19 0.25 0.21 0.16 0.08 rk r0=0 r1=1/7 r2=2/7 r3=3/7 r4=4/7
– 依此类推可计算得:s2=0.65;s3=0.81;s4=0.89; s5=0.95;s6=0.98;s7=1。
• 对sk 进行舍入处理。
– 由于原图像的灰度级只有8级,因此上述各需用 1/7为量化单位进行舍入运算,得到如下结果: s0舍入=1/7 s1舍入=3/7 s2舍入=5/7 s3舍入=6/7 s4舍入=6/7 s5舍入=1 s6舍入=1 s7舍入=1
第3章-图像增强(空间域)

ps(s)
面积 1
面积 2
1
1
0r
r 1
原图像的直方图
0
s
s 1
均衡后图像的直方图
问题归结为: 在 “面积 1 = 面积 2 ” 的前提下,给定 r ,求 s 应该是多少。 由于 ps(s)=1, 有:
s
r
r
1 ds 0
0
pr (r)dr
s 0 pr (r)dr
3.2
这就是我们需要的变换关系式
其中: k b a , c a k a ba
若 k >1,对比度拉伸,若 k <1,对比度压缩。 b’
注意: if ( g ( x, y)<0) g(x,y)=0;
0
a
if ( g ( x, y)>255) g(x,y)=255;
f b
例:线性变换举例
原图像及直方图,灰度范围约为 0 ~ 30, 取a=0, b=30
部分频率,以达到增强图像的目的。运算较复杂。
两种方法各有特点,都是图像处理与分析中的重要方法。本章将讨 论空间域增强法。频率域增强法将在下一章详细讨论。
此外,还有彩色增强、代数运算等方法。主要用于标示特定的目标, 引起注意。本课程不作讨论。
图像在空间域上的表示
像素的值是空间坐标的函数。在直角坐标系中,一幅图像可表示为: f ( x , y ) , 0≤x<M, 0≤y<N
s
r
0 ps (s)ds 0 pr (r)dr
3.1
上式表明,对于原直方图上的任一点 r ,要求在新直方图上找到一点 s ,使: pr(r) 在[ 0, r ]区间的面积 = ps(s) 在[ 0, s ]区间的面积
3.1 式的几何解释:
(空间域图像增强)

38
离散灰度级情况: 由(1)、(2)计算得两张表, 从中选取一对vk, sj, 使vk≈sj,并从 两张表中查得对应的rj,zk。于是, 原始图象中灰度级为rj 的所有象素均 映射成灰度级zk。最终得到所期望的 图象。
39
40
指定的图像均值和方差
E( f ) m1 D( f ) 12
nk 790 1023 850 656 329 245 122 81
p(rk) 0.19 0.25 0.21 0.16 0.08 0.06 0.03 0.02
sk计算 0.19 0.44 0.65 0.81 0.89 0.95 0.98 1.00
sk舍入 1/7 3/7 5/7 6/7 6/7 1 1 1
第三章 空间域图像增强
背景知识 基本灰度变换 直方图处理 算术/逻辑操作增强 空间域滤波基础 平滑空域滤波 锐化空域滤波
1
Noise
+
=
image
noise
‘grainy’ image
2
3
Blur
4
Blurred
Enhanced
5
Light conditions
6
7
2.1 背景知识
26
直方图均衡化
27
首先假定连续灰度级的情况,推导直 方图均衡化变换公式,令r代表灰度级, P(r)为概率密度函数。其中r值已归一化, 最大灰度值为1。 要找到一种变换 s=T(r)使直方图变平 直,为使变换后的灰度仍保持从黑到白的 单一变化顺序,且变换范围与原先一致,以 避免整体变亮或变暗。规定: (a)在0≤r≤1中,T(r)是单调递增函数, (b)当0≤r≤1时,0≤T(r)≤1;
cf ( x, y) cm
数字图像处理(冈萨雷斯)-3空间域图像增强105页PPT

41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
数字视频图像技术 第3章 空间域图像增强

纹理的方向表明摄像机和对象的不同运动
空间域图像增强
•
基础知识
✓ 基本概念
✓ ✓ ✓ ✓
点运算 代数运算 直方图运算 应用-镜头边界的检测
•
空间滤波器
✓
平滑空间滤波器
✓
锐化空间滤波器
空间滤波器
•
空间滤波和空间滤波器的定义 使用空
间模板进行的图像处理,被称 为空间滤波。模板本身被称为空间滤波 器
空间滤波和空间滤波器的定义
代数运算——加法
代数运算——减法
•
减法的定义 C(x,y) = A(x,y) - B(x,y) 主要应用举例
显示两幅图像的差异,检测同一场景两 幅图像之间的变化 如:视频中镜头边界的检测 ✓ 去除不需要的叠加性图案 ✓ 图像分割:如分割运动的车辆,减法去 掉静止部分,剩余的是运动元素和噪声
✓
•
代数运算——减法
主要应用举例
✓
•
获得相交子图像
=
直方图运算
•
直方图定义
•
直方图均衡化
直方图定义 • 图像直方图的定义(1)
一个灰度级在范围[0,L-1]的数字图像的直 方图是一个离散函数 h(rk)= nk nk是图像中灰度级为rk的像素个数 rk 是第k个灰度级,k = 0,1,2,…,L-1 由于rk的增量是1,直方图可表示为: p(k)= nk 即,图像中不 同灰度级像素出现的次数
dr P s s P r r ds
直方图均衡化
s T r 已知一种重要的变换函数:
r
0
p r w dw
关于上限的定积分的导数就是该上限的积分值 (莱布尼茨准则)
ds dT r d r p r p w dw r r 0 dr dr dr
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图象均衡化处理后,图象的直方图是平 直的,即各灰度级具有相同的出现频数, 那么由于灰度级具有均匀的概率分布,图 象看起来就更清晰了。
只是一个理想!
直方图均衡化的效果
1) 由于数字图像是离散的,因此直方图均衡化并不能产 生具有理想均衡直方图的图像,但可以得到一幅灰度分 布更为均匀的图像。 2)变换后一些灰度级合并,因此灰度级减少。 3)原始象含有像素数多的几个灰级间隔被拉大了,压 缩的只是像素数少的几个灰度级,实际视觉能够接收的 信息量大大地增强了,增加了图象的反差和图象的可视 粒度。
重要性(为什么要进行灰度级校正?) 成像过程中光照强弱、感光部件灵敏度、光学系统不均匀、
元器件电特性等诸多因素造成图像中同样图像亮暗不均匀。
3.2 基本灰度变换
1 图像反转 (1)公式表示:灰度级范围[0,L-1]时 s=L-1-r
255
0
255
2 对数变换 (1)公式表示 s=c* log(1+r) (2)特点 “ 扩展低输入,压缩高输入”。 窄带低灰度输入图->宽带灰度输出图
第3讲 空间域图像增强
3.1背景知识 3.2基本灰度变换 3.3直方图处理 3.4算术、逻辑图像增强 3.5空间滤波器
3.1背景知识
图象增强
目标:改善图象质量/改善视觉效果/利于计算
机处
理
标准:相当主观,因人而异
没有完全通用的标准
可以有一些相对一致的准则
技术:“好”,“有用”的含义不相同
具体增强技术也可以大不相同。
(1)视觉效果更好的例子 (2)机器感知效果更好的例子——“特征脸”
方法:
空间域处理
全局运算:在整个图像空间域进行。如图像相减 局部运算:在与像素有关的空间域进行。如中值滤波 点运算:对图像作逐点运算。如阈值操作
g(x, y) T[ f (x, y)]
频域处理
在图像的Fourier变换域或者小波变换域上进行处理。
灰度分布特性。
➢ 直方图只包含了该图像中某一灰度值的像素 出现的概率,而丢失了其所在位置的信息。 ➢ 任一幅图像,都能唯一地确定出一幅与它对 应的直方图, 但不同的图像,可能有相同的直
方图。也就是说,图像与直方图之间是多对一 的映射关系。
(a)
(b)
(3)归一化直方图的计算
p(rk
)
nk n
0 rk 1 k 0,1,2,,l 1
灰度级校正 点运算 灰度变换
直方图修正
噪声消除法
邻域平均法
图像平滑 中值滤波
梯度倒数加权
空间域法 邻域增强 图像增强
选择式掩模平滑 梯度法 Laplacian算子
图像锐化 高通滤波
掩模匹配法
统计差值法
彩色技术 假彩色处理 伪彩色增强
频率域法 低通滤波 同态图像增强
灰度级校正
灰度级校正就是在图像采集系统中对图像像素进行修正, 使图像成像均匀。
式中:nk为图像中出现rk级灰度的像素数,n是图像像素
总数,而nk/n即为频数。
0 1234567
7 6543210
随堂练习: 计算归一化直方图
4 4444444 3 2123212 3 4534534 1 1335577 6 6442200 6 7543210
3 直方图均衡化
以 表示归一化了的原图像灰度 以 表示归一化了的经直方图修正后的图像灰度
F '( j, k) a' b' a' (F a) ba
曝光不足或过度, 图像灰度范围小, 看起来没有灰度层 次,线性变换使得 对比度拉伸!
4 分段线性变换(灰度切割)
特点:突出目标的轮廓,消除背景细节 特点:突出目标的轮廓,保留背景细节
4 分段线性变换(二值化)
4 分段线性变换(位图切割)——自学
在 区间内的任一个 值,都可产生一个 , 且
变换函数 满足下列条件
A、T(r)在区间0≤ r ≤1中为单值且单调递增; (单值是为了保证反变换的存在;单调递增条件保持输出 图像从黑到白顺序增加) B、当0≤ r ≤1时,0≤ T(r) ≤1。 (输出灰度范围一致)
反变换关系
对 满足同样上述条件。
直方图均衡化
s cr 3 幂次变换 (1)公式表示
(2)特点:非常灵活。
幂次变换应用1(伽马校正)
幂次变换应用2(对比度增强)
4 分段线性变换(对比度拉伸)
特点:“压缩两端的背景的动态范围,扩展中段的目 标的动态范围”
4 分段线性变换(对比度拉伸)
F'( j,k) b'
F'
a'
0
a Fb
F( j,k)
(3)MATLAB实现
f = imread ( ‘pout.tif’);
F=fft2(f); FC=fftshift(F);
% Fourier Transform %将变换原点移到频率矩形的中心。
imshow(abs(FC), [ ]);
S2= log(1+ abs(FC));
figure,imshow(S2, [ ]);
3.3 直方图处理
1 直方图 (1)概念 灰度直方图表示图像中每种灰度出现的像素数目。
1 2 34 5 6 6 4 32 2 1 1 6 64 6 6 3 4 56 6 6 1 4 66 2 3 1 3 64 6 6
1 2 34 5 6 5 4 5 6 2 14
(2)直方图的作用 反映一幅图像的
衡化
离散情况下的算法:
A、列出原始图像的灰度级 f j , j 0,1,, L 1
B、统计各灰度级的像素数目 n j , j 0,1,, L 1
C、计算原始图像直方图各灰度级的频数
Pf ( f j ) n j / n, j 0,1,, L 1
D、计算累积分布函数
C( f )
k j0
4 直方图匹配(规定化)
❖直方图规定化
有时人们希望增强后的图像,其灰度级的分布不是均匀的, 而是具有规定形状的直方图,这样可突出感兴趣的灰度范 围。
令
和
分别为原始图像和期望图像的灰度概
Pf
(
f
j
),
j
0,1,,
k,L
1
F、应用以下公式计算映射后的输出图像的灰度级,P为输出图
像灰度级的个数,其中INT为取整符号:
gi INT [( gmax g min )C( f ) g min 0.5]
G、用的映射关系修改原始图像的灰度级,从而获得直方图近 似为均匀分布的输出图像。
举例: