西安交大复变函数课件5-1孤立奇点

合集下载

1-5复变函数课件 西安交通大学

1-5复变函数课件   西安交通大学

消去参数 y 得 : v 2 42 (2 u),
以原点为焦点,开口相左的抛物线.(图中红色曲线)
同理直线 y 的象为:
v 2 4 2 ( 2 u),
以原点为焦点,开口相右的 抛物线.(图中蓝色曲线)
14
4. 反函数的定义:
设 w f ( z ) 的定义集合为z 平面上的集合G , 函数值集合为w 平面上的集合G*, 那末 G * 中的 每一个点 w 必将对应着G 中的一个(或几个)点. 于是在 G * 上就确定了一个单值(或多值)函数 z ( w ), 它称为函数 w f ( z ) 的反函数, 也称 为映射 w f ( z ) 的逆映射.
5
2.映射的定义:
如果用 z 平面上的点表示自变量z 的值, 而用另一个平面w 平面上的点表示函数w 的 值, 那末函数 w f ( z ) 在几何上就可以看作 是把 z 平面上的一个点集G (定义集合) 变到 w 平面上的一个点集G * (函数值集合)的映射 (或变换).
6
这个映射通常简称为由 函数 w f ( z ) 所构成的映射.
2
π π 故线段 0 r 2, 映射为 0 4, , 4 2
17
例1 在映射 w z 下求下列平面点集在w 平面
2
上的象 :
(2) 双曲线 x 2 y 2 4;
解 令 z x iy, w u iv ,
则 u iv x 2 y 2 2 xyi,
放映结束,按Esc退出.
24
映射 w z 2 将 z 的辐角增大一倍 .
y
v
o

x
o
2
u
将 z 平面上与实轴交角为 的角形域映射成w 平面上与实轴交角为2 的角形域.

复变函数第五章留数

复变函数第五章留数
第五章 留数
§1 孤立奇点 §2 留数
1
§5.1 孤立奇点
一、孤立奇点定义
如果函数f z在z0不解析, 但在z0的某个去心邻域
0 z z0 内处处解析, 则称z0为f z的孤 立 奇 点.
例如
1 sin
1
, z0
=
0为奇点,
但不是孤立奇点.
z
z 1 n 1,2,为奇点, n , z 0,
]
sinz
cosz
zzk
sinz sinz
z
zk
1
tgzdz
C
2i 8 1 16i
31
例4 计算 z4 sin 1 dz, C为 z 1 2.
C
z
解 奇点:z 0, 奇点类型不清楚,

z4
sin 1 z
z4
1 z
1 3! z3
1 5! z5
1 7! z7
z3
z 3!
1 5! z
1 7! z3
Re
s
f
z,0
c1
1 120
C
z4
sin
1 z
dz
2i
Re
s
f
z,0
60
i
32
例5 计算
C
z z4 1
dz,C为 z
2,正向.
解 显然 z 1,i 都是 f z 的一级极点,
f z ( z z0 )m z ,
其中 z在z0解析,且 z0 0,m为正整数,

z

0
f
z
的m


点.
例如 对于 f z z(z 1)3,z0 0, z0 1分别是其一级

《复变函数》第5章

《复变函数》第5章

例: 对 f (z) z3 1.
f (1) 0, f (1) 3z 2 z 1 3 0
z 1 是 f (z)的一级零点.
2020/4/6
《复变函数》(第四版) 第五章
第7页
定理: z0 是 f (z)的m级极点
证:
f
(z)
(z
1 z0
)m
g
(z)
z0

f
1 的m级零点. (z)
f
复 变 函 数(第四版)
第五章 留 数
§1 孤立奇点 §2 留数 §3 留数在定积分计算上的应用 *§4 对数留数与辐角原理
2020/4/6
《复变函数》(第四版) 第五章
第1页
§1 孤立奇点
1. 定 义
如果函数 f (z)在 zo处不解析, 但在 zo的某 一去心邻域 0 < | z-zo |<δ处处解析, 则称zo 为函数 f (z)的孤立奇点. 例:z 0 为 f (z) sin 1 的孤立奇点 .
5
2020/4/6
《复变函数》(第四版) 第五章
第4页

z = 0 分别是 本性奇点.
sin z
z
,
sin z4
z
,
sin
1 z
的可去、3极、
(1) zo为 f(z)的可去奇点
相当于实函可去间断点
lim f (z)存在且有限
zz0
f (z)在zo点的某去心邻域内有界.
(2) zo为 f (z)的极点
例:
z
0

ez 1 z2
的一级极点.
z
1

(z 1)3 sin( z 1)
的二级零点.

复变函数与积分变换孤立奇点

复变函数与积分变换孤立奇点

复变函数与积分变换
Complex Analysis and Integral Transform
孤立奇点分类
1. 可去奇点 如果在洛朗级数中不含z-z0的负幂项, 则称
孤立奇点z0为 f (z)的可去奇点.
f(z)=c0+c1(z-z0)+...+cn(z-z0)n +...,0<|z-z0|<d
1 定理:z0是f ( z )的m级极点 z0是 的m级零点 f ( z)
该定理为判断函数的极点提供了更为简单的判别方法.
例 1 函数1 sin z 有什么奇点? 如果是极点, 指出它的级.
解: 函数 1/sin z 的奇点显然是使 sin z=0 的点.故奇点是 z=k(k=0,1,2,…).由于(sin z)'|z=k= cos z|z=k= (1)k 0, 所以 z=k是 sin z 的一级零点, 也就是 1/sin z 的一级极点.
且g (z0) 0 时, 则z0是 f (z)的m级极点.
复变函数与积分变换
Complex Analysis and Integral Transform
如果z0为 f(z)的极点, 由(*)式知
lim f ( z ) .
z z0
1 g ( z) z0为f ( z )的m级极点 f ( z ) m ( z - z0 )
Complex Analysis and Integral Transform
sin z 例如 z 0是 的可去奇点。因为函数在z 0 z 的去心邻域内的洛朗级数 sin z 1 1 3 1 5 1 2 1 4 (z z z ) 1 z z z z 3! 5! 3! 5! sin z 中不含负幂项.如果定义 在 z 0的值为1, z sin z 则 在z 0点便为解析的了. z

西安交大复变函数课件5-1-1本性奇点

西安交大复变函数课件5-1-1本性奇点
sinh z 思考 z 0 是 3 的几级极点? z
注意: 不能以函数的表面形式作出结论 .
21
三、函数在无穷远点的性态
1. 定义 如果函数 f (z ) 在无穷远点 z 的去心 邻域 R z 内解析, 则称点 为 f (z ) 的孤 y 立奇点. R o
x
22
1 1 (t ), 令变换 t : 则 f ( z ) f 规定此变换将: z t 映射为 z t 0,
z
ez 1 z 因为 lim lim e 1, z 0 z 0 z
8
2. 极点 1) 定义 如果洛朗级数中只有有限多个 z z0 的
负幂项, 其中关于 ( z z0 ) 的最高幂为 ( z z0 ) , 即
1
m
f ( z ) cm ( z z0 ) c2 ( z z0 ) c1 ( z z0 )
3
孤立奇点的分类 依据 f (z ) 在其孤立奇点 z0 的去心邻域
0 z z0 内的洛朗级数的情况分为三类:
1.可去奇点;
1.可去奇点
2.极点;
3.本性奇点.
1) 定义 如果洛朗级数中不含 z z0 的负幂项,
那末孤立奇点 z0 称为 f (z ) 的可去奇点.
4
说明: (1) z0若是f ( z )的孤立奇点 ,
c0 c1 ( z z0 )
m
2
1
( m 1, cm 0)
1 1 f ( z )f z ) m g ( z) , ggz)z ) , 0处解析,且g ( z0 ) 0 ( ( 在z ( (z z ) 或写成 0 ( z z )m
0

最新-西安交大复变函数课件5-习题课-PPT文档资料

最新-西安交大复变函数课件5-习题课-PPT文档资料

c)

f (z) P(z), P(z) Q(z)

Q(z) 在
z 0 都解析,
如果 P ( z 0 ) 0 , Q ( z 0 ) 0 , Q ( z 0 ) 0 ,那末 z 0
为一级极点, 且有Refs(z[),z0]Q P((zz00)).
13
3)无穷远点的留数
1.定义 设函数 f (z)在圆环域 0z内解析
成洛朗级数求 c 1
(3) 如果 z 0 为 f (z)的极点, 则有如下计算规则 a) 如果 z 0 为 f (z)的一级极点, 那末
R f ( z e )z 0 ] , s l z z [ 0 i ( z m z 0 ) f ( z z 0 )
12
b) 如果 z 0 为 f (z)的 m级极点, 那末 Rfe (z)z s 0 ,] [(m 1 1 )l z !z i0d d m z m m 1 1 [z( z 0 )m f(z)]
17
2)无穷积分
I R(x)dx.其中 R(x)是x的有理,分 函母 数
的次数至少比 数分 高子 两 ,且R的 (次 z)在 次实轴 没有孤.立奇点
任意一条简单闭曲线 C 的积分 f (z)dz 的值除
C
以 2i 后所得的数称为 f(z)在z0的留.数 记作 Ref(sz)[z,0]. (即f(z)在z0为中心的圆环 域内的洛朗级数中负 幂c项 1(zz0)1的系 .) 数
10
1)留数定理 设函数 f (z) 在区域 D内除有限个孤 立奇点 z1,z2, ,zn外处处解析, C 是 D内包围诸奇 点的一条正向简单闭曲线, 那末
f (z) 的 m 级零点.
ii)零点与极点的关系

复变函数第五章(1)

复变函数第五章(1)

lim e
z 1
不存在
z 1 为本性奇点
1 (3) ( z 1) sin z 1
解:
注: 三角函数在复数域内是 无界的。
z 1为孤立奇点
1 ( z 1) sin 在z 1的去心邻域内的洛朗展开式为 z 1
1 1 n z 1 ( z 1) sin ( z 1) ( 1) z 1 ( 2n 1)! n 0
lim z0 是 f ( z ) 的极点的充要条件是 z z f ( z )
0
1 例1.2: f ( z ) 3 的孤立奇点类型。 z ( z 2)
解: f ( z )的孤立奇点: 0, z 2 z
对于点 z 0 有
1 f (z) 3 (z) z
在点z 0 处解析,且 (0) 0
( z) f (z) ( z)

(1) 当m n时,z0 为 f ( z ) 的(m n)级零点, (2) 当m n时,z0 为 f ( z ) 的(n m)级极点,
(3) 当m n时,z0 为 f ( z ) 的可去奇点。
注: 定理1.2与定理 .4均可看作定理 .5的特例, 1 1
n
洛朗展开式 cn ( z z0 ) n中含有无穷多个 z z0 )负幂项 ( .
则称 z 0 为 f (z ) 的本性奇点
结论: z0为f ( z )本性奇点 的充要条件是
z z0
lim f ( z ) 不存在(也不为)。
f ( z )的孤立奇点z0类型的判定:
(1)定义:根据f ( z )在 z0 的去心邻域0 z z0 内的洛朗展开式中负幂 项的多少
z z 0 m 当 n m 时, f ( z ) z z 0 m

复变函数与积分变换第五章

复变函数与积分变换第五章

解 函数 f (z) 除点 z 0, 1, 2 外,
在 z 内解析 . 因(sin z) cos z 在 z 0, 1, 2, 处均不为零.
所以这些点都是 sin z 的一阶零点,
故这些点中除1, -1, 2外, 都是 f (z)的三阶极点.
30
因 z2 1 (z 1)(z 1), 以1与- 1为一阶零点,
展开式的前m项系数都为零 ,由泰勒级数的系数
公式知: f (n)(z0 ) 0, (n 0,1,2, m 1);
并且
f
(m)(z0 ) m!
c0
0.
(充分性) 由于 f (n)(z0 ) 0, (n 0,1,2, m 1);
f
( m ) ( z0 m!
)
c0
0.

邋 f (z) =
ゥ f (n) (z0 ) (z n= m n!
6
例3 sin z 1 1 z2 1 z4 中不含负幂项,
z
3! 5!
z
0

sin z z
的可去奇点
.
如果补充定义:
z 0 时, sin z 1, z
那末 sin z 在 z 0 解析. z
7
例4 说明 z 0 为 ez 1 的可去奇点. z
解 ez 1 1(1 z 1 z2 1 zn 1)
zz
2!
n!
1 1 z 1 zn1 , 0 z
2!
n!
无负幂项
所以 z 0 为 ez 1 的可去奇点. z
另解 因为 lim e z 1 lim ez 1, 作业2.4.8(洛必达法则)
z0 z
z0
所以 z 0 为 e z 1 的可去奇点. z
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(z) c0 c1(z z0 ) c2(z z0 )2 ,
16
其中 c0 (z0 ) 0,
从而f (z)在z0的泰勒展开式为 f (z) c0(z z0 )m c1(z z0 )m1 c2(z z0 )m2 展开式的前m项系数都为零 ,由泰勒级数的系数
( 0 z z0 ) 其和函数F(z)为在 z0 解析的函数.
(2) 无论 f (z) 在 z0 是否有定义, 补充定义 f (z0 ) c0 , 则函数 f (z) 在 z0 解析.
f
(z0 )
lim
zz0
f
(z)
f
(z)
F(z)
c0
,
, z
z z0 z0
5
2) 可去奇点的判定
(1) 由定义判断: 如果 f (z)在 z0 的洛朗级数无负 幂项则 z0 为 f (z) 的可去奇点.
7
例4 说明 z 0 为 ez 1 的可去奇点. z
解 ez 1 1(1 z 1 z2 1 zn 1)
zz
2!
n!
1 1 z 1 zn1 , 0 z
2!
n!
无负幂项
所以 z 0 为 ez 1 的可去奇点. z
另解 因为 lim ez 1 lim ez 1,
lim f (z) .
zz0
例5
有理分式函数
f
(z)
z
3z 2 2(z 2)
,
z 0是二级极点, z 2 是一级极点.
10
2)极点的判定方法
(1) 由定义判别
f (z)的洛朗展开式中含有 z z0的负幂项为有限项.
(2) 由定义的等价形式判别
在点
z0 的某去心邻域内
f
(
z)
(
z
g(z) z0 )m
第一节 孤立奇点
一、孤立奇点的概念 二、函数的零点与极点的关系 三、函数在无穷远点的性态 四、小结与思考
一、孤立奇点的概念
定义 如果函数 f (z)在 z0不解析, 但 f (z)在 z0
的某一去心邻域 0 z z0 内处处解析, 则称
z0 为 f (z)的孤立奇点.
例1
z
0
是函数
1
ez
,
sin
或写成
f
(
z)f(
z(z)
1
z(0
)zmg1z(z0))m, gg(z()z在) z, 0处解析,且g
(
z0
)
0
那末孤立奇点 z0 称为函数 f (z) 的 m 级极点.
9
说明: (1) g(z) cm cm1(z z0 ) cm2(z z0 )2 特点: 1. 在 z z0 内是解析函数 2. g(z0 ) 0 (2) 如果 z0 为函数 f (z) 的极点 , 则
13
综上所述: 孤立奇点 可去奇点
洛朗级数特点 无负幂项
lim f (z)
z z0
存在且为 有限值
含有限个负幂项
m级极点 关于(z z0 )1的最高幂 为 (z z0 )m
本性奇点 含无穷多个负幂项
不存在 且不为
14
二、函数的零点与极点的关系
1.零点的定义 不恒等于零的解析函数 f (z)如果
能表示成 f (z) (z z0 )m (z), 其中 (z) 在 z0 解析且 (z0 ) 0, m为某一正整数, 那末 z0 称为
f (z) 的 m 级零点. 例6 z 0是函数 f (z) z(z 1)3的一级零点,
z 1是函数 f (z) z(z 1)3的三级零点. 注意: 不恒等于零的解析函数的零点是孤立的.
z
的孤立奇点.
z
z
1是函数
z
1
1
的孤立奇点.
注意: 孤立奇点一定是奇点, 但奇点不一定是孤
立奇点.
2
例2 指出函数 f (z)
z2 1
在点
z
0的奇点特性.s源自nz解 函数的奇点为
z 0, z 1 k
(k 1, 2, )
因为 lim 1 0, k k
即在 z 0 的不论怎样小的去心邻域内, 总有 f (z) 的奇点存在, 所以z 0 不是孤立奇点.
z0 z
z0
所以 z 0 为 e z 1 的可去奇点. z
8
2. 极点 1) 定义 如果洛朗级数中只有有限多个 z z0 的
负幂项, 其中关于 (z z0 )1的最高幂为 (z z0 )m , 即 f (z) cm(z z0)m c2(z z0)2 c1(z z0)1
c0 c1(z z0 ) (m 1, cm 0)
其中 g(z) 在 z0 的邻域内解析, 且 g(z0 ) 0.
(3) 利用极限 lim f (z) 判断 . z z0
11
课堂练习

z3
1 z2
z
1
的奇点,
如果是极点,
指出它的
级数.
答案
由于
z3
1 z2
z1
1 (z 1)(z 1)2
,
所以 : z 1是函数的一级极点,
z 1是函数的二级极点.
3
孤立奇点的分类 依据 f (z)在其孤立奇点 z0 的去心邻域 0 z z0 内的洛朗级数的情况分为三类: 1.可去奇点; 2.极点; 3.本性奇点. 1.可去奇点 1) 定义 如果洛朗级数中不含 z z0 的负幂项, 那末孤立奇点 z0 称为 f (z) 的可去奇点.
4
说明: (1) z0若是f (z)的孤立奇点, f (z) c0 c1(z z0 ) cn(z z0 )n .
(2) 判断极限lim f (z) : 若极限存在且为有限值, z z0 则 z0 为 f (z) 的可去奇点.
6
例3 sin z 1 1 z2 1 z4 中不含负幂项,
z
3! 5!
z
0

sin z z
的可去奇点
.
如果补充定义:
z 0 时, sin z 1, z
那末 sin z 在 z 0 解析. z
15
2.零点的判定
如果 f (z) 在 z0 解析, 那末 z0 为 f (z)的 m 级 零点的充要条件是
f (n)(z0 ) 0, (n 0,1,2, m 1); f (m)(z0 ) 0. 证 (必要性) 如果 z0 为 f (z)的 m 级零点
由定义: f (z) (z z0 )m (z) 设 (z)在z0的泰勒展开式为:
12
3. 本性奇点
如果洛朗级数中含有无穷多个z z0 的负幂项,
那末孤立奇点 z0 称为 f (z) 的本性奇点.
1
例如, ez
1
z 1
1
z2
1
zn
,
2!
n!
含有无穷多个z的负幂项 (0 z )
1
所以 z 0 为本性奇点,同时 lim e z 不存在. z0
特点: 在本性奇点的邻域内 lim f (z)不存在且不 z z0 为.
相关文档
最新文档