西安交大版复变函数第一章课件
合集下载
1-5复变函数课件 西安交通大学

消去参数 y 得 : v 2 42 (2 u),
以原点为焦点,开口相左的抛物线.(图中红色曲线)
同理直线 y 的象为:
v 2 4 2 ( 2 u),
以原点为焦点,开口相右的 抛物线.(图中蓝色曲线)
14
4. 反函数的定义:
设 w f ( z ) 的定义集合为z 平面上的集合G , 函数值集合为w 平面上的集合G*, 那末 G * 中的 每一个点 w 必将对应着G 中的一个(或几个)点. 于是在 G * 上就确定了一个单值(或多值)函数 z ( w ), 它称为函数 w f ( z ) 的反函数, 也称 为映射 w f ( z ) 的逆映射.
5
2.映射的定义:
如果用 z 平面上的点表示自变量z 的值, 而用另一个平面w 平面上的点表示函数w 的 值, 那末函数 w f ( z ) 在几何上就可以看作 是把 z 平面上的一个点集G (定义集合) 变到 w 平面上的一个点集G * (函数值集合)的映射 (或变换).
6
这个映射通常简称为由 函数 w f ( z ) 所构成的映射.
2
π π 故线段 0 r 2, 映射为 0 4, , 4 2
17
例1 在映射 w z 下求下列平面点集在w 平面
2
上的象 :
(2) 双曲线 x 2 y 2 4;
解 令 z x iy, w u iv ,
则 u iv x 2 y 2 2 xyi,
放映结束,按Esc退出.
24
映射 w z 2 将 z 的辐角增大一倍 .
y
v
o
x
o
2
u
将 z 平面上与实轴交角为 的角形域映射成w 平面上与实轴交角为2 的角形域.
工程数学《复变函数》(第四版)课件 1-1,2 西安交大 天津工业大学理学院 赵璐

z1 z2 z2 z1
z1 + ( z2 + z3 ) = ( z1 + z2 ) + z3
z1 ( z2 z3 ) = ( z1 z2 ) z3
分配律
z1 ( z2 + z3 ) = z1 z2 + z2 z3
9
⑤ 设 z x iy, 定义 z的共轭复数z x iy. 共轭复数的性质: i) ii)
x x1 t x 2 x1 y y1 t y 2 y1
t
∴它的复数形式的参数方程为
z x yi z1 t z2 z1 t
由z1 到 z 2 直线段的参数方程为
20
z1 z 2 1 特别地,取 t , 则线段 z1 z2 的中点为 z 2 2
z1 5 5i 3 4i 5 5i 3 4i 3 4i z 2 3 4i
z1 求 与 z2
z1 z 2
25 1 3i z , 求 Rez , Im z 与 zz . 例2 设 i 1 i
复 变 函 数
教师: 赵璐 邮箱:zhaolu.nan@
课程介绍
• 研究对象:复变函数(自变量为复数的函数) • 主要任务:研究复变数之间的相互依赖关系,
具体地就是复数域上的微积分。
· 学习方法:复变函数中许多概念、理论、和方
法是实变函数在复数域内的推广和发展,它们之 间有许多相似之处,但又有不同之点,在学习中 要善于比较、区别、特别要注意复数域上特有的 那些性质与结果。
x1 x2 y1 y2 i x2 y1 x1 y2 x1 x2 y1 y2 i x1 y2 x2 y1 2 x1 x2 y1 y2 2 Rez1 z2
z1 + ( z2 + z3 ) = ( z1 + z2 ) + z3
z1 ( z2 z3 ) = ( z1 z2 ) z3
分配律
z1 ( z2 + z3 ) = z1 z2 + z2 z3
9
⑤ 设 z x iy, 定义 z的共轭复数z x iy. 共轭复数的性质: i) ii)
x x1 t x 2 x1 y y1 t y 2 y1
t
∴它的复数形式的参数方程为
z x yi z1 t z2 z1 t
由z1 到 z 2 直线段的参数方程为
20
z1 z 2 1 特别地,取 t , 则线段 z1 z2 的中点为 z 2 2
z1 5 5i 3 4i 5 5i 3 4i 3 4i z 2 3 4i
z1 求 与 z2
z1 z 2
25 1 3i z , 求 Rez , Im z 与 zz . 例2 设 i 1 i
复 变 函 数
教师: 赵璐 邮箱:zhaolu.nan@
课程介绍
• 研究对象:复变函数(自变量为复数的函数) • 主要任务:研究复变数之间的相互依赖关系,
具体地就是复数域上的微积分。
· 学习方法:复变函数中许多概念、理论、和方
法是实变函数在复数域内的推广和发展,它们之 间有许多相似之处,但又有不同之点,在学习中 要善于比较、区别、特别要注意复数域上特有的 那些性质与结果。
x1 x2 y1 y2 i x2 y1 x1 y2 x1 x2 y1 y2 i x1 y2 x2 y1 2 x1 x2 y1 y2 2 Rez1 z2
复变函数第一章

内点: N (z0 ) E
边界点: N (z0 )既有E的点,也有不是E的点,
集E的全部边界点所组成的集合称为E的边界,
记为 E.
3.开集: 所有点为内点的集合;
闭集: 或者没有聚点,或者所有聚点都属于它;
E' E,
有界集:
M 0,z E, z M, 或M 0,使E NM (0)
例 E {z | z 1}
例3: 设 z 1 ,试证 (1 i)z3 iz 3 .
2
4
证明: (1 i)z3 iz z (1 i)z2 i
z (1i z 2 i )
1 (1 2 1) 1 (1 1) 3
24
22
4
例4: 求复数 1 z 的实部,虚部和模.(z 1)
1 z
解:
1 1
z z
(1 z)(1 1 z 2
由几段依次相接的光滑曲线所组成的曲线 称为按段光滑曲线.
注:按段光滑曲线是可求长的,但简单曲线不一定可求长.
5 单连通区域
复平面上的一个区域D, 如果在其中任作 一条简单闭曲线, 而曲线的内部总属于D, 就称 为单连通域. 一个区域如果不是单连通域, 就称 为多连通域.
单连通域
多连通域
例 (1) 满足下列条件的点集是什么, 如果是区 域, 指出是单连通域还是多连通域?
E的每一点及圆周 z 1上点都是E的聚点, 圆周 z 1为E的边界,
E为开集.
4.聚点(极限点)的等价说法
(1) z0 E', (2) N (z0 ) E有无穷多点, (3) N (z0 )存在异于z0属于E的点, (4) N (z0 )含属于E的两个不同的点,
(5)
{zn}
E, lim n
边界点: N (z0 )既有E的点,也有不是E的点,
集E的全部边界点所组成的集合称为E的边界,
记为 E.
3.开集: 所有点为内点的集合;
闭集: 或者没有聚点,或者所有聚点都属于它;
E' E,
有界集:
M 0,z E, z M, 或M 0,使E NM (0)
例 E {z | z 1}
例3: 设 z 1 ,试证 (1 i)z3 iz 3 .
2
4
证明: (1 i)z3 iz z (1 i)z2 i
z (1i z 2 i )
1 (1 2 1) 1 (1 1) 3
24
22
4
例4: 求复数 1 z 的实部,虚部和模.(z 1)
1 z
解:
1 1
z z
(1 z)(1 1 z 2
由几段依次相接的光滑曲线所组成的曲线 称为按段光滑曲线.
注:按段光滑曲线是可求长的,但简单曲线不一定可求长.
5 单连通区域
复平面上的一个区域D, 如果在其中任作 一条简单闭曲线, 而曲线的内部总属于D, 就称 为单连通域. 一个区域如果不是单连通域, 就称 为多连通域.
单连通域
多连通域
例 (1) 满足下列条件的点集是什么, 如果是区 域, 指出是单连通域还是多连通域?
E的每一点及圆周 z 1上点都是E的聚点, 圆周 z 1为E的边界,
E为开集.
4.聚点(极限点)的等价说法
(1) z0 E', (2) N (z0 ) E有无穷多点, (3) N (z0 )存在异于z0属于E的点, (4) N (z0 )含属于E的两个不同的点,
(5)
{zn}
E, lim n
复变函数(西交大版)课件第一章

n 0, 1, 2,
2
2n
Arg ( z1 z2 ) 2k k 0, 1, 2, 2 3 代入上式 2m n 2k 2 2
要使上式成立,必须且只需 k=m+n+1.
定理2
两个复数的商的模等于它们的模的商, 两个复数的商的辐角等于被除数与除 数的辐角之差。
a
b
二、复球面
1. 南极、北极的定义
取一个与复平面切于原 z 0 的球面, 点 球面上一点S 与原点重合,
记作
可用向量OP表示z x iy .
x2 y2 ,
y
P(x,y)
z r
z 0 OP 0
o
x
x
z tan( z=0时,辐角不确定。 0时, Argz ) y / x
辐角无穷多:Arg z=θ=θ0+2kπ, k∈Z, 把其中满足 0 的θ0称为辐角Argz的主值, 记作θ0=argz。 y x 0, y R arctan x 计算 x 0, y 0 arg z argz(z≠0) 2 y 的公式 arctan x 0, y 0 x y x 0, y 0 arctan 2 x 2
当z落于一,四象限时,不变。
P4 例1.1
当z落于第三象限时,减
当z落于第二象限时,加
。
。
由向量表示法知
z2 z1 — 点z1与z2之间的距离
由 此 得: z 2 z1 z 2 z1 z 2 z1 z 2 z1
y
(z)
z1
2
2n
Arg ( z1 z2 ) 2k k 0, 1, 2, 2 3 代入上式 2m n 2k 2 2
要使上式成立,必须且只需 k=m+n+1.
定理2
两个复数的商的模等于它们的模的商, 两个复数的商的辐角等于被除数与除 数的辐角之差。
a
b
二、复球面
1. 南极、北极的定义
取一个与复平面切于原 z 0 的球面, 点 球面上一点S 与原点重合,
记作
可用向量OP表示z x iy .
x2 y2 ,
y
P(x,y)
z r
z 0 OP 0
o
x
x
z tan( z=0时,辐角不确定。 0时, Argz ) y / x
辐角无穷多:Arg z=θ=θ0+2kπ, k∈Z, 把其中满足 0 的θ0称为辐角Argz的主值, 记作θ0=argz。 y x 0, y R arctan x 计算 x 0, y 0 arg z argz(z≠0) 2 y 的公式 arctan x 0, y 0 x y x 0, y 0 arctan 2 x 2
当z落于一,四象限时,不变。
P4 例1.1
当z落于第三象限时,减
当z落于第二象限时,加
。
。
由向量表示法知
z2 z1 — 点z1与z2之间的距离
由 此 得: z 2 z1 z 2 z1 z 2 z1 z 2 z1
y
(z)
z1
复变函数第一章第1讲

复变函数与积分变换 西安文理学院物电学院
第 一 章 复 数 与 复 变 函 数
z1 z1 例4 设 z1 5 5i , z2 3 4i , 求 与 . z2 z2
解
z1 5 5i (5 5i )( 3 4i ) z2 3 4i ( 3 4i )( 3 4i )
记为 z r x 2 y 2 .
显然下列各式成立
y y
r
o
2
Pz x iy
x z, z x y,
y z,
z z z z2 .
x
x
复变函数与积分变换
西安文理学院物电学院
第 一 章 复 数 与 复 变 函 数
3. 复数的辐角
在 z 0 的情况下, 以正实轴为始边 , 以表示 z 的向量OP 为终边的角的弧度数 称为 z 的辐角, 记作 Argz .
计算共轭复数yi的积是一个实数两个共轭复数西安文理学院物电学院复变函数与积分变换西安文理学院物电学院复变函数与积分变换的形式将下列复数表示为iy西安文理学院物电学院复变函数与积分变换20152015西安文理学院物电学院复变函数与积分变换西安文理学院物电学院复变函数与积分变换西安文理学院物电学院复变函数与积分变换叫虚轴或纵轴通常把横轴叫实轴或用来表示复数的平面可以一个建立了直角坐标系因此对应成一一与有序实数对复数表示面上的点可以用复平复数西安文理学院物电学院复变函数与积分变换的模或绝对值向量的长度称为z表示可以用复平面上的向量复数opiy西安文理学院物电学院复变函数与积分变换称为为终边的角的弧度数的向量以表示说明0有有无穷有无穷多是其中一个辐角如果特殊地的全部辐角为那么西安文理学院物电学院复变函数与积分变换辐角主值的定义
第 一 章 复 数 与 复 变 函 数
z1 z1 例4 设 z1 5 5i , z2 3 4i , 求 与 . z2 z2
解
z1 5 5i (5 5i )( 3 4i ) z2 3 4i ( 3 4i )( 3 4i )
记为 z r x 2 y 2 .
显然下列各式成立
y y
r
o
2
Pz x iy
x z, z x y,
y z,
z z z z2 .
x
x
复变函数与积分变换
西安文理学院物电学院
第 一 章 复 数 与 复 变 函 数
3. 复数的辐角
在 z 0 的情况下, 以正实轴为始边 , 以表示 z 的向量OP 为终边的角的弧度数 称为 z 的辐角, 记作 Argz .
计算共轭复数yi的积是一个实数两个共轭复数西安文理学院物电学院复变函数与积分变换西安文理学院物电学院复变函数与积分变换的形式将下列复数表示为iy西安文理学院物电学院复变函数与积分变换20152015西安文理学院物电学院复变函数与积分变换西安文理学院物电学院复变函数与积分变换西安文理学院物电学院复变函数与积分变换叫虚轴或纵轴通常把横轴叫实轴或用来表示复数的平面可以一个建立了直角坐标系因此对应成一一与有序实数对复数表示面上的点可以用复平复数西安文理学院物电学院复变函数与积分变换的模或绝对值向量的长度称为z表示可以用复平面上的向量复数opiy西安文理学院物电学院复变函数与积分变换称为为终边的角的弧度数的向量以表示说明0有有无穷有无穷多是其中一个辐角如果特殊地的全部辐角为那么西安文理学院物电学院复变函数与积分变换辐角主值的定义
复变函数 全套课件

不存 . 在
证 (一) 令zxiy, 则f(z) x , x2y2
u(x,y) x , v(x,y)0, x2y2
当 z沿直 y线 kx 趋于, 零时
lim u(x,y)lim x lim x
x0 ykx
x0 ykx
x2y2
x0 x2 (kx)2
29
lim x
1 ,
x0 x2(1k2)
1 k2
随k值的变化而变, 化
2
s i n 2 z c o s 2 z 1 ,但 s i n z ,c o s z 不 是 有 界 函 数 .
n
n
(k 0 ,1 ,2 , ,n 1 ) 在几何 ,n z的 上 n个值就是以原 ,n r点 为为 半中 径 的圆的内 n边 接形 正 n个 的顶. 点
单连通域与多连通域
从几何上看,单连通域就是无洞、无割痕 的域.
5
复变函数的概念
复变w与 函 自数 变 z之 量 间的 wf(关 z) 系 相当于两 : 个关系式
《复变函数》
第一讲 复数及其代数运算
两复数相等当且仅当它们的实部和虚 部分别相等.
复数 z 等于0当且仅当它的实部和虚部 同时等于0. 说明 两个数如果都是实数,可以比较它们的 大小, 如果不全是实数, 就不能比较大小, 也就 是说, 复数不能比较大小.
2
辐角的主值
在 z ( 0 )的,辐 把 角 π 满 0 π 中 的 足 0 称 A z 为 的 r,g 记 主 0 作 a 值 z .rg
设 zxiy,
x y 2 ii x y 2 i,化简后得 yx.
(2)Im(iz)4
设 zxiy,
i z x ( 1 y )i,Ii m z ) 1 ( y 4 ,
证 (一) 令zxiy, 则f(z) x , x2y2
u(x,y) x , v(x,y)0, x2y2
当 z沿直 y线 kx 趋于, 零时
lim u(x,y)lim x lim x
x0 ykx
x0 ykx
x2y2
x0 x2 (kx)2
29
lim x
1 ,
x0 x2(1k2)
1 k2
随k值的变化而变, 化
2
s i n 2 z c o s 2 z 1 ,但 s i n z ,c o s z 不 是 有 界 函 数 .
n
n
(k 0 ,1 ,2 , ,n 1 ) 在几何 ,n z的 上 n个值就是以原 ,n r点 为为 半中 径 的圆的内 n边 接形 正 n个 的顶. 点
单连通域与多连通域
从几何上看,单连通域就是无洞、无割痕 的域.
5
复变函数的概念
复变w与 函 自数 变 z之 量 间的 wf(关 z) 系 相当于两 : 个关系式
《复变函数》
第一讲 复数及其代数运算
两复数相等当且仅当它们的实部和虚 部分别相等.
复数 z 等于0当且仅当它的实部和虚部 同时等于0. 说明 两个数如果都是实数,可以比较它们的 大小, 如果不全是实数, 就不能比较大小, 也就 是说, 复数不能比较大小.
2
辐角的主值
在 z ( 0 )的,辐 把 角 π 满 0 π 中 的 足 0 称 A z 为 的 r,g 记 主 0 作 a 值 z .rg
设 zxiy,
x y 2 ii x y 2 i,化简后得 yx.
(2)Im(iz)4
设 zxiy,
i z x ( 1 y )i,Ii m z ) 1 ( y 4 ,
西安交通大学复数与复变函数教学PPT

a 2 b2 1 ab x x 2 1
解得 a x, 所以
b x2 1
1 2ix x 2 1 ( x i x 2 1)
西安交通大学
例3.证明 | z1 z2 |2 | z1 z2 |2 2(| z1 |2 | z2 |2 ), 并说明几何意义 证:| z1 z2 |2 ( z1 z2 )( z1 z2 )
y Im( z )
所以,2)的方程为
Im( z ) 5
z z 10i 0
zz zz ,y 方程较复杂时,一般用: x 2 2i
西安交通大学
例6 说明下列方程所表示的平面图形.
1. z 2i z 2 2. z 1, Im z 0
解:
1. z 2i z 2
再将模变到原来的r2倍
y
r1r2
z1 z2
r2
2
z2 1 2
r1 z1
1 2
o
1
x
西安交通大学
类似得
z1 r1 i (1 2 ) e . z2 r2
从而
两个复数商的模等于它们模的商; 两个复数商的辐角等于它们辐角的差.
西安交通大学
2)复数的乘幂与方根 n次幂
z r e z .z ...z
西安交通大学
例1.计算 3 8 ,并说明几何意义。 解:3 8 3 8e i 2e
k 0,1,2 2k 2k 2 cos( ) i sin( ) , k 0,1,2 3 3 1 i 3 k0 y 2 k 1 w1 k2 1 i 3 ,
18世纪: 1. 欧拉(L.Euler)建立复数理论,
解得 a x, 所以
b x2 1
1 2ix x 2 1 ( x i x 2 1)
西安交通大学
例3.证明 | z1 z2 |2 | z1 z2 |2 2(| z1 |2 | z2 |2 ), 并说明几何意义 证:| z1 z2 |2 ( z1 z2 )( z1 z2 )
y Im( z )
所以,2)的方程为
Im( z ) 5
z z 10i 0
zz zz ,y 方程较复杂时,一般用: x 2 2i
西安交通大学
例6 说明下列方程所表示的平面图形.
1. z 2i z 2 2. z 1, Im z 0
解:
1. z 2i z 2
再将模变到原来的r2倍
y
r1r2
z1 z2
r2
2
z2 1 2
r1 z1
1 2
o
1
x
西安交通大学
类似得
z1 r1 i (1 2 ) e . z2 r2
从而
两个复数商的模等于它们模的商; 两个复数商的辐角等于它们辐角的差.
西安交通大学
2)复数的乘幂与方根 n次幂
z r e z .z ...z
西安交通大学
例1.计算 3 8 ,并说明几何意义。 解:3 8 3 8e i 2e
k 0,1,2 2k 2k 2 cos( ) i sin( ) , k 0,1,2 3 3 1 i 3 k0 y 2 k 1 w1 k2 1 i 3 ,
18世纪: 1. 欧拉(L.Euler)建立复数理论,
复变函数与积分变换第1章复数与复变函数精品PPT课件

(5)乘法对于加法的分配律 z1(z2z3)z1z2z1z3 复数运算的其它结果:
(1)z0z, 0z0 (2) z1z, z11
z
(3)若 z1z2 0,则 z 1 与 z 2 至少有一个为零, 反之亦然.
共轭复数的运算性质:
(1) z z
(2) z1z2 z1z2
(3) z1z2 z1z2
Argz
并规定按逆时针方向取值为正,顺时针方
向取值为负.
4.复数的三角表示式
称 zr(coissin )
为复数 z的三角表示式.
5.复数的指数表示式
称 z rei为复数 z的指数表示式.
例3 求 Arg2(2i)和 Arg3 (4i). 解
A 2 r2 i) g a (2 r 2 g i) 2 (k
25
25
zz(16 8i)1 ( 6 8i)64 25252525 125
1.1.3 复数的各种表示、模与辐角
1.复数的几何表示
由复数 zxiy的定义可知,复数是由一对 有序实数 (x, y) 惟一确定的,于是可建立全 体复数和 x O y 平面上的全部点之间的一一
对应关系,即可以用横坐标为 x,纵坐标
所以
rz (1)2( 3)22
设 argz,
则
tant 3 3
1
又因为 z1i 3 位于第II象限,
所以 argz 2 ,
于是
3
z 1i
3 2(cos2isin2)
i 2
2e 3
3
3
1.1.4. 复数的幂与根
1. 复数的乘幂
设 n为正整数,n个非零相同复数 z的乘积,
称为 的 z次幂n,记为 ,z即n
6
(1)z0z, 0z0 (2) z1z, z11
z
(3)若 z1z2 0,则 z 1 与 z 2 至少有一个为零, 反之亦然.
共轭复数的运算性质:
(1) z z
(2) z1z2 z1z2
(3) z1z2 z1z2
Argz
并规定按逆时针方向取值为正,顺时针方
向取值为负.
4.复数的三角表示式
称 zr(coissin )
为复数 z的三角表示式.
5.复数的指数表示式
称 z rei为复数 z的指数表示式.
例3 求 Arg2(2i)和 Arg3 (4i). 解
A 2 r2 i) g a (2 r 2 g i) 2 (k
25
25
zz(16 8i)1 ( 6 8i)64 25252525 125
1.1.3 复数的各种表示、模与辐角
1.复数的几何表示
由复数 zxiy的定义可知,复数是由一对 有序实数 (x, y) 惟一确定的,于是可建立全 体复数和 x O y 平面上的全部点之间的一一
对应关系,即可以用横坐标为 x,纵坐标
所以
rz (1)2( 3)22
设 argz,
则
tant 3 3
1
又因为 z1i 3 位于第II象限,
所以 argz 2 ,
于是
3
z 1i
3 2(cos2isin2)
i 2
2e 3
3
3
1.1.4. 复数的幂与根
1. 复数的乘幂
设 n为正整数,n个非零相同复数 z的乘积,
称为 的 z次幂n,记为 ,z即n
6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 复数的代数形式的定义: 满足:i2=-1
对于∀ x, y ∈ R, 称 z = x + yi或 z = x + iy 为复数.
实部 记做:Rez=x
虚部 记做:Imz=x
当 x = 0, y ≠ 0 时, z = iy 称为纯虚数;
当 y = 0 时, z = x + 0i, 我们把它看作实数 x.
10
1.4 极坐标表示(三角表示) y
复数 z = x + iy 可以用复平
y
z = x + iy
z = (x, y)
面上的点向量oz 表示.
uur
o
x
x
z = x + iy ⇔ 向量oz ⇔(r,θ)
x = r cosθ y = r sinθ z = r(cosθ + i sinθ )
1.5 指数表示
15
关于 ∞ 的四则运算规定如下 :
(1) 加法 : α + ∞ = ∞ + α = ∞, (α ≠ ∞)
(2) 减法 : α − ∞ = ∞ − α = ∞, (α ≠ ∞)
(3) 乘法 : α ⋅ ∞ = ∞ ⋅α = ∞, (α ≠ 0)
(4)除法 :
α ∞
=
0,
∞ α
=
∞,
(α
≠
∞),Biblioteka α = ∞,(α ≠ 0) 0
用来表示复数 , 通常把横轴叫实轴或 x 轴, 纵轴
叫虚轴或 y 轴. 这种用来表示复数的平 面叫复平
面.
复数的向量表示法
复数 z = x + iy 可以用复平 面上的点 ( x, y) 表示 .
y z = x + iy
y
z = (x, y)
复数 z = x + iy 可以用复平
面上的点向量oz 表示.
由欧拉公式:eiθ = cosθ + i sinθ
z = reiθ
11
1.6 复球面表示
(1) 南极、北极的定义
取一张复平面
再做一个与复平面切于原点 z = 0 的球面,
通过 O 作垂直于复平面的
N
直线与球面相交于另一点 N ,
我们称 N 为北极,
与北极N对应的O称为
南极,也可用 S表示.
z
OS
y
特别当x = 0, y = 0 时, 0 = 0 + 0i.
当 x = 0, y ≠ 0 时, z = iy 称为纯虚数;
C = {z | z = x + iy, x, y ∈ R}称为为复数集
7
1.2 复平面表示
复数 z = x + iy 与有序实数对 ( x, y) 成一一
对应. 因此, 一个建立了直角坐标系 的平面可以
i7 = i4 ⋅ i3 = −i; ……
一般地,如果 n是正整数, 则
i4n = 1, i4n+1 = i, i4n+2 = −1, i4n+3 = −i.
4
复数的Hamilton(代数对)形式的定义
1835年, Hamilton给出如下定义: 称一个有序数对z=(x,y)为一个复数。其中
x,y为实数。 要注意,因为复数是“有序数对”,所以一般地
课程要求
• 本课程学时17周,每周3节课 • 不迟到,不旷课,有事请提前通知老师 • 期末考试占总成绩的80%,平时为20% • 课件等资料在教务网上公布
1
§1.1 复数
1、复数的概念 2、复数的各种表示方法 3、复数的运算
1、复数的概念
实例 : 方程 x2 = −1在实数集中无解. 为了解方程的需要, 引入一个新数 i,
称为虚数单位. 对虚数单位的规定: (1) i2 = −1; (2) i 可以与实数在一起按同样的法则进行
四则运算.
3
虚数单位的特性:
i1 = i;
i2 = −1;
i3 = i ⋅ i2 = −i;
i4 = i 2 ⋅ i 2 = 1;
i5 = i4 ⋅ i1 = i;
i6 = i4 ⋅ i 2 = −1; i8 = i4 ⋅ i4 = 1;
16
例1 实数m取何值时, 复数 (m2 − 3m − 4) + (m2 − 5m − 6)i 是(1)实数; (2)纯虚数. 解 令 x = m2 − 3m − 4, y = m2 − 5m − 6, (1) 如果复数是实数 , 则y = 0,
由m2 − 5m − 6 = 0知m = 6或m = −1. (2) 如果复数是纯虚数 , 则x = 0且y ≠ 0,
由m2 − 3m − 4 = 0知m = 4或m = −1. 但由y ≠ 0知m = −1应舍去. 即只有m = 4.
x 无穷多幅角,θ1是其中一个,则
Argz = θ1 + 2kπ
9
幅角θ:Argz = θ
若 − π < θ0 ≤ π , θ0为Argz的主值,记为θ0 = arg z z = 0时,幅角不确定
arg
z
=
arctg
±
π 2
y x
arctg
y
±π
x
π
x > 0, y任意
x = 0, y任意 z ≠ 0 x < 0, y任意 x < 0, y = 0
P(z)
z
这个假想的 点称为“复
OS
z
x
数无穷远
x
点” 记作 ∞. 因而球面上的北极 N 就是复数∞的几何表示.
复平面加上 ∞后称为扩充复平面,记作C∞
14
包括无穷远点在内的复平面称为扩充复平面. 不包括无穷远点在内的复平面称为有限复平面, 或简称复平面. 对于复数¥来说, 实部,虚部,辐角等概念均无意 义, 它的模规定为正无穷大. 复球面的优越处: 能将扩充复平面的无穷远点明显地表示出来.
(x,y) ≠(y,x) 。 (x,y)=x+iy 实部 Rez=x 虚部:Imz=y 虚单位 (0,1)=i 数零0=(0,0)=0+0i
5
实数 x =(x,0) = x+i⋅0
复数虚数非纯纯虚虚数数zz==(0(,xy,)y)==0x++i⋅iy⋅(yy
≠ 0) (x ≠
0,
y
≠
0)
6
2、复数的各种表示法 i-虚单位
x
12
(2) 复球面的定义
球面上的点, 除去北极 N 外, 与复平面内的 点之间存在着一一对应的关系. 我们可以用球 面上的点来表示复数.
N
用来表示复
数的这个球面称 为复球面.
全体复数与 复球面-{N}成一 一对应关系.
P(z)
z
OS
z
x
x
13
(3) 扩充复平面的定义
N
我们规定: 北极 N与一个模为无 穷大的假想的 点对应
o
x
x
8
1.3 向量表示
复数 z = x + iy 可以用复平 面上的点向量oz 表示.
uur z = x + iy ⇔ 向量oz
y z = x + iy
y
z = (x, y)
o
x
x
(1) z = r = x2 + y2 x ≤ z y ≤ z z ≤ x + y
(2) 幅角θ:Argz = θ tg( Argz) = y
对于∀ x, y ∈ R, 称 z = x + yi或 z = x + iy 为复数.
实部 记做:Rez=x
虚部 记做:Imz=x
当 x = 0, y ≠ 0 时, z = iy 称为纯虚数;
当 y = 0 时, z = x + 0i, 我们把它看作实数 x.
10
1.4 极坐标表示(三角表示) y
复数 z = x + iy 可以用复平
y
z = x + iy
z = (x, y)
面上的点向量oz 表示.
uur
o
x
x
z = x + iy ⇔ 向量oz ⇔(r,θ)
x = r cosθ y = r sinθ z = r(cosθ + i sinθ )
1.5 指数表示
15
关于 ∞ 的四则运算规定如下 :
(1) 加法 : α + ∞ = ∞ + α = ∞, (α ≠ ∞)
(2) 减法 : α − ∞ = ∞ − α = ∞, (α ≠ ∞)
(3) 乘法 : α ⋅ ∞ = ∞ ⋅α = ∞, (α ≠ 0)
(4)除法 :
α ∞
=
0,
∞ α
=
∞,
(α
≠
∞),Biblioteka α = ∞,(α ≠ 0) 0
用来表示复数 , 通常把横轴叫实轴或 x 轴, 纵轴
叫虚轴或 y 轴. 这种用来表示复数的平 面叫复平
面.
复数的向量表示法
复数 z = x + iy 可以用复平 面上的点 ( x, y) 表示 .
y z = x + iy
y
z = (x, y)
复数 z = x + iy 可以用复平
面上的点向量oz 表示.
由欧拉公式:eiθ = cosθ + i sinθ
z = reiθ
11
1.6 复球面表示
(1) 南极、北极的定义
取一张复平面
再做一个与复平面切于原点 z = 0 的球面,
通过 O 作垂直于复平面的
N
直线与球面相交于另一点 N ,
我们称 N 为北极,
与北极N对应的O称为
南极,也可用 S表示.
z
OS
y
特别当x = 0, y = 0 时, 0 = 0 + 0i.
当 x = 0, y ≠ 0 时, z = iy 称为纯虚数;
C = {z | z = x + iy, x, y ∈ R}称为为复数集
7
1.2 复平面表示
复数 z = x + iy 与有序实数对 ( x, y) 成一一
对应. 因此, 一个建立了直角坐标系 的平面可以
i7 = i4 ⋅ i3 = −i; ……
一般地,如果 n是正整数, 则
i4n = 1, i4n+1 = i, i4n+2 = −1, i4n+3 = −i.
4
复数的Hamilton(代数对)形式的定义
1835年, Hamilton给出如下定义: 称一个有序数对z=(x,y)为一个复数。其中
x,y为实数。 要注意,因为复数是“有序数对”,所以一般地
课程要求
• 本课程学时17周,每周3节课 • 不迟到,不旷课,有事请提前通知老师 • 期末考试占总成绩的80%,平时为20% • 课件等资料在教务网上公布
1
§1.1 复数
1、复数的概念 2、复数的各种表示方法 3、复数的运算
1、复数的概念
实例 : 方程 x2 = −1在实数集中无解. 为了解方程的需要, 引入一个新数 i,
称为虚数单位. 对虚数单位的规定: (1) i2 = −1; (2) i 可以与实数在一起按同样的法则进行
四则运算.
3
虚数单位的特性:
i1 = i;
i2 = −1;
i3 = i ⋅ i2 = −i;
i4 = i 2 ⋅ i 2 = 1;
i5 = i4 ⋅ i1 = i;
i6 = i4 ⋅ i 2 = −1; i8 = i4 ⋅ i4 = 1;
16
例1 实数m取何值时, 复数 (m2 − 3m − 4) + (m2 − 5m − 6)i 是(1)实数; (2)纯虚数. 解 令 x = m2 − 3m − 4, y = m2 − 5m − 6, (1) 如果复数是实数 , 则y = 0,
由m2 − 5m − 6 = 0知m = 6或m = −1. (2) 如果复数是纯虚数 , 则x = 0且y ≠ 0,
由m2 − 3m − 4 = 0知m = 4或m = −1. 但由y ≠ 0知m = −1应舍去. 即只有m = 4.
x 无穷多幅角,θ1是其中一个,则
Argz = θ1 + 2kπ
9
幅角θ:Argz = θ
若 − π < θ0 ≤ π , θ0为Argz的主值,记为θ0 = arg z z = 0时,幅角不确定
arg
z
=
arctg
±
π 2
y x
arctg
y
±π
x
π
x > 0, y任意
x = 0, y任意 z ≠ 0 x < 0, y任意 x < 0, y = 0
P(z)
z
这个假想的 点称为“复
OS
z
x
数无穷远
x
点” 记作 ∞. 因而球面上的北极 N 就是复数∞的几何表示.
复平面加上 ∞后称为扩充复平面,记作C∞
14
包括无穷远点在内的复平面称为扩充复平面. 不包括无穷远点在内的复平面称为有限复平面, 或简称复平面. 对于复数¥来说, 实部,虚部,辐角等概念均无意 义, 它的模规定为正无穷大. 复球面的优越处: 能将扩充复平面的无穷远点明显地表示出来.
(x,y) ≠(y,x) 。 (x,y)=x+iy 实部 Rez=x 虚部:Imz=y 虚单位 (0,1)=i 数零0=(0,0)=0+0i
5
实数 x =(x,0) = x+i⋅0
复数虚数非纯纯虚虚数数zz==(0(,xy,)y)==0x++i⋅iy⋅(yy
≠ 0) (x ≠
0,
y
≠
0)
6
2、复数的各种表示法 i-虚单位
x
12
(2) 复球面的定义
球面上的点, 除去北极 N 外, 与复平面内的 点之间存在着一一对应的关系. 我们可以用球 面上的点来表示复数.
N
用来表示复
数的这个球面称 为复球面.
全体复数与 复球面-{N}成一 一对应关系.
P(z)
z
OS
z
x
x
13
(3) 扩充复平面的定义
N
我们规定: 北极 N与一个模为无 穷大的假想的 点对应
o
x
x
8
1.3 向量表示
复数 z = x + iy 可以用复平 面上的点向量oz 表示.
uur z = x + iy ⇔ 向量oz
y z = x + iy
y
z = (x, y)
o
x
x
(1) z = r = x2 + y2 x ≤ z y ≤ z z ≤ x + y
(2) 幅角θ:Argz = θ tg( Argz) = y