二项分布及其应用
二项分布及其应用

P(B)=q2,P(-B )=1-q2. 根据分布列知:当 X=0 时,
- P( A
- B
-B )=P(-A )P(-B )P(-B )=0.75(1-q2)2=0.03,
所以 1-q2=0.2,q2=0.8.
当 X=2 时,P1=P(-A B-B +-A -B B)=P(-A )P(B)P(-B )+
P(-A )P(-B )P(B)=0.75q2(1-q2)×2=0.24,
当 X=3 时, P2=P(A-B -B )=P(A)P(-B )P(-B ) =0.25(1-q2)2=0.01, 当 X=4 时, P3=P(-A BB)=P(-A )P(B)P(B)=0.75q22=0.48,
当 X=5 时,P4=P(A-B B+AB)=P(A-B B)+P(AB)
3.已知 P(B|A)=12,P(AB)=38,则 P(A)等于( C )
3
13
A.16
B.16
3
1
C.4
D.4
解析:由 P(AB)=P(A)P(B|A),可得 P(A)=34.
4.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正
面向上”为事件 A,“骰子向上的点数是 3”为事件 B,则
事件 A,B 中至少有一个发生的概率是( C )
生的条件概率
2.事件的相互独立性
(1)定义:设 A,B 为两个事件,如果 P(AB)=_P_(_A_)_P_(_B_)_,则
称事件 A 与事件 B 相互独立.
(2)性质: ①若事件 A 与 B 相互独立,则 P(B|A)=____P_(_B_)___,
P(A|B)=P(A),P(AB)=__P_(_A_)_P_(B__)_. ②如果事件 A 与 B 相互独立,那么__A__与__-B____,__-_A_与___B__, __-A__与__-B____也相互独立.
二项分布及其应用

考向导析 规范解答系列 阅卷报告系列 限时规范训练
解法三:∵D=A+B,且 A 与 B 独立. ∴P(D)=P(A+B)=P(A)+P(B)-P(A· B)=0.8+0.9-0.8×0.9=0.98. 故目标被击中的概率是 0.98. (4)设 E={至多有 1 人击中目标}, ∵E=A·B +B·A + A ·B , 且 A 与 B 、B 与 A 、 A 与 B 独立, A·B 、B·A 、 A ·B 彼此互斥, ∴P(E)=P(A·B +B·A + A ·B )=P(A·B )+P(B·A )+P( A ·B ) =P(A)· B )+P(B)· A )+P( A )· B )=0.8×0.1+0.9×0.2+0.1×0.2=0.28. P( P( P( 故至多有 1 人击中目标的概率为 0.28.
考基联动
考向导析
规范解答系列
阅卷报告系列
限时规范训练
(2)由于 Y 表示这名学生在首次停车时经过的路口数,显然 Y 是随机变量,其取值为 0,1,2,3,4,5,6. 其中:{Y=k}(k=0,1,2,3,4,5)表示前 k 个路口没有遇上红灯,但在第 k+1 个路口遇 上红灯,故各概率应按独立事件同时发生计算. 2 1 P(Y=k)= k·(k=0,1,2,3,4,5), 3 3 而{Y=6}表示一路没有遇上红灯. 2 6 故其概率为 P(Y=6)= , 3 因此 Y 的分布列为: Y P Y P 0 1 3 1 12 · 33 4 1 24 · 3 3
考基联动
考向导析
规范解答系列
阅卷报告系列
限时规范训练
(2)设事件 C={两人中恰有 1 人击中目标},则 C=A·B +B·A ∴A·B 与 B·A 互斥,且 A 与 B 独立, ∴P(C)=P(A·B +B·A ) =P(A·B )+P(B·A ) =P(A)· B )+P(B)· A ) P( P( =P(A)· [1-P(B)]+P(B)· [1-P(A)] =0.8×0.1+0.9×0.2=0.26, 即两人中恰有 1 人击中目标的概率为 0.26. (3)设 D={目标被击中}={两人中至少有 1 人击中目标},本问有三种解题思路:
二项分布及其应用

本例0=0.01,n=400,x=1,根据题意需求最多有1例染
色体异常的概率,按二项分布的概率函数得
(3) 做出推断结论: P >0.05,按 =0.05检验水准不拒绝H0,尚 不能认为该地新生儿染色体异常率低于一般。
1、样本率与已知总体率的比较:
(2) 正态近似法: 当 n0 和 n(1-0) 均大于5时,
用n=20和x=8查附表7.2百分率的可信区间得该 法近期有效率的95%可信区间为19%64%。
由于附表7百分率的可信区间中值只列出了x n/2的部分,当x>n/2时,应以n -x查表,再从100
中减去查得的数值即为所求可信区间。
2、总体率的区间估计
三、二项分布的应用
(2)正态近似法
当样本含量足够大,且样本率p和 1-p均不太小,一般 np与 n(1-p)均大于5时,样本率的抽样分布近似正态分布,即
此时, 总体率的可信区间可按下式进行估计:
其中,
布的应用
(二)假设 检验1、样本率与已知总体率的比较:
(1)直接计算概率法: 例1 根据以往长期的实践,证明某常用药的治 愈率为65%。现在某种新药的临床试验中,随机观 察了10名用该新药的患者,治愈8人。问该新药的 疗效是否比传统的常用药好?
(1)建立假设,确定检验水准。
(2) 计算检验统计量 。
B( , n )。
例 抛硬币(正/反),患者治疗后的结局(治愈/未愈),实验 动物染毒后结局(生存/死亡),……。
一、二项分布的概念及应用条件
2、应用条件:
① n次试验相互独立 ( n 个观察单位相互独立)。 ② 每次试验只有两种可能结果中的某一种(适用
医学统计学第八讲二项分布其应用

贝努利试验:指只有两个互斥结果的试验 。如阳性与阴性,生存与死亡,发病与未 发病。
n次贝努利试验指重复进展n次独立的贝努 利试验。又叫贝努利试验序列。
贝努利试验序列特点
①每次试验的结果只能是2个互相对立结 果中的一个。
② n个观察单位的结果互相独立。 ③在一样条件下,每次试验结果的概率不变
。
二项分布〔binomial distribution〕是指 在n次Bernoulli试验中,当每次试验的“阳性 〞概率保持不变时,出现“阳性〞的次数 X=0,1,2,…,n的概率分布。
二项分布下至少发生k例阳性的概率为发生k例 阳性、k+1例阳性、...、直至n例阳性的概率之和。
即
p(x≥k) =p(x=k)+p(x=k+1)+……+p(x=n)
n
p(X k) P(X) P(k) P(k 1) P(k 2) P(n) Xk
X=k,k+1,k+2, …… ,n
二项分布下发生k1例及以上到k2 例阳性的概率为 发生k1例阳性、 k1+1例阳性、...、直至k2例阳性的概 率之和。即
)n
0 √ √ √ (1- )3 1 X √ √ (1-)2 √ X √ (1-)2 √ √ X (1-)2
2 X X √ 2(1-) X √ X 2(1-)
√ X X 2(1-) 3 X X X 3
P( X
0)
3 0
(
)0
(1)Βιβλιοθήκη P( X 1) 31( )1(1 )2
P( X
2)
3 2
(
区间,用(1 – 阴性率可信区间) ,可得阳性率 可信区间。
二、率的假设检验
二项分布及其应用(讲课适用)

p
1
n
(理论值)
sp p(1 p) n (实际值)
(二)二项分布的累计概率
从阳性率为
的总体中随机抽取n个观察单位,则
(1)最多有k例阳性的概率为
P(X k) P(0) P(1) P(k)
(2)最少有k例阳性的概率为
P(X k) P(k) P(k 1) P(n) 1 P(X k 1)
一、二项分布的概念及应用条件
1、概念:若试验 E 只有两种相互对立的结果(A及 A ),
并且 P(A) ,
, 把 E 独立地重复 n
次的试验称为 n 重贝努里试验(Bernoulli trial)。
n 重贝努里试验中事件A发生的次数 x 所服从的分布
即为二项分布(binomial distribution),记为 x ~
二项分布及其应用
内容提纲
二项分布的概念及应用条件 二项分布的性质 二项分布的特点 二项分布的应用
一、二项分布的概念及应用条件
举例:设小白鼠接受一定剂量的某种 毒物染毒后死亡率为80%。若每组各 用3只小白鼠(甲、乙、丙)接受该 种毒物染毒,观察各组小白鼠的存亡 情况。
死亡数 x
(1) 0
B( , n )。
例 抛硬币(正/反),患者治疗后的结局(治愈/未愈),实验 动物染毒后结局(生存/死亡),……。
一、二项分布的概念及应用条件
2、应用条件:
① n次试验相互独立 ( n 个观察单位相互独立)。 ② 每次试验只有两种可能结果中的某一种(适用
于二分类资料)。
③ 每次试验发生某一种结果的概率 固定不变
1
2
3 合计
表 1 3 只小白鼠染毒后的死亡只数的概率分布
二项分布及其应用

=
nAB nA
.
(2)条件概率具有的性质
① 0≤P(B|A)≤1 ;
②如果B和C是两个互斥事件, 则P(B∪C|A)= P(B|A)+P(C|A) .
2.相互独立事件
(1)设A,B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B_相__互__ ——独—立—. (2)若A与B相互独立,则P(B|A)= P(B), P(AB)=P(A)P(B|A)= P(A)P(B). (3)若A与B相互独立,则A 与 B, A 与 B , A 与 B 也都相互独立.
题型一 条件概率
例1 (1)从1,2,3,4,5中任取2个不同的数,事件A为“取到的2个数之和
为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)等于( )
1
1
2
1
A.8
B.4
C.5
D.2
答案 解析
P(A)=C23+ C25C22=25,P(AB)=CC2225=110, P(B|A)=PPAAB=14.
(3). 将 一 枚 硬 币 连 续 抛 掷 两 次 , 记 “ 第 一 次 出 现 正 面 ” 为 事 件
A,“第二次出现反面”为事件B,则P(B|A)等于( )
A. 1 2
B. 1 4
C.1 6
D.1 8
(4).甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5, 现已知目标被击中,则它是被甲击中的概率为( )
变式训练 (2016·开封模拟)已知盒中装有3只螺口灯泡与7只卡口灯泡,
这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,
电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡
的条件下,第2次抽到的是卡口灯泡的概率为 答案 解析
【高中数学】二项分布及其应用

【高中数学】二项分布及其应用一、条件概率1.定义:对任意事件A和事件B,在已知事件A发生的条件下事件B发生的概率,叫做条件概率。
记作P(B |A),读作A发生的条件下B的概率。
2.事件的交(积):由事件A和事件B同时发生所构成的事件D,称为事件A与事件B的交(或积)。
记作D=ANB或D=AB3. 条件概率计算公式:P(B | A)相当于把AB发生的概率:若P(A)>0,则P(AB)=P(B | A) · P(A)(乘法公式);O≤P(B | A)≤1 .4. 公式推导过程:5. 解题步骤:例1. 10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,求第二个又取到次品的概率.解:设A={第一个取到次品},B={第二个取到次品}所以,P(B | A)=P(AB)/P(A)=2/9答:第二个又取到次品的概率为2/9.二、相互独立事件1. 定义:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
说明:(1)判断两事件A、B是否为相互独立事件,关键是看A(或B)发生与否对B(或A)发生的概率是否影响,若两种状况下概率不变,则为相互独立.(2)互斥事件是指不可能同时发生的两个事件.相互独立事件是指一事件的发生与否对另一事件发生的概率没影响.(3)如果A、B是相互独立事件,则A的补集与B的补集、A与B的补集、A的补集与B也都相互独立.2. 相互独立事件同时发生的概率公式两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
则有:P(A●B)=P(A)●P(B)说明:(1)使用时,注意使用的前提条件;(2)此公式可作为判断事件是否相互独立的理论依据,即P(A · B )=P(A) · P (B)是A 、B 相互独立的充要条件. (3)如果事件Al,Az, … Aa 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。
二项分布及其应用理

[思路点拨]
[课堂笔记] (1)任选1名下岗人员,设“该人参加过财会培 训”为事件A,“该人参加过计算机培训”为事件B,由题设知, 事件A与B互独立,且P(A)=0、6,P(B)=0、75、 法一:任选1名下岗人员,该人没有参加过培训得概率就是 P1=P( )=P( )·P( )=0、4×0、25=0、1、 所以该人参加过培训得概率就是P2=1-P1=1-0、1=0 、9、
4、二项分布 在n次独立重复试验中,设事件A发生得次数为X,在每 次试验中事件A发生得概率为p,那么在n次独立重复试 验中,事件A恰好发生k次得概率为P(X=k)= pk(1-p)n-k (k=0,1,2,…,n)、 此时称随机变量X服从二项分布,记作 X~B(n,p) ,并 称 p 为成功概率、
[课堂笔记] 记事件A:最后从2号箱中取出得就是红球;
事件B:从1号箱中取出得就是红球、
则P(B)=
,P( )=1-P(B)= ,
P(A|B)=
,P(A| )=
,ห้องสมุดไป่ตู้
从而P(A)=P(AB)+P(A )
=P(A|B)P(B)+P(A| )P( )
1、相互独立事件就是指两个试验中,两事件发生得概率 互
【解】 (1)依题意知X~B(4, ),即X得分布列为
X0
1
2
3
4
┄┄┄(6分)
P
(2)设Ai表示事件“第一次击中目标时,击中第i部 分”,i=1,2、
Bi表示事件“第二次击中目标时,击中第i部分”,i =1,2、依题意知P(A1)=P(B1)=0、1,P(A2)=P(B2)=0、 3,A=A1 ∪ B1∪A1B1∪A2B2,┄┄┄┄┄┄(9分)
故所求得概率为 P(A)=P(A1 )+P( B1)+P(A1B1)+P(A2B2) =P(A1)P( )+P( )P(B1)+P(A1)P(B1)+P(A2)P(B2) =0、1×0、9+0、9×0、1+0、1×0、1+0、3×0、3 =0、28、┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(12分)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中减去查得的数值即为所求可信区间。
2、总体率的区间估计
三、二项分布的应用
(2)正态近似法 当样本含量足够大,且样本率p和 1-p均不太小,一般 np与 n(1-p)均大于5时,样本率的抽样分布近似正态分布,即
(3)
(4)
生 生 生 0.2×0.2×0.2=0.008 P(0) C30(0.8)0(10.8)30 0.008
生 生 死 0.2×0.2×0.8=0.032
2
1
生 死 生 0.2×0.8×0.2=0.032 P(1) C31(0.8)1(10.8)31 0.096
死 生 生 0.2×0.8×0.2=0.032
该例题中各种组合的概率恰好等于该二项式展开式的各项,所以将 n次这种只具有两种互相对立结果中一种的随机实验成功次数的概 率分布称为二项分布。
该例题中各种组合的概率恰好等于该二项式展开式 的各项,所以将n次这种只具有两种互相对立结果 中一种的随机实验成功次数的概率分布称为二项分 布。
[1 ()]n (1 )n C n 1 (1 )n 11 C n 2 (1 )n 22 C n X (1 )n XX C n n 1 (1 )n 1n
sp
p1 p
n
2、总体率的区间估计
(理论值) (估计值)
三、二项分布的应用
2、总体率的区间估计 (1)查表法——样本量较小时(n50) 例3.6 某医院皮肤科医师用某种药物治疗20
名系统性红斑狼疮患者,其中8人近期有效,求该法 近期有效率的95%可信区间。
用n=20和x=8查附表7.2百分率的可信区间得该 法近期有效率的95%可信区间为19%64%。
死 死 生 0.8 0.8 0.2 0.128
1
死 生 死 0.8 0.2 0.8 0.128
生 死 死 0.2 0.8 0.8 0.128
0
死 死 死 0.8 0.8 0.8 0.512
P(x) (5)
0.008
0.096
0.384 0.512 1.000
概率的乘法原理:几个相互独立的事件同时发生的概率等于各 事件发生概率的乘积。
(1)建立假设,确定检验水准。
H0: = 0,即新药治愈率与传统药物相同 H1: > 0,即新药治愈率高于传统药物 = 0.05 (2)根据二项分布的分布规律,计算 P 值。
H0成立时,随机抽查的10人中治愈人数x 的分布
PX8p(8)p(9)p(1)0
C1808(1)2C1909(1)1C110010(1)0
H0成立时, 400名新生儿中染色体异常例数的概率分布
(1)建立检验假设,确定检验水准
H0: = 0,即该地新生儿染色体异常率不低于一般 H1: < 0,即该地新生儿染色体异常率低于一般 = 0.05
(2) 根据二项分布的分布规律,计算 P 值。
本例0=0.01,n=400,x=1,根据题意需求最多有1例染
生 死 死 0.2×0.8×0.8=0.128
1
2
死 生 死 0.8×0.2×0.8=0.128 P(2) C32(0.8)2(10.8)32 0.384
死 死 生 0.8×0.8×0.2=0.128
0
3
死 死 死 0.8×0.8×0.8=0.512 P(3) C33(0.8)3(10.8)33 0.512
[1 (0 .8 ) 0 .8 ]3 (1 0 .8 )3 C 3 1 (1 0 .8 )3 1 (0 .8 )1 C 3 2 (1 0 .8 )3 2 (0 .8 )2 (0 .8 )3
[(1)]n Cn0(1)n0 Cn1(1)n11
Cnx(1)nxx Cnn(1)0n
1
p (x) C n x x1 n x
p ( 0 ) p ( 1 ) p ( n ) 1
例. 求前例中三只小白鼠死亡2只的概率。
p ( x 2 ) C 3 22 1 3 2 3 0 . 8 2 0 . 2 1 0 . 384
一、二项分布的概念及应用条件
1、概念:若试验 E 只有两种相互对立的结果(A及 A ),
并且 P(A) ,PA1, 把 E 独立地重复 n
次的试验称为 n 重贝努里试验(Bernoulli trial)。 n 重贝努里试验中事件A发生的次数 x 所服从的分布 即为二项分布(binomial distribution),记为 x ~
(1)建立检验假设,确定检验水准
H0: = 0,即老年胃溃疡患者胃出血发生率与一般患者相同 H1: > 0,即老年胃溃疡患者胃出血发生率高于一般患者 = 0.05
(2) 计算检验统计量 。
u p0 0.31 50.2 805.05 0(10) 0.2 0(10.2)0
二项分布及其应用
内容提纲
二项分布的概念及应用条件 二项分布的性质 二项分布的特点 二项分布的应用
一、二项分布的概念及应用条件
举例:设小白鼠接受一定剂量的某种 毒物染毒后死亡率为80%。若每组各用 3只小白鼠(甲、乙、丙)接受该种毒 物染毒,观察各组小白鼠的存亡情况。
死亡数 x
态分布,即
ap.pro
x~N n,n1或
pa~pp.N ro,1
n
二项分布的正态近似示意图
二项分布的累计概率:
15
20
25
30
35
40
45
50
55
60
65
k1
k2
三、二项分布的应用
(一)估计总体率的可信区间
1、率的抽样误差
p
1
n
(1) 0
1
2
3 合计
表 1 3 只小白鼠染毒后的死亡只数的概率分布
生存数
排列方式
n-x
甲乙 丙
各种排列的概率
(2)
(3)
(4)
3
生 生 生 0.2 0.2 0.2 0.008
死 生 生 0.8 0.2 0.2 0.032
2
生 死 生 0.2 0.8 0.2 0.032
生 生 死 0.2 0.2 0.8 0.032
1、样本率与已知总体率的比较:
(2) 正态近似法: 当 n0 和 n(1-0) 均大于5时,
近似
X ~ Nn 0 , n 0 1 0
p
近似
~
N
0
,
0
1
n
0
可用正态近似法, 按下式计算检验统计量u值。
u
X n 0
n 0 1 0
色体异常的概率,按二项分布的概率函数得
1
P( X 1) P( X ) (0.99)400
400!
(0.99)4001 (0.01) 0.0905
0
1!(400 1)!
(3) 做出推断结论: P >0.05,按 =0.05检验水准不拒绝H0,尚 不能认为该地新生儿染色体异常率低于一般。
或
u p0
0(10)/n
例3 据报道,某常规疗法对某种疾病的治愈率为65%。现某 医生用中西医结合疗法治疗了100例该病患者,治愈了80人。 问该中西医结合疗法的疗效是否比常规疗法好?
当H0成立时, 100例患者中治愈人数的概率分布
(1)建立检验假设,确定检验水准
H0: = 0,即该种中西医结合疗法疗效与常规疗法相同 H1: > 0,即该种中西医结合疗法疗效好于常规疗法 = 0.05
认为中西医结合疗法的疗效好于常规疗法。
例4 经长期临床观察, 发现胃溃疡患者发生胃出血症状 的占20%。现某医院观察了304例65岁以上的老年胃 溃疡患者,有96例发生胃出血症状,占31.58%。问老 年胃溃疡患者是否较一般患者更易发生胃出血?
H0成立时, 304例老年胃溃疡患者中胃出血发生人数的分布
(2) 计算检验统计量 。
本例, 0 =0.65,n=100, x=80 。
un X 0 1 n 001 8 0 0 1 0 .6 0 0 0 .5 0 6 0 .35 5 3 .14
(3) 确定P值,做出推断结论。
查表得, 0.0005<P<0.001, 按 = 0.05 水准拒绝H0,接受H1,
(四)二项分布的特点
1、当 0.5时,无论 n大小,其图形均呈对称分布;
2、当 0.5,且且nn小小时时 呈偏态分布;随n不断增大,逐
渐趋于对称分布;当 n 时,逼近正态分布。
实际工作中,只要n足够大,与1- 均不太小时(通常规定
n > 50 且 n5 与 n15时),可看作近似正
p~N(,1)
n
此时, 总体率的可信区间可按下式进行估计:
p u s p , p u s p
2
2
其中,
sp
p1 p
n
三、二项分布的应用
(二)假设检验
1、样本率与已知总体率的比较:
(1)直接计算概率法: 例1 根据以往长期的实践,证明某常用药的治 愈率为65%。现在某种新药的临床试验中,随机观 察了10名用该新药的患者,治愈8人。问该新药的 疗效是否比传统的常用药好?
450.6850.352100.6950.350.6150 0.17560.507240.901346 0.26160
(3) 做出推断结论。本例P >0.05,按=0. 05的检 验水准不拒绝H0,尚不能认为新药疗效较传统药物 疗效好。