实变函数试题库(4)及参考答案

合集下载

(完整版)实变函数题库集答案

(完整版)实变函数题库集答案

实变函数试题库及参考答案本科、题 1.设A,B 为集合,则A B UB A U B (用描述集合间关系的符号填写)2.设A是B 的子集,则A B (用描述集合间关系的符号填写)3.如果E中聚点都属于E ,则称E是闭集4.有限个开集的交是开集5.设E1、E2是可测集,则m E1UE2 mE1 mE2 (用描述集合间关系的符号填写)n*6.设E ? n是可数集,则m E = 07.设f x 是定义在可测集E上的实函数,如果a ?1,E x f x a 是可测集,则称f x 在E上可测8.可测函数列的上极限也是可测函数9.设f n x f x ,g n x g x ,则f n x g n x f x g x10.设f x 在E上L可积,则f x 在E上可积11.设A,B 为集合,则B A UA A (用描述集合间关系的符号填写)12.设A 2k 1k 1,2,L ,则A=a(其中a表示自然数集N 的基数)13.设E ? n,如果E 中没有不属于E,则称E 是闭集14.任意个开集的并是开集15.设E1、E2是可测集,且E1 E2 ,则mE1 mE216.设E 中只有孤立点,则m*E =017.设f x 是定义在可测集E上的实函数,如果 a ?1,E x f x a 是可测,则称f x 在E上可测18.可测函数列的下极限也是可测函数19.设f n x f x ,g n x g x ,则f n x g n x f x g x20.设n x 是E上的单调增收敛于f x 的非负简单函数列,则f x dx lim n x dxE n E21.设A,B 为集合,则A B UB B22.设A为有理数集,则A=a(其中a表示自然数集N 的基数)23.设E ? n,如果E 中的每个点都是内点,则称E是开集24.有限个闭集的交是闭集25.设E ? n,则m*E 0 26.设E是? n中的区间,则m*E =E的体积27.设f x 是定义在可测集E上的实函数,如果 a ?1,E x f x a 是可测集,则称f x 在E上可测28.可测函数列的极限也是可测函数29.设f n x f x ,g n x g x a.e. ,则f n x g x30.设f n x 是E 上的非负可测函数列,且单调增收敛于f x ,由勒维定理,有f x dx lim fx dxnnE n E31.设A, B为集合,则B AI B UA=AU B32.设A为无理数集,则A=c (其中c 表示自然数集0,1 的基数)33.设E ? n,如果E 中没有不是内点的点,则称E是开集 34.任意个闭集的交是闭集n n * * * c35.设E ? n,称E是可测集,如果T ? n,m*T m* T I E m*T I E c36.设E是外测度为零的集合,且F E,则m*F=037.设f x 是定义在可测集E上的实函数,如果a ?1,E x a f x b 是可测,( a b)则称f x 在E 上可测38.可测函数列的上确界也是可测函数39.设f n x f x ,g n x g x a.e. ,则f n x g n x f x g x40.设f n x f x ,那么由黎斯定理,f n x 有子列f n k x ,使f n k x f x a.e. 于E41.设A, B为两个集合 ,则A B__ AI B c.(等于)42.设E R ,如果E 满足E E (其中E 表示E 的导集 ), 则E 是闭 .43.若开区间( , )为直线上开集G的一个构成区间 ,则( , )满(i) (a,b) G (ii) a G,b G44.设A为无限集 .则A的基数A__a(其中a表示自然数集N 的基数) 答案:45.设E1,E2为可测集 , mE2 ,则m( E1 E2) __ mE1 mE2. 答案:46.设f (x)是定义在可测集E上的实函数 ,若对任意实数a,都有E[x f(x) a]是可测集E上的可测函数 .47.设x0是E( R)的内点 ,则m*E__0. 答案48.设f n(x) 为可测集E 上的可测函数列 ,且f n(x) ____________ f(x),x E,则由黎斯 __定理可知得 ,存在f n(x) 的子列a.ef n k(x) ,使得f n k(x) f (x) (x E).49.设f (x)为可测集E( R n)上的可测函数 ,则f(x)在E上的L积分值不一定存在且| f(x)|在E上不一定L可积.50.若f ( x)是[ a, b]上的绝对连续函数 ,则f (x)是[a,b]上的有界变差函数51.设A, B为集合,则A U B ___(B A)U A 答案= 52.设E R n,如果E满足E0 E(其中E0表示E的内部),则E是开集53.设G为直线上的开集,若开区间(a,b)满足(a,b) G且a G,b G,则(a,b)必为G的构成区间54.设A {x|x 2n,n为自然数} ,则A的基数= a (其中a表示自然数集N的基数)55.设A, B为可测集,B A且mB ,则mA mB__m(A B) 答案 =56.设f (x) 是可测集E上的可测函数,则对任意实数a,b(a b),都有E[x a f(x) b]是可测集57.若E( R)是可数集,则mE__0 答案=a.e58.设f n(x) 为可测集E上的可测函数列,f(x) 为E上的可测函数,如果f n(x) f(x) (x E) ,则f n(x) f(x) x E不一定成立59.设f (x)为可测集E( R n)上的非负可测函数,则f(x)在E上的L积分值一定存在60.若f (x) 是[a,b]上的有界变差函数,则f (x)必可表示成两个递增函数的差(或递减函数的差) 多项选择题(每题至少有两个以上的正确答案)1.设E 0,1 中无理数,则( ACD )A E 是不可数集B E 是闭集C E 中没有内点D mE 12.设E ? n是无限集,则( AB )A E 可以和自身的某个真子集对等B E a(a 为自然数集的基数)CED m*E 03.设f x 是E 上的可测函数,则( ABD )A 函数f x 在E 上可测B f x 在E 的可测子集上可测C f x 是有界的D f x 是简单函数的极限4.设f x 是a,b 上的有界函数,且黎曼可积,则( ABC )A f x 在a,b 上可测B f x 在a,b 上L可积C f x 在 a,b 上几乎处处连续D f x 在 a, b 上几乎处处等于某个连续函数设 E ? n,如果 E 至少有一个内点,则( BD ) m E 可以等于 0 B m E 0 C E 可能是可数集 D E 不可能是可数集5.6. 设 E ? n是无限集,则( AB )E 含有可数子集 B E 不一定有聚点 C E 含有内点 D E 是无界的7. 设 f x 是 E 上的可测函数,则( BD )函数 f x 在 E 上可测f x 是非负简单函数列的极限 f x 是有界的8. 设 f x 是 a,b 上的连续函数,则( ABD )A f x在 a,b上可测B f x 在a,b b上 L 可积,且 R f x dx Lf x dxa ba ,b C f x 在 a,b 上 L 可积,但 R f x dx L f xaa ,bD f x 在 a,b 上有界9. 设 D x 是狄利克莱函数,即x 为 x0,1 中有理数 ,则( BCD )中无理数 10.设x 几乎处处等于 1x 是非负可测函数n*E ? n, m *E 0 ,Dx 则( ABD几乎处处等于 0 是 L 可积函数11. E 是可测集 B E 的任何子集是可测集 C E 是可数集 D E 不一定是可数集设E n, E x1 x Ec,则( AB ) E 0 x E c当 E 是可测集时, E x 是可测函数Ex 是可测函数时, E 是可测集f x 在 E 的可测子集上D 当E x 是不是可测函数时,E不一定是可测集12.设f x 是a,b 上的连续函数,则( BD )A f x 在a,b 上有界B f x 在a,b 上可测C f x 在a,b 上L可积D f x 在a,b 上不一定L 可积13.设f x 在可测集E上L可积,则( AC )A f x ,f x 都是E上的非负可积函数B f x 和f x 有一个在E上的非负可积C f x 在E 上L 可积D f x 在E 上不一定L 可积14.设E ? n是可测集,则( AD )A E c是可测集B mEC E 的子集是可测集D E的可数子集是可测集15.设f n x f x ,则( CD )A f n x 几乎处处收敛于f xB f n x 一致收敛于f xC fn x 有子列fnx ,使fnx f x a.e. 于ED f n x 可能几乎处处收敛于f x16.设f x 是a,b 上有界函数,且L 可积,则( BD )A f x 在a,b 上黎曼可积B f x 在a,b 上可测C f x 在a,b 上几乎处处连续D f x 在a,b 上不一定连续17. 设E {[0,1] 中的无理点} ,则(CD)(A )E是可数集(B)E是闭集(C)E中的每个点均是聚点(D)mE 0 18.若E(R)至少有一个内点,则( BD )A) m * E 可以等于0 (B)m *E 0 (C) E 可能是可数集 (D) E 不可能是可数集设 f (x) 是[a,b] 上的单调函数,则( ACD)f n (x) f ( x),( x E) ,则下列哪些结果不一定成立( ABCD(A) f (x)dx 存在(B) f(x)在 E 上L -可积 a.e(C)f n (x) f (x) (x E) (D) limf n (x)dx f(x)dxn E E24.若可测集 E 上的可测函数 f(x)在E 上有 L 积分值,则( AD ) A) f (x) L(E) 与 f (x) L (E)至少有一个成立 B) f (x)L(E) 且f(x) L(E)C) |f(x)|在 E 上也有L - 积分值D)| f(x)|L(E)、单项选择1. 下列集合关系成立的是(A )A B A I A B A B IACA B UB A D B A UA B2. 若E R n 是开集, 则( B)A E EB E 0E C E E D E E19. 设E [a,b] 是可测集,则E 的特征函数 E (x) 是( ABC ) A) [a,b] 上的符号函数 C) E 上的连续函数 B) [a,b] 上的可测函数 D)[a,b] 上的连续函数20. 21. A) C) 设E f (x) 是 [a,b] 上的有界变差函数 f (x) 在[a,b] 上几乎处处收敛 {[0,1] 中的有理点 } ,则( AC B) f(x) 是[a,b] 上的绝对连续函数 D) f(x) 在[a,b] 上几乎处处可导 A) E 是可数集mE 0B ) E 是闭集D )E 中的每一点均为 E 的22.若 E( R) 的外测度为 0,则( AB )A) E 是可测集 C) E 一定是可数B) mE 0 D) E 一定不是可数23 .设 mE, f n (x) 为 E 上几乎处处有限的可测函数列, f(x) 为 E 上几乎处处有限的可测函数,如果4.设f n x 是E 上一列非负可测函数,则(B)Elnimf nEndxlimnxdxElimf nEndxlimnxdxElnimf nEndxlimnxdxlimEf nn EdxElimf nEn5.列集合关系成立的是(IA cUA U A cIA cUA6.若E R n是闭集,则E07.A 9.设E 为无理数集,E 为闭集B 下列集合关系成立的是(C )E 是不可测集B )则(mEIA c A cUA A c U A c10.设Rn,则( A )A E EE D ED mE 0P为康托集,则( B B mP11.设A P 是可数集13.下列集合关系成立的是()A)P 是不可数集D P 是开集B则B c A c B则A c B cB则AI BB B则AUB14.设E R n,则A E E0 CE ED15.设E x,0x 则( B )A mE mE 2C E是R2中闭集2E是R2中完备集16.设f x ,g x 是E 上的可测函数,则( B )21.下列集合关系成立的是( A )A)E 0C) E23. 设 Q 的有理数集,则(四、判断题A Ex f x g x 不一定是可测集B Ex f x g x 是可测集C Ex f x g x是不可测集D Ex f x g x 不一定是可测集17 .下列集合关系成立的是( A )(A) (A B)UBAUB (B) (A B)U B A(C) (B A)U A A (D ) B A A18.若E R n是开集,则 ( B )(A) E 的导集 E (B) E 的开核 E(C) EE(D) E 的导集 E19. 设 P 的康托集,则 (C)(A) P为可数集(B) P 为开集(C) mP 0( D) mP 1设 20、 E 是 R 1中的可测集, (x)是 E 上的简单函数,则A) (x)是 E 上的连续函数 B) (x) 是E 上的单调函数 C) (x)在 E 上一定不 L 可积D) (x) 是 E 上的可测函数A) AI (BUC) (AI B)U (AI C) B) (A B)I A C)(B A)I A D) AUBAI B22. 若 E R n是闭集,则B) D)A ) mQ 0 B) Q 为闭集 C) mQ 0D) Q 为不可测集24.设 E 是 R n中的可测集, f(x)为 E 上的可测函数,若 f(x)dx0 ,则A)在 E 上, f ( x)不一定恒为零 B)在 E 上, f (x) C)在 E 上, f(x) 0D)在 E 上, f (x)1. 可数个闭集的并是闭集 .2. 可数个可测集的并是可测集 .3. 相等的集合是对等的 .4. 称 f x ,g x 在 E 上几乎处处相等是指使( × )( √ )( √ )g x 的x 全体是可测集 . ( √ )5. 可数个 F 集的交是 F 集 .6. 可数个可测函数的和使可测函数 .7. 对等的集合是相等的 .8. 称 f x ,g x 在 E 上几乎处处相等是指使( × ) (√) (× )x g x 的 x 全体是零测集 . ( × )9. 可数个 G 集的并是 G 集 . 10. 零测集上的函数是可测函数 .11. 对等的集合不一定相等 .12. 称 f x ,g x 在 E 上几乎处处相等是指使 f13. 可数个开集的交是开集14. 可测函数不一定是连续函数 . 15. 对等的集合有相同的基数 .16. 称 f x ,g x 在 E 上几乎处处相等是指使 f17. 可列个闭集的并集仍为闭集 18. 任何无限集均含有一个可列子集 19. 设 E 为可测集,则一定存在 G 集 G ,使 E√) ( √ ) ( √ )x gx的 x 全体是零测集 . (√)( × )xgx ( √ )( √ )0 ( × )的 x 全体的测度( × )( √ ) G 且 m G E 0.( √ )21. 设 f x 为可测集 E 上的非负可测函数,则22. 可列个开集的交集仍为开集 23. 任何无限集均是可列集24. 设 E 为可测集,则一定存在 F 集 F ,使 F25. 设 E 为 零 测 集 , 则 f x 为 E 上 的 可 测 函 数 的 充 要 条 件 是 : 实 数 a 都 有 E x f (x ) a √)26. 设 f x 为可测集 E 上的可测函数,则 f x dx 一定存在 . E 五、简答题1. 简述无限集中有基数最小的集合,但没有最大的集合 . 答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集 合 A , A 的幂集 2A的基数大于 A 的基x L E ( × )(× )( × )E ,且 m EF 0.( √ )x 不一 定是 E 上的可测函数(×) 20. 设 E 为零测集, x 为 E 上的实函数,则 是可测集 ×)数 .2.简述点集的边界点,聚点和内点的关系 .答 : 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点 .3.简单函数、可测函数与连续函数有什么关系?答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.a,b 上单调函数与有界变差函数有什么关系?答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差 .5.简述集合对等的基本性质 .答:A: A;若A: B,则B: A;若A: B,且B : C,则A: C.6.简述点集的内点、聚点、边界点和孤立点之间关系. 答:内点一定是聚点,内点不是孤立点,边界点由点集的孤立点和聚点组成 .7.可测集与开集、G 集有什么关系?答:设E是可测集,则0,开集G,使G E,使m G E ,或G 集G,使G E,且m G E 0.8.a,b 上单调函数、有界变差函数与绝对连续函数有什么关系?答:绝对连续函数是有界变差函数,反之不然;有界变差函数是单调增函数的差,而单调函数是有界变差函数 .9.简述证明集合对等的伯恩斯坦定理 .答:若A: B B ,又B: A A,则A: B10.简述R1中开集的结构 .答: 设G为R1中开集,则G可表示成R1中至多可数个互不相交的开区间的并 .11.可测集与闭集、F集有什么关系?答:设E是可测集,则0,闭集F E ,使m E F或F集F E ,使m E F 0.12.为什么说绝对连续函数几乎处处可微?答:因为绝对连续函数是有界变差,由若当分解定理,它可表示成两个单调增函数的差,而单调函数几乎处处有有限的导数,所以绝对连续函数几乎处处可微 .13.简述连续集的基数大于可数集的基数的理由 .答 :连续集是无限集,因而包含可数子集,又连续集是不可数集,所以连续集的基数大于可数集的基数 . 14.简述R n中开集的结构 .答:R n中开集可表示成可数个互不相交的半开半闭区间的并15.可测函数列几乎处处收敛、依测度收敛和近一致收敛的关系?答:设f n x , f x 是可测集E 上的一列可测函数,那当mE 时,f n x f x ,a.e 于E ,必有f n x f x .反之不成立,但不论mE 还是mE ,f n x 存在子列f n k x ,使f n x f x ,a.e于E .当mE 时,f n x f x ,a.e 于E ,由Egoroff 定理可得f n x 近一致收敛于f x ,反之,无需条件mE ,结论也成立 .16.为什么说有界变差函数几乎处处可微?答:由若当分解定理,有界变差函数可表示成两个单调增函数的差,而单调函数几乎处处可微,所以有界变差函数几乎处处可微 .17.简述无穷多个开集的交集是否必为开集?11 答:不一定,如 I 1 1, 1 11,1 n 1n n18. 可测集 E 上的可测函数与简单函数有什么关系? 答:简单函数必是可测函数但可测函数不一定是简单函数,可测函数一定可表示成简单函数列的极限形式 19. a,b 上的有界变差函数与单调函数有什么关系?答:单调函数必为有界变差函数但有界变差函数不一定为单调函数,有界变差函数可表示成单调函数之差 20. 简述无穷多个闭集的并集是否必为闭集?11 答:不一定 如 U 1 , 1 1,1 n 1n n21. 可测集 E 上的可测函数与连续函数有什么关系?答: E 上连续函数必为可测函数但 E 上的可测函数不一定时连续函数, E 上可测函数在 E 上是“基本上”22. a,b 上的绝对连续函数与有界变差函数有什么关系?答:绝对连续函数必为有界变差函数但有界变差函数不一定为绝对连续函数 六、计算题2xxE,其中 E 为0,1中有理数集,求 f1. 设 f x3xx dxx 0,1 E0,1解:因为 mE 0, 所以 f x x 3,a.e 于0,1 , 于是 f x dxx 3dx,0,1 0,1而 x 3在 0,1 上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系,1 x r 1,r 2,L r n0 x 0,1 r 1,r 2,L ,求lim f n x dx .n0,1因此limf n x dx 0.n0,1解:因为 mP 0 ,所以 f x x 2, a.e 于 0,131 3x 3dxRx 3dx0,1因此 f x dx 10,14.4x44|1解:显然 f n x 在 0,1 上可测,另外由 f n x 定义知, f n x 0,a.e 于 0,1 n1所以 f nx dx0,10dx 00,1连续的函数 2. 设 r n 为 0,1 中全体有f n x3. 设 f xsinxxPx 0,1 PP 为康托集,求x dx .于是 f x dxx 2dx0,1 0,12而 x 2在 0,1 上连续,所以解:因为 f n x 在 0,1 上连续,所以可测 n 1,2,L而 lim 2 2 0 ,所以 lim f n x 0. n 1 n 2 x 2n因此由有界控制收敛定理lim f n x dxli f n x dx0dx 0n0,10,1n0,13xx E5. 设 x, E 为 0, 中有理数集,求 fx dxcosx x 0, E22 0,2解:因为 mE 0 ,所以x cosx,a.e 于 0,10,2而 cosx 在 0, 上连续,所以黎曼可积,由牛顿莱布尼公式2 cosxdx0,1R 2cos xdxsin x|021因此f x dx 10,26. 设f n x nxcos nx 0,1, 求lim f n x dx n 0,11 2 2 ,x nx 解:因为 f n x 在 0,1 上连续,所以可测 n 1,2,Lx 2dx0,1 x 2dx|1因此 0,1 x dx4. 设 fnx nxsinnx 2 2 ,x 1 n x0,1 ,求lim f n x dx . n0,1 又f n xnxsin nx22nxnx nx 11 n 2x2 2nx 2,x 0,1 ,n 1,2,L于是 f x dx cos xdx 0,2又 fn nxcosnx 22nx nx 22 1 n x 因此由有界控制收敛定理而lim n 0,所以lim n 0,1 n x dx0,1limn 7. 设 fx3sin x解:因为mP 0,所以 fnx221 n x lim f n x nx dx0,1nx 1 2nx 2,x 0.0dx 00,1P 为康托集,x, a.e 于 0,1而 x 在 0,1 上连续,所以1 2x 21 1xdx Rx dx |0 0,10 2 02因此 f x dx 1.0,12l n x nx 8. 求e cos xdx .n 0,nnln x n解:令 f n x0,n xn显然 f nx 在 0, 上可测,且 ln x ne cos xdxf n 0,n n0, ln x n x 因为 f n xe cosxn于是f x dx xdx0,1 0,1xe cosxx dx 0,1 ,n 0,11,2,Lx dx .ln x n, x 0, ,n 1,2,L n ln x n不难验证 g n x ,当 n 足够大时,是单调递减非负函数,且 nlim g n x 0 ,所以 n limnln x ndx nlimng n x dxl n im g n x 0, n0dx 0由勒贝格控制收敛定理lim f n x dx 0 n0,ln x n x 故lim e cos xdx 0. nn0,n9. 设 Dx1 x 为 0,1 上的有理点 0 x 为 0,1 上的无理点 ,求 D x dx .0,1 证明 记 E1 是 0,1中有理数集, E2 是 0,1 中无理数集,则 0,1E 1 U E 2, E 1 I E 2 , mE 1 0,mE 2 1,且E2所以 D x dx 1mE 1 0mE 2 0,1 0.10 求 l n im0 ln x n xe cos xdx . n 证明 易知 limnln x n x e cosx 0n对任意 0,n1, ln x n en x cosxln x nf(y ) ln x y 0 ,则 f (y)ylnxy 2yxy y 3时,yxyln x y , f (y)0.f(n) l n xn是单调减函数且非负( n 3 );l n lim nli mn 再由 limn xn li m n0,由 Levi 单调收敛定理得xn ln x n 0dx n0 l n imln x n dx n 0 0dx 0 , ln x nL(E),Lebsgue 控制收敛定理得ln x n x e cosxdx 0n ln x lim nnnx e cos xdx0dx2x11. 设 f x 3x 3x 0,1xP ,其中 P 为康托集,求dx .解:因为 P 为康托集,故 mP 0,m 0,1 P 1七、证明题证明 设{r n } 为全体有理数所成之集,则g(x)] U E[x| f (x) r n ]I E[x|g(x) r n ] n1因为 f (x),g(x)是 E 上的可测函数,所以 E[x| f (x) r n ], E[x|g(x) r n ]是可测集, n 1,2,L ,于是由可测所以 f x x 320,1 PxP所以0,1x dx23x mP x m 0,1 P12. 求 f nnxE0,1 ,求 limnx dx .解:易知: 令 f n xnx lim2 2 n 1 n 2x2 nx2 2,gx0,11nnxnx 1 n 2x 22 2 3n xnx nx 2 2 2 gx1 n x2 1 nx n x 0nx 2n 2 所以 0 n x gx x 0,1,n 1又因为 g x 在 0,1 上 Lebesgue 可积, 所以由控制收敛定理,得 lim 1n n x2x 2dxE 1 n x0dxE1.证明集合等式: (A B)U B AUB 证明 c(A B)U B (AI B c)U Bc (AI B c)U(AI B)UBcAI (BUB c)U B AUB2.设 E 是 [0,1] 中的无理数集,则 E 是可测集,且 mE 1 证明 设 F 是 [0,1] 中的有 理数集 ,则 F 是可数 集, 从 而 m *F 0 ,因此 F 是 可测集,从而 F c可 测, E [0,1] F [0,1] I F c,故 E 是可测集 .由于 EI F ,所以1 m[0,1] m(E UF) mE mF 0mF ,故 mF 13.设 f (x),g(x)是 E 上的可测函数,则 E[x| f (x) g( x)]是可测集E[x| f(x) g(x)] U E[x| f (x) r n n1集性质知 E[x|f(x) g(x)] 是可测集因为 f (x)在E 上可测,所以 | f (x) |在E 上非负可测,由非负可测函数积分性质,E[x|f(x)| a]adx E[x|f(x)| a]| f(x)|dx E |f(x)|dxE[x|f(x)| a]adx a mE[x |f (x)| a],所以4.设 f (x)是E 上的可测函数,则对任何常数 a 0,有 mE[x |f (x)| a]1a 1E | f ( x)证明 5.设 li m mE[x | f(x)|f ( x) 是 E 上的L 可积函数, f ( x)dx证明 因为 limmE0,所以 对连续性,0, 0,当e 于是当 n N 时, m E n 6.证明集合等式: ( A B)证明 A (A B ) 7.设 证明 1a] a 1E | f(x)|dx{E n }是 E 的一列可测子集,且 lim mE n 0,则 0, N E, me 因此 |E A I (AI B c )cA I(AI A c)U (A I A 1,A 2 是[0,1] 的可测子集,且 mA 1 因为 A 1 [0,1], A 2 [0,1] ,所以 另一方面, 1 ,当 n N 时, mE n ,又 f ( x) 在 E 上 L 时| f (x)dx| f ( x)dx |,即 lim f ( x)dx 0n E n 可积,所以由积分的绝 (A c U(B c )c) B) A I BmA 2 1 ,则 AI (A cUB)m(A 1 I A 2) 0A 1UA 2 [0,1] ,于是 m( A 1 U A 2 ) m[0,1] 1 A 1U A 2 [A 1 (A 1I A 2)] U A 2 ,所以m(A 1 U A 2 ) m [A 1 (A 1I A 2)]UA 2m[A 1 (A 1I A 2)] mA 2 mA 1 m(A 1I A 2) mA 2于是m(A 1I A 2) mA 1 mA 2 m(A 1U A 2) 08.设 f (x)是定义在可测集 E R n上的实函数, E n 为 E 的可测子集n 1,2,L ),且 E U E n ,则 f (x) 在 E 上n1可测的充要条件是 f (x) 在每个 E n 上可测 证明 对任何实数a ,因为E[x| f(x) a] U E n [x| f(x) a] U (E n I E[x| f(x) a])所以 f (x)在E 上可测的充要条件是对每个 n 1,2,L , f ( x)在每个 E n 上可测9.设 f (x)是 E 上的可测函数,则对任何常数 a 0,有 mE[x| f (x) a] e a E ef(x)dxaf (x)f (x)e dx e dx e dx E[x|f(x) a] E[x|f (x) a] Eaa而E[x|f(x) a]e a dx e amE[x| f (x) a],m *F 0 ,于是由卡氏条件易知 F 是可测集f n (x)g n (x) f (x) g(x).证明 对任何正数 0 ,由于|( f n (x) g n (x)) ( f (x) g(x))| | f n (x) f (x)| |g n (x) g(x)|所以 E[x |(f n (x) g n (x)) (f (x) g(x))| ]E[x | f n (x) f (x)| 2]U E[x |g n (x) g(x)| 2]于是 mE[x |(f n (x) g n (x)) (f (x) g(x))| ]mE[x | f n (x) f (x)| ] mE[x |g n (x) g(x) | ] 0(n )22证 明 因 为 f (x) 在 E 上 可 测 , 所以 e f(x)是 非 负 可 测 函数,于是由非负可测函数积分性质,所以mE[x| f (x) a]e ae f (x )dxE10.设 f (x) 是 E 上的可积函数, { E n } 为 E 的一列可测子集, mE ,如果 lim mE n mEn则lim nE f( x)dxE f ( x)dx 证明 因 f ( x) 在 E 上 L 可积, 由积分的绝对连续性知,对任意 0 ,存在 0, 对任何 A E , 当 mA有| A f (x)dx | , 由 于lim mE n mE n,故对上述的0,存在 k 0 , 当 n k 0 时 E nE , 且有mE mE n m( E E n )| E f ( x)dx Ef (x)dx| | E E f (x)dx|lim f ( x)dxE f (x)dx 11.证明集合等式: (AU B) C (A C) U(B C)证明 (AUB) C (AU B)I C c (AI C c )U(BI C c)(A C)U (B C)12.设 E R n是零测集,则 E 的任何子集 F 是可测集,且mF 证明 设 F E , m *E 0,由外测度的单调性和非负性, mF mE 0 , 所以13. 设 f n (x),g n (x), f (x), g( x) 是 E 上 几 乎 处 处 有 限 的可 测 函 数 , 且 f n (x) f (x) ,g n (x) g(x) ,则故f n(x) g n(x) f (x) g(x)14.设f(x),g(x)是E上L 可积函数,则f2(x) g2(x)在E上也是L 可积的证明因f(x),g(x)是E上L 可积,所以|f(x)|,|g(x)|在E上L 可积,从而| f(x)| |g(x)| L 可积,又f2(x) g2(x) (| f(x)| |g(x)|)2 | f(x)| |g(x)|故f 2(x) g2 (x) 在E 上L 可积15.设f (x)是可测集E上的非负可测函数,如果 f (x)dx 0,则f(x) 0 a.e 于E证明反证,令A E[x| f(x) 0],则由f (x)的可测性知,A是可测集 .下证mA 0,若不然,则mA 01由于A E[x| f(x) 0] U E[x| f(x) ] ,所以存在N 1,使n1 n1 mE[x| f (x) ]N d 0于是Ef( x)dx1 f( x)dxE[x|f (x)1]E[x|f(x) N1] N1dx N1mE[x| f(x) N1] N d0因此f( x)dx E0 ,矛盾,故f(x) 0 a.e 于E16.证明等式:A (B UC) (A B)I (A C)证明c c c c cA (BUC) AI (BUC)c AI (B c IC c) (AI B c)I (AI C c) (A B)I (A C) 17.设E R n是有界集,则m*E.证明因为E是有界集,所以存在开区间I ,使E I 由外测度的单调性,m*E m*I ,而m*I |I |m *E118.R1上的实值连续函数f (x) 是可测函数证明因为f ( x)连续,所以对任何实数a,{x| f(x) a}是开集,而开集为可测集,因此f(x)是可测函数19.设mE ,函数f (x)在E上有界可测,则f(x)在E上L 可积,从而[a,b]上的连续函数是L 可积的证明因为f (x)在E上有界可测,所以存在M 0,使| f(x)| M ,x E,| f ( x) |是非负可测函数,由非负可测函数的积分单调性,| f(x)|dx Mdx M mE故|f (x)|在E上L 可积,从而f(x)在E上L 可积因为[a,b] 上的连续函数是有界可测函数,所以L 可积的20.设f n(x)(n 1,2,L )是E上的L 可积函数,如果lim | f n( x) |dx 0,则f n(x) 0 n E n证明对任何常数0,mE[x | f n(x)| ] E[x|f (x)| ]| f n(x)|dx1所以mE[x | f n(x)| ] 1E[x|f n(x)| ]| f n(x)|dx1E| f n(x)|dx 0(n )因此f n (x) 021. 证明集合等式:AUB C A C U B C .证明AUB C AUB I C c AI C c U BI C c A C U B C22. 设E0 0,1 中的有理点,则E0为可测集且mE0 0.证明因为E0 为可数集,记为E0 r1,r2,L r n,L ,0,取I n r n2n 1,r n 2n 1 n 1,2,L显然E0 UI n ,所以E0 UI n0 m E0 I nn1 n1n1 n12让,得m E0 0.TR n,由于T TI E0 U TI Ec所以mT m TI E0 m TI E0ccc c又TI E0c T,m E0 0,所以mT m TI E0c m TI E0 m TI E0c.故mT m T I E0 m TI E0c其中|I | 表示区间I 的体积),所以故E0 为可测集,且mE0 01123. 证明:R1上的实值连续函数f x 必为R1上的可测函数11证明a,b R1,不妨假设a b,因为f x 是R1上的连续函数,故f x 是a,b 上的连续函数,记Fa,b ,由f x 在F 上连续,则M,m m M ,使m f x M ,则显然易证,R1,F f 是闭集,即f x为a,b 上的可测函数,由a,b的任意性可知,f x 是R1上的可测函数 .24. 设f x L E ,E n为E的一列可测子集,mE ,如果lim mE n mE,则lim f x dx f x dx .nnE n E证明因f (x)在E上L可积,由积分的绝对连续性知,对任意0,存在0,对任何A E,当mA 时有|Af( x)dx| m(E由于lim mE nnmE ,故对上述的0 ,存在k0 ,当n k0 时E n E ,且有E n),于是|Ef (x)dx Ef(x)dx| |EEEnE Enf(x)dx|即n limEn f(x)dxEf (x)dx25. 证明集合等式:A BUC ABU A C. 证明A BUC AI BUC c AIB cI CcAI B c I AIC cABI AC26. 设E R1,且mE0 ,则E 为可测集 .证明T R n,由于T R n T T I E UT I E c所以mT mT IE m T I E c又T I E c T,m E0 ,所以mTm TI Ec m T I E m T I E c.故mT m T I E m TI E c 所以E 为可测集27. 证明:R1上的单调函数f x 必为可测函数11证明a,b R1,不妨假设a b,因为f x 是R1上的单调函数,不妨设f x 为单调增函数,故f x 是a,b 上则R 1, 有1) 当 sup fx 时, E x f (x) ; xE 2) 当 inf f x 时, E x f (x) E; 3) 当 inf f x sup f x 1 时,必有 x 0 E I R ,使xE xEf x0 0 ,fx 0 或 f x 0 0 , f x 0 0 由 f x 的单调增知, E x f(x) EI x 0, 或 EI x 0, 在所有情况下, E x f(x) 都可测 . 即 f x 是 a,b 上的可测函数 由由 a,b 的任意性可知, f x 是 R 1上的可测函数 .充分性28. 设 f x 为可测集 E R n 上的可测函数,则f L E 的充要条件 证明 必要性 若 f x LE , 因为 f x x ,且 f x L E 所以 f Ex dx, f E x dx 中至少有一个是有限值,dx x dx xdx因为 f x x ,且 f xLE 所以 f Edx, f E x dx 中至少有一个是有限值,故f x dxEx dx f x dx ,E。

实变函数第四章答案

实变函数第四章答案

实变函数第四章▉▉第4章 Lebesgue (习题及参考解答)E E A 1.设是)(x f 上的可积函数,如果对于上的任意可测子集,有()0Af x dx =∫,试证:=0,)(x f ].[.E e a }1)(|{}0)(|{1kx f x E x f x E k ≥=≠∞=∪k ∀∈ 证明 因为,,而}1)(|{kx f x E ≥}1)(|{}1)(|{k x f x E k x f x E −≤≥=∪,由已知,有111{||()|}{|()}{|()}()()()E x f x E x f x E x f x kkkf x dx f x dx f x dx ≥≥≤−=+∫∫∫000=+=.又因为11{|(){|()}1110(){|()}E x f x E x f x kkf x dx dx mE x f x k k k≥≥0=≥=≥∫∫≥ 并且11{|()}{|()1110(){|()E x f x E x f x kkf x dx dx mE x f x k k k ≥−≥−⎛⎞=≤−−≤⎜⎟⎝⎠∫∫}0−≤ 所以,0}1)(|{}1)(|{=−≤=≥kx f x mE k x f x mE .故,0}1)(|{}1)(|{}1|)(|{=−≤+≥=≥kx f x mE k x f x mE k x f x mE因此,11{|()0}[{|()|}k mE x f x m E x f x k∞=≠=≥∪111{|()|}00k k mE x f x k ∞∞==≤≥==∑∑0)(=x f .从而,,.].[.E e a2. 设,f g 都是E 上的非负可测函数,并且对任意常数,都有a })(|{})(|{a x g x mE a x f x mE ≥=≥)()(x g x f =,试证:,从而,()Ef x dx =∫()Eg x dx ∫.证明 我们证与f g 是同一个简单函数序列的极限函数. ∞=1){m m ψ对于及,令m ∀∈ 12,,1,0−=mm k }21)(2|{,m m k m k x f k x E E +≤≤= })(|{2,m x f x E E mm m ≥=并且再令,则是互不相交的可测集,并且. 定义简单函数k m E ,k m m k E E m ,21==∪∑==mk m m k E m m x kx 20)(2)(,χψ. E x ∈)()(lim x f x m m =∞→ψ.下面证明:,m ∀∈ m m m E x 2,0∈E x ∈∀0+∞=)(0x f , 若. 事实上,,则,有)()(0∞→∞→=m m x m ψ)()(lim 00x f x m n =∞→ψ. 即, .所以, +∞<)(0x f 若,则可取正整数,当)(00x f m >0m m ≥∀时, 有}21)(2|{})(0|{1210mm m k k x f k x E m x f x E x m +<≤=<≤∈−=∪ 故,存在使得)120(−≤≤mm k k }21)(2|{0mm k x f k x E x +<≤∈ mm k x f k 21)(20+<≤. 因此, 即,m m k E m m kx k x mk m 2)(2)(20,==∑=χψ. 故000|()()|()()m m 0f x x f x x ψψ−=− 011()02222m m m m k k k f x +−<−=→=)()(lim 00x f x m n =∞→ψ.从而,实变函数第四章▉▉同理,对m ∀∈ ,定义简单函数列∑==mkm m k E m m x kx 20)(2)(*,χψ,其中:}21)(2|{*,mm k m k x g k x E E +<≤=,. 12,,1,0−=mm k 并且.})(|{*,m x g x E E k m ≥=E x ∈)()(lim 0x g x m n =∞→ψ.,同上一样,我们可以证明:因,有a ∀∈ })(|{})(|{a x g x mE a x f x mE ≥=≥,则,a ∀∈ })(|{b x f a x mE <≤})(|{b x g a x mE <≤=.从而,,有)120(−≤≤∀m m k k,1{|()}22m k m mk k mE mE x f x +=≤< *,1{|()}22m k m m k k mE x g x mE +=≤<=并且.即,,mm m m m m mEm x g x mE m x f x mE mE 2,*2,})(|{})(|{=≥=≥=N m ∈∀=)(x m ψ)(x m ϕ.)()(lim )(lim )(x g x x x f m m m m ===∞→∞→ϕψ.因此,⎪⎩⎪⎨⎧=为有理数,当为无理数,当x x x x x f 31)(3. 若,计算.∫1,0[)(dx x f x x E |]1,0[{0∈=01]1,0[E E −=为有理数},解 设,则∫]1,0[)(dx x f +=∫∫1)()(]1,0[E dx x f dx x f∫∫∫+==0111E EE dx xdx xdx x10E E E ==+∫∫∫ 2]2[11101]1,0[====∫∫x dx xdx x .4. 设是中n 个可测集,若内每一点至少属于个集中的个集,证明:中至少有一个测度不小于n 1,,n E E ]1,0[]1,0[nq 1,,q n E E . 证明 令,其中:∑==ni E x x f i1)()(χi E χ为上的特征函数并且,有i E ]1,0[∈∀x q x x f ni E i≥=∑=1)()(χ所以,. 又因为q qdx dx x f =≥∫∫]1,0]1,0[)(1[0,1][0,1]()()inE i q f x dx x χ=≤=∑∫∫dx1n.1110,1()()i i nnnE E i i i i E i x dx x dx mE χχ=======∑∑∑∑∫∫nqmE i <,则 如果每个∑∑===⋅=>ni n i i q nq n n qmE 11nqmE i ≥这与矛盾. 从而,存在∑=≤ni i mE q 1(1)i i n ≤≤. 使得5. 设与都是f g E 上的可积函数,试证明:22g f +E 也是上可积函数.E 证明:(1)先证:设与都是)(x f )(xF 0()f x ≤上的可测函数并且E E ()F x ≤ ,若在].[.E e a )(x F 可积,则在)(x f 可积.N m l ∈∀,)()(0x F x f ≤≤ ,故].[.E e a ,因为事实上,l l x F x f )}({)}({0≤≤.因此,+∞<≤≤≤∫∫∫EE llE ldx x f dx x F dx x F dx x f mm)()}({)}({)}({,其中:m m S E E ∩=,}||||{∞<=x x S m . 从而,是∞=∫1})}({{l l E dx x F m实变函数第四章▉▉单调递增有上界的数列,故∫Edx x F )(∫∫∫≤=∞→EE ll E dx x F dx x f dx x f mm)()}({lim )(.又因单调递增有上界,所以存在,并且∫∞=mE m dx x f 1})({∫∞→mE l dx x f )(lim∫∫∫+∞<≤=∞→EE ll Edx x F dx x f dx x f m)()}({lim )(即. 所以,在+∞<≤∫dx x f E)(∫∞→∞→mE l l m dx x f )}({lim lim E )(x f 可积.E (2上可积.在E E 事实上,因为与在f g 上都可积. 所以, 与在||f ||g 上可积. 从而, +在E ||f ||g 上可积.||||f g ≤+E ,由(1)上可积.在6. 设+∞<mE ,是)(x f E 上的非负可测函数,,∞+<∫Edx x f )(})(|{k x f x E E k >=0lim =⋅∞→dx mE k k l .,试证明:k ∀∈ 证明 ,因为+∞<≤≤≤∫∫EE k dx x f dx x f kmE k)()(0所以)(0)(10∞→→≤≤∫k dx x f k mE Ek lim 0k k mE →∞=.故,又因为,由积分的绝对连续性(即,P85,定理4), 对于∫+∞<Edx x f )(δ<mA 0>∀ε0>∃δE A ⊂,,使得对于任何可测集,恒有,∫Adx x f |)(|∫<=Adx x f ε)(.0>δN k ∈0对于,根据,存在0lim =∞→k k mE ,0k k ≥∀时,δ<k mE ,有ε<≤⋅≤∫dx x f mE k kE k )(0.0lim =⋅∞→k k mE k .从而, +∞<mE E E 7. 设为可测集,并且,为)(x f 上的非负可测函数,,试证:在}1)(|{+<≤=∧k x f k x E E k E )(x f 上可积当且仅当级数收敛.∧∞=∑kk Ekm 1证明 设,k }1)(|{+<≤=∧k x f k x E E k ∈ )(⇒,因为在)(x f E 可积,故111()()kkk k k k EE E f x dx f x dx k dx k mE ∞∞∞====≥=∑∑∑∫∫∫⋅即,级数收敛.∑∞=∧⋅1k kEm k k ∀∈ )(⇐, 因为,则}1)(|{+<≤=k x f k x E E k k E k k E mE kmE mE k dx k dx x f kk+=+=+≤∫∫)1()1()(.又因并且,根据Lebesgue 基本定理,有∑∞==1)()()(k E x x f x f k χdx x x f dx x f m kE EE )()()(χ∫∫=1()()()kE k EE f x dx f x x dx χ∞==∑∫∫11()()kk k k k E f x dx kmE mE ∞∞===≤+∑∑∫+∞<+=+=∑∑∑∞=∞=∞=k k k k k k k mE kmE mE kmE 111.E 从而,在)(x f 上可积.8. 设是 上的可积函数,证明:.∫=−+→],[00|)()(|limb a k dx x f b x f f实变函数第四章▉▉R ′0>∀ε)(x ϕ证明 (1)先证:,使得,存在时直线上的连续函数∫<−+→],[0|)()(|limb a k dx x f b x f ε.对于,记:N ∀∈ ⎪⎩⎪⎨⎧−<−>≤=N x f N N x f N N x f x f x f n )(,)(,|)(|,)()]([],[b a E x =∈,其中则0,|()|()[()](),()(),()N f x N f x f x f x N f x N f x N f x N≤⎧⎪−=−>⎨⎪+<−⎩因此,[,]|()[()]|N a b f x f x d −∫x=+dx x f x f N f E n|)]([)(|)|(|∫≤−dx x f x f N f E n|)]([)(|)|(|∫>−(||)|()[()]|N E f N f x f x d >−∫x =dx N x f N f E |)(|)|(|∫>+≤dx x f N f E |)(|)|(|∫>≤.0>∀ε0>∃δ因为在上是Lebesgue 可积的,故对于)(x f ],[b a ,,使∀δ<mA E A ⊂,恒有:Adx x f Aε<∫|)(|又因是单调的集列并且,则)|(|)|(|1+∞==>∞=f E n f E n ∩∞=1|)}(|{n f E =>=>∞→∞→)]|(|lim [)|(|lim n f E m n f mE n n 0)|(|=+∞=f mE .4|)(|)|(|ε<∫>dx x f N f E 0>δN ∃∈ .所以,对于,使得现在对于,取04>=NεηN x f )]([,由连续扩张定理,存在闭集F [,]a b ⊂)(x ϕ以及 上的连续函数,使得F F N x x f |)(|)]([ϕ=(A ); NF E m 4)(ε<−(B );N x ≤|)(|ϕ(C ). 因此,[,][]||[]|N N a b E Ff dx f dx ϕϕ−−=−∫∫([]||)|2()242N E Ff dx N m E F N Nεεϕ−≤+≤⋅−<⋅∫=从而,[,][,]()()||()[()]||[]()|N N a b a b f x x dx f x f x dx f x dx ϕϕ−≤−+−∫∫εεεϕ=+⋅≤−+≤∫∫>242|)(][||)(|2],[)|(|dx x f dx x f b a N N f E (2)再证:.0|)()(lim],[0=−+∫→dx x f b x f b a h 0>∀ε)(x ϕ,由(1)知,存在上的连续函数 使得对于3|)()(]1,1[εϕ<−∫+−dx x x f b a .)(x ϕ因为在上一致连续,则]1,1[+−b a )1(0<>∃δδ使得,当],[b a x ∈∀)1(||<<δh 时,恒有)(3|)()(|a b x h x −<−+εϕϕ.又因为[,]|()()|a b f x h f x dx +−≤∫[,]|()()|a b f x h x h dx ϕ+−+∫++dx x h x b a |)()(|],[∫−+ϕϕdx x f x b a |)()(|],[∫−ϕ],[b a x ∈(||1)h h δ∀<<(1,1x h a b )+∈−+,故并且对于,,有3|)()(|]1,1[εϕ<−≤∫+−dx x x f b a dx h x h x f b a |)()(|],[∫+−+ϕ所以,实变函数第四章▉▉≤−+∫dx x f h x f b a |)()(|],[[1,1]|()()|a b f x x d ϕ−+−∫xεεεε=++<333dx x x f dx x h x b a b a |)()(||)()(|],[],[∫∫−+−+ϕϕϕ+.从而,.0|)()(|lim],[0=−+∫→dx x f h x f b a h9. 设是f E 上的非负可积函数,是任意常数,满足c ∫≤≤Edx x f c )(0试证:存在,使得.c dx x f E =∫1)(E E ⊂1证明:设常数,合于,当时,存在,使得. 不妨设.∫≤≤Edx x f c )(0∫=Edx x f c )(c ∫≤≤Edx x f c )(0c dx x f E =∫1)(E E =1我们先证:在∫−=Et t dx x f t F ∩],[)()(),0[0+∞∈∀t),0[+∞上连续,,事事实上,对于0t t >∀,因为000[,][,]0()()()()t t Et t EF t F t f x dx f x dx −−≤−=−∫∫∩∩00[,][,]()()t t Et t Ef x dx f x dx −−=+∫∫∩∩δ<mA 0>∃δE A ⊂∀由积分的绝对连续性(p.85,定理4),,有,,2)(|)(|ε<=∫∫AAdx x f dx x f .δ<−≤∀00:t t t δ<−≤−00)),([t t E t t m ∩,故故,对于,因为εεε=+=+=−≤∫∫−−22)()()()(0],[],[000Ety t Et t dx x f dx x f t F t F ∩∩.)()(lim 00t F t F t t =+→. 所以,),0[0+∞∈∀t 同理,对,用上述完全类似方法可得.故,在)()(lim 00t F t F t t =−→)(t F ),0[+∞上连续.又因为(根据p.89的定义4), 则,使得c dx x f dx x f EEt t t >=∫∫−+∞→)()(lim],[∩00>∃t c dx x f t F Et t >=∫−∩],[0)()(.)()0(0t F c F <<.故由于在闭区间上连续,由连续函数的介值定理,∃],0[0t 1t ∈)(t F E E t t E ⊂−=∩],[1110(0,)t ,有,使得c t F dx x f dx x f Et t E ===∫∫−)()()(1],[01∩.E 10. 设是g 上的可测函数,是大于1的数,是的共轭数,即p q p 111=+qp . 如果对任意,都有)(E L f P ∈1()fg L E ∈,试证:. )(E L g q∈11. 试证:1)1(1lim),0(1=+∫+∞∞→dt tkt kk k (i ).dx x e dx x n x x n k ∫∫+∞−+∞−∞→=−),0(),0(11(lim αα(ii) .2≥∀k 证明:(i )时,(寻找控制函数) )10(≤<t t 时,因为当tttttktt f kkk k 4111)1(1)(2111≤=≤≤+=;而当时,1>t 112111()(1)1((1)()2!k k k kk f t t k k t t k t t k k k=≤=−+⋅+++实变函数第四章▉▉224)211(2t t =−≤令⎪⎪⎩⎪⎪⎨⎧+∞≤<≤<=t t t tt F 1,410,4)(2从而,),0(+∞∈∀t ,并且在)()(t F t f k ≤)(t F ),0(+∞是R-可积的,故在)(t F ),0(+∞是L-可积的. 又因为tt kk tt kk kk k k k e etkt t ktt f −∞→∞→∞→∞→==⋅+=+=11lim])1[(1lim)1(1lim)(lim 11则由Lebesgue 控制收敛定理,∫∫∫∞∞→∞∞→∞∞→==+),0(),0(),0(1)(lim )(lim)1(1limdt t fdt t fdt tkt kk kk kk k10==∫+∞−dt e t ∫∞−=),0(dt et.(ii), 定义n ∀∈ 1(1),(0,]()0,(n n x ,)xx n f x nx n α−⎧−∈⎪=⎨⎪∈+∞⎩, 并且,1)(−−=αx ex F x),0(+∞∈x ),0(+∞∈∀x , 则对于,有)(1(lim )(lim 11x F x e x nxx f x n n n n ==−=−−−∞→∞→αα. N n ∈∀,.)()(1x f x f n n +≤下面证明:ttx t G )1()(−=),0(+∞∈∀x ),1[+∞∈t ,取 事实上,,令,1ln()(ln txt t G −=,则▉▉第四章习题参考解答x t xt x t x t x t txt G t G −+−=−+−=′)1ln(11)1ln()()(2. x t xt x t h −+−=′)1ln()(,又因 又记222)()()(11)(x t xx t t x x t x t x tx t h −−−=−−−=′0)()()(222<−−=−−−=x t t x x t t tx x t x .xt xt x t G t G t h −+−=′=)1ln()()()(所以,关于单调递减并且故,t 0)(lim =∞→t h t ),1[+∞∈∀t ,有. 因此,0)(>t h 0)()()(>⋅=′t h t G t G .即, 在)(t G ),1[+∞n ∀∈ 单调增加. 从而,,)1(11()1()(1+=+−<−=+n G n x n x n G n n .所以,)()11()1()(1111x f x n x x n x x f n n n n +−+−=+−<−=αα.因此, ,n ∀∈ 1)()(|)(|−−=≤=αx e x F x f x f x n n ),0(+∞∈x,因为在1)(−−=αx e x F x ),0(+∞上可积,由Lebesgue 控制收敛定理,有∫∫∫+∞−−+∞∞→−∞→===−),0(1),0(),0(1)(lim )1(limdx x e dx x f dx x n x x n n n n n αα.+∞<mE 12. 设,试证明:在E 上当且仅当0⇒k f 0||1||lim =+∫∞→dx f f Ek k k . k ∀∈ 0>∀σ)(⇒,因为证明 ,实变函数第四章▉▉)1|(|]||1||[σσσ−≥=≥+k k k f E f f E 并且(在0⇒k f E 上),则我们有01|(|lim )||1||{lim =−≥=≥+∞→∞→σσσk k k k k f mE f f mE .0||1||⇒+k k f f E .故在上,1||1||≤+k k f f k ∀∈ +∞<mE ,由Lebesgue又因为对于,并且有界收敛定理,有00||1||lim ==+∫∫∞→E E k k k dx dx f f .0>∀σ)(⇐,因为对于(||)0(||)11kk E f EmE f dx σσσσσσ≥≤≥=++∫ ∫≥+Ef E k k k dx f f )|(|||1||σ≤)(0∞→→k . 则有0)|(|lim 10≤≥−≤∞→δσσk k f mE . 从而,0)|(|lim =≥∞→δk k f mE . 即.0⇒k f。

实变函数试题库(4)及参考答案

实变函数试题库(4)及参考答案

实变函数试题库及参考答案(4) 本科一、填空题1.设,A B 为两个集合,则__c A B A B - .2.设n E R ⊂,如果E 满足E E '⊆(其中E '表示E 的导集),则E 是3.若开区间(,)αβ为直线上开集G 的一个构成区间,则(,)αβ满(i))(b a ,G (ii),a G b G ∉∉4.设A 为无限集.则A 的基数__A a (其中a 表示自然数集N 的基数)5.设12,E E 为可测集,2mE <+∞,则1212(\)__m E E mE mE -.6.设{}()n f x 为可测集E 上的可测函数列,且()(),n f x f x x E ⇒∈,则由______定理可知得,存在{}()n f x 的子列{}()k n f x ,使得.()()()k a e n f x f x x E →∈. 7.设()f x 为可测集E (n R ⊆)上的可测函数,则()f x 在E 上的L 积分值存在且|()|f x 在E上L 可积.(填“一定”“不一定”)8.若()f x 是[,]a b 上的绝对连续函数,则()f x 是[,]a b 上的有二、选择题1.设(){},001E x x =≤≤,则( )A 1mE =B 0mE =C E 是2R 中闭集DE 是2R 中完备集2.设()f x ,()g x 是E 上的可测函数,则( )A 、()()E x f x g x ⎡⎤≥⎣⎦不一定是可测集B 、()()E x f x g x ⎡⎤≠⎣⎦是可测集C 、()()E x f x g x ⎡⎤≤⎣⎦是不可测集D 、()()E x f x g x ⎡⎤=⎣⎦不一定是可测集3.下列集合关系成立的是()A 、(\)AB B A B = B 、(\)A B B A =C 、(\)B A A A ⊆D 、\B A A ⊆4. 若()n E R ⊆是开集,则 ( ) A 、E 的导集E ⊆ B 、E 的开核E =C 、E E =D 、E 的导集E =三、多项选择题(每题至少有两个以上的正确答案)1.设()f x 是[],a b 上有界函数,且L 可积,则( )A ()f x 在[],a b 上黎曼可积B ()f x 在[],a b 上可测C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上不一定连续2. 设{[0,1]}E =中的无理点,则()A 、E 是可数集B 、E 是闭集C 、E 中的每个点均是聚点D 、0mE >3. 若E (R ⊆)至少有一个内点,则()A 、*m E 可以等于0B 、*0m E = C 、E 可能是可数集 D 、E 不可能是可数集4.设[,]E a b ⊆是可测集,则E 的特征函数()E x χ是()A 、[,]a b 上的符号函数 C 、E 上的连续函数B 、[,]a b 上的可测函数 D 、[,]a b 上的连续函数四、判断题1. 零测集上的函数是可测函数. ( )2. 可列个闭集的并集仍为闭集 ( )3. 任何无限集均含有一个可列子集 ( )4. 设E 为可测集,则一定存在G σ集G ,使E G ⊆,且()\0m G E =. ( )五、定义题1. 为什么说有界变差函数几乎处处可微?2. 简述无穷多个开集的交集是否必为开集?3. 可测集E 上的可测函数与简单函数有什么关系?4. [],a b 上的有界变差函数与单调函数有什么关系?六、计算题7. 设()[]3sin 0,1\x x P f x xx P ⎧∈⎪=⎨∈⎪⎩,P 为康托集,求()[]0,1f x dx ⎰.8. 求()()0,ln lim cos x n n x n e xdx n -→∞+⎰.七、证明题1.设(),(),(),()n n f x g x f x g x 是E 上几乎处处有限的可测函数,且()()n f x f x ⇒,()()n g x g x ⇒,则()()()()n n f x g x f x g x +⇒+2.设(),()f x g x 是E 上L -E 上也是L -可积的3.设()f x 是可测集E 上的非负可测函数,如果()0E f x dx =⎰,则()0.f x a e =于E4.证明等式:\()(\)(\)A B C A B A C =实变函数试题库及参考答案(4) 本科一、填空题1.等于2.闭集.3.(a,b)G ⊆4.≥5.≥6.黎斯7.不一定不一定8.界变差函数.二、单选题1.B2.B3.A4.B三、多选题1.BD2.CD3.BD4.ABC四、判断题√×√√五、定义题1.答:由若当分解定理,有界变差函数可表示成两个单调增函数的差,而单调函数几乎处处可微,所以有界变差函数几乎处处可微.2.答:不一定,如[]1111,11,1n n n +∞=⎛⎫---+=- ⎪⎝⎭3.答:简单函数必是可测函数但可测函数不一定是简单函数,可测函数一定可表示成简单函数列的极限形式.4.答:单调函数必为有界变差函数但有界变差函数不一定为单调函数,有界变差函数可表示成单调函数之差.六、解答题1.解:因为0mP =,所以(),.f x x a e =于[]0,1于是()[][]0,10,1f x dx xdx =⎰⎰而x 在[]0,1上连续,所以 []()2121000,11|22x xdx R x dx ===⎰⎰因此()[]0,112f x dx =⎰. 2.解:令()()()()0,ln cos x n n x n f x x e x nχ-+= 显然()n f x 在()0,+∞上可测,且()()()()0,0,ln cos x n n x n e xdx f x dx n -+∞+=⎰⎰ 因为()()()()ln ln cos ,0,,1,2,x n x n x n f x e x x n n n-++≤≤∀∈+∞= 不难验证()()ln n x n g x n+=,当n 足够大时,是单调递减非负函数,且 ()lim 0n n g x →∞=,所以()()()()()()0,0,0,ln lim lim lim n n n n n x n dx g x dx g x n →∞→∞→∞+∞+∞+∞+==⎰⎰⎰()0,00dx +∞==⎰ 由勒贝格控制收敛定理()()0,lim 0n n f x dx →∞+∞=⎰故()()0,ln limcos 0x n n x n e xdx n -→∞+=⎰.七、证明题1.证明 对任何正数0σ>,由于|(()())(()())||()()||()()|n n n n f x g x f x g x f x f x g x g x +-+≤-+-所以[|(()())(()())|]n n E x f x g x f x g x σ+-+≥[|()()|][|()()|]22n n E x f x f x E x g x g x σσ⊂-≥-≥于是[|(()())(()())|]n n mE x f x g x f x g x σ+-+≥[|()()|][|()()|]22n n mE x f x f x mE x g x g x σσ≤-≥+-≥0()n →→∞故()()()()n n f x g x f x g x +⇒+2.证明 因(),()f x g x 是E 上L -可积,所以|()|,|()|f x g x 在E 上L -可积,从而 |()||()|f x g x +L -可积,|()||()|f x g x =+E 上L -可积3.证明 反证,令[|()0]A E x f x =>,则由()f x 的可测性知,A 是可测集.下证0mA =,若不然,则0mA > 由于11[|()0][|()]n A E x f x E x f x n ∞==>=≥ ,所以存在1N ≥,使 1[|()]0mE x f x d N ≥=> 于是11[|()][|()]111()()[|()]0E E x f x E x f x N Nd f x dx f x dx dx mE x f x N N N N ≥≥≥≥=≥=>⎰⎰⎰因此()0E f x dx >⎰,矛盾,故()0.f x a e =于E4.证明 \()()()()()(\)(\)c c c c c A B C A B C A B C A B A C A B A C ====。

实变函数答案

实变函数答案

习题1.11.证明下列集合等式.(1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=. 证明 (1) )()C \B (cC B A A =)()( c c C B A A B A = c C A B A )()( =)(\)(C A B A = .(2) cC B A A )(C \B)(=)()(c c C B C A ==)\()\(C A C A .(3) )(\C)\(B \cC B A A = c c C B A )( =)(C B A c = )()(C A B A c =)()\(C A B A =.2.证明下列命题.(1) ()A B B A = \的充分必要条件是:A B ⊂; (2) ()A B B A =\ 的充分必要条件是:=B A Ø; (3) ()()B B A B B A \\ =的充分必要条件是:=B Ø.证明 (1) A B A B B B A B B A B B A cc==== )()()()\(的充要条 是:.A B ⊂(2) ccccB A B B B A B B A B B A ===)()()(\)(必要性. 设A B B A =\)( 成立,则A B A c= , 于是有cB A ⊂, 可得.∅=B A反之若,∅≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与cB A ⊂矛盾.充分性. 假设∅=B A 成立, 则cB A ⊂, 于是有A B A c= , 即.\)(A B B A =(3) 必要性. 假设B B A B B A \)()\( =, 即.\cC A B A B A == 若,∅≠B 取,B x ∈ 则,cB x ∉ 于是,cB A x ∉ 但,B A x ∈ 与cC A B A =矛盾.充分性. 假设∅=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6.定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且∞=∞→=1;lim n n n n A A(2) 如果{}n A 是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且 ∞=∞→=1.lim n n n n A A证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意 ∞=∈1,n n A x 存在N 使得,NAx ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂ 又因为 ∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A由此可见{}n A 收敛且 ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,l i mn n A x ∞→∈存)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1∞=∞→⊂n n n n A A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂ 所以可知{}n A 收敛且 ∞=∞→=1.lim n n n n A A4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1 ;(2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111 .证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得nc x f 1)(+≥成立. 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11 ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E 另一方面, 若,11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于是c n c x f >+≥01)(, 故[]c f E x >∈. 则有[].11 ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E(2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有nc x f 1)(+<, 于是 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11 ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E另一方面, 设 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<, 由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[] ∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E . (3) 设[]c f E x ≥∈, 则c x f ≥)(. 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k kc k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以 ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x , 故[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ;另一方面, 设 ∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k nn k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0.由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有kc x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Z k , 存在2N 使得当2N n ≥时, 有kx f x f n 1|)()(|00<-. 取},max {21N N N =,则有k c x f n 1)(0->与k x f x f n 1|)()(|00<-同时成立, 于是有k c x f k x f n 1)(1)(00->>+,从而k c x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ;综上所述:[].11lim 111 ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E5.证明集列极限的下列性质.(1) cn n cn n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____;(2) c n ncn n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ;(4) ()n n n n A E A E ∞→∞→=lim \\lim .证明 (1) cn n n nm c m n c n m m c n n m m cn n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____ .(2) c n n n n nm c m c n m m c n n m m c n n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛ . (3) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm n n m cm cm n nm m n n A E A E A E A Ec n nm m n c nm m n nm cmA E A E AE )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n n m n n mA E AE .(4) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm cm n nm n nm cm m n n A E A E A E A Ecn nm m n c nm m n n m cm A E A E A E )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n nm n n mA E AE .6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A 都收敛且 (1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ; (3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim .习题1.21.建立区间)1,0(与]1,0[之间的一一对应. 解 令1111{,,,,}2345E = , 111{0,1,,,}234F = ,(0,1)\D E =,则(0,1)E D = ,[0,1]F D = .定义:(0,1)[0,1]φ→为: ;11();(1,2,)210;2x x D x x n n n x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩则φ为(0,1)[0,1]→之间的一个一一对应.2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 定义: :[,][,]a b c d φ→为:()().([,])d c d c bc adx x a c x x a b b a b a b aφ---=-+=+∀∈--- 可以验证: :[,][,]a b c d φ→为一个一一对应.3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 令{,,,}234b a b a b a E a a a ---=+++ ,{,,,,}23d c d c F c d c c --=++ (,)\D a b E =. 定义:(,)[,]a b c d φ→为:;();(1,2.)2;.2d cbc ad x x D b a b a d c b ax c x a n n n b a c x a φ--⎧+∈⎪--⎪--⎪=+=+=⎨+⎪-⎪=+⎪⎩可以验证: :(,)[,]a b c d φ→为一个一一对应.4.试问:是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[ ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值.也不存在连续函数把区间[0,1]一一映射为[1,2][3,4] ; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4] 不能保证介值性定理永远成立.5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R .证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯.任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y b b b == 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b = , 则得到单射:f A A A ⨯→. 因此由定理 1.2.2知A A A ⨯≤.若令10.5A A =⨯, 则1~A A A A ⊂⨯. 从而由定理1.2.2知: A A A ≤⨯. 最后, 根据Bernstein 定理知: (0,1)~(0,1)(0,1)⨯.对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯. 又因为: (0,1)~R , 则由对等的传递性知: 2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ.6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数. 证明 令221{(,):(1,2,3,)}E x y x y n n =+== , \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+ .则,A E D B F D == . 定义: :A B φ→为:2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩可以验证: :A B φ→为一一对应, 即~A B . 又因为2~(0,1)(0,1)~~B R R ⨯, 所以A B ==ℵ.7.证明:直线上任意两个区间都是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern定理知I =ℵ, 同理J =ℵ. 故I J ==ℵ. 习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集M 是可数集.证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x 所以M 为可数集.2.证明:由平面上某些两两不交的闭圆盘之集M 最多是可数集.证明 对于任意的M O ∈, 使得Q ∈)(O f . 因此可得:Q →M f :. 因为1O 与2O 不相交,所以)()(21O f O f ≠. 故f 为单射,从而a M =≤Q .3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q )1,0(:→E f . 因为∞=⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q所以∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q .其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=- 且Q . 又因为Q Q ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E =无限不可数. 如此下去,可得),3,2,1( =n E n 都可数且不相交,从而1011)()\(E E E E E E i i n i ==∞=∞=.其中)0(≥i E i 无限且不交.4.证明:可数个不交的非空有限集之并是可数集.5.证明:有限或可数个互不相交的有限集之并最多是可数集.证明 有限个互不相交的有限集之并是有限集;而可数个互不相交的有限集之并最多是可数集.6.证明:单调函数的不连续点之集至多是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_000>==--+→→+x f x f x f x f x x x x .于是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f .下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-. 事实上,任取一点1x ,使1x x x '''<<,于是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=,从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多是可数集.证明 定义映射}:)3,{(:E x dx E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘. 显然当y x ≠时,有∅=)3,()3,(dy D d x D ,即)()(y f x f ≠,于是f 为双射,由第2题知:a E x dx ≤∈}:)3,{(,故a E ≤.习题1.41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数是什么? 答 直线上一切闭区间之集的基数是c . 这是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R .区间],[b a 中的全体有理数之集的基数是c ,这是因为:a a =≤≤. 2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明: (1) 设},,,,{],[21 n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()( ==k r g r f k k ;(2) 公式)),(,),(),(()(21 n r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[. 证明 (1) 必要性. 显然.充分性. 假设),2,1)(()( ==k r g r f k k 成立. 因为},,,{\],[321 r r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得)()lim ()(lim x f x f x f n n n ==∞→∞→及)()lim ()(lim x g x g x g n n n ==∞→∞→.又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =.(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即)),(,),(),(()),(,),(),((2121 n n r g r g r g r f r f r f =.由(1)知:g f =. 故π为单射.(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R . 故c b a C =],[.3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明: (1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数是c2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈.从而]),[)(()(b a x x g x f ∈∀=,故π为单射.(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射.(3) 由(1)知:c P b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c≤=,故c b a F 2],[=.4.证明:c n=C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1..4.5知:c n=C . 5.证明:若E 为任一平面点集且至少有一内点,则c E =.证明 显然c E =⨯≤R R . 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =.第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\ ==; (2) ()()()G F G E G F E \\\ =.证明 (1) 因为\()()()()()\c c c c c E E F E E F E E F E E E F E F ==== ,()\()()()\c c c E F F E F F E F F F E F === .所以\\()()\E F E E F E F F == .(2) 因为()\()()()(\)(\),c c c c E F G E F G E F G E G F G E G F G ====所以()()()G F G E G F E \\\ =..2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞== ;(2) ()B A B A n n n n \\11∞=∞== .证明 (1)1111\()()(\)ccnn n n n n n n AB A B A B A B ∞∞∞∞======= .(2)1111\()()(\)c c nn n n n n n n AB A B A B A B ∞∞∞∞======= .3.证明:22[][][]c c E f g c E f E g +≥⊂≥≥ ,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥ , 则有()2c f x <且()2cg x <, 于是()()()()f x g x f g x c +=+<,故()x E f g c ∉+≥. 所以()()()22c cE f g c E f E g +≥⊂≥≥ .4.证明:nR 中的一切有理点之集n Q 与全体自然数之集对等.证明 因为0Q =ℵ,所以0Q Q Q Q n=⨯⨯⨯=ℵ (推论1.3.1). 又因为0N =ℵ, 所以0Q n N ==ℵ, 故Q ~n N .5.有理数的一切可能的序列所成之集)(Q S 具有什么基数? 6.证明:一切有理系数的多项式之集][x Q 是可数集. 证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][Q ][Q 0∞==n n x x显然,Q ~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1.3.5知:.][Q a x =7.证明:一切实系数的多项式之集][x R 的基数为c .证明 记},R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][R ][R 0∞==n n x x显然,R~][R 1n +x n 所以,R 1n c n ==+ 因此由定理1.4.3知:.][R c x =8.证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是c .证明 由于有理系数多项式的全体是可数集,设其元素为,,,,,,210 n P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体 ∞==n nAA 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R cB A B ===9.证明:A B B A \~\,则B A ~. 证明 因为),()\(),()\(B A A B B B A B A A ==又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A所以由保并性知),()\(~)()\(B A A B B A B A即.~B A10.证明:若,,D B B A <≤则D A <.证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾. 故有D A <. 11.证明:若c B A = ,则c A =或c B =.证明 假设,a B A == 则有,a B A = 这与c B A = 矛盾,故有c A =或c B =.12.证明:若c A k k =+∈Z ,则存在+∈Z k 使得c A k =.证明同上.习题2.11.若E 是区间]1,0[]1,0[⨯中的全体有理点之集,求bE E E E ,,,'.解 E =∅;[0,1][0,1]bE E E '===⨯。

实变函数试题库参考答案

实变函数试题库参考答案

《实变函数》试题库及参考答案(完整版)选择题1,下列对象不能构成集合的是:( )A 、全体自然数B 、0,1 之间的实数全体C 、[0, 1]上的实函数全体D 、全体大个子2、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{全体小个子}D 、{x :x>1}3、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{x :x>1}D 、{全体胖子}4、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{x :x>1}D 、{全体瘦子}5、下列对象不能构成集合的是:( )A 、{全体小孩子}B 、{全体整数}C 、{x :x>1}D 、{全体实数}6、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体大人}C 、{x :x>1}D 、{全体整数}7、设}1:{ααα≤<-=x x A , I 为全体实数, 则ααA I∈⋃= ( ) A 、(-1, 1) B 、(-1, 0) C 、(-∞, +∞) D 、(1,+∞)8、设}1111:{ix i x A i -≤≤+-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、(-1, 1) B 、(-1, 0) C 、[0, 1]D 、[-1, 1]9、设}110:{ix x A i +≤≤=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(0, 1) B 、[0, 1] C 、[0, 1] D 、(0, +∞)10、设}1211:{ix i x A i +<<-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、[1, 2] B 、(1, 2) C 、 (0, 3) D 、(1, 2)11、设}23:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}12、设}11:{ix i x A i <<-=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}13、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈,则=∞→n n A lim ( )A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0, 1]14、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈, 则=∞→n n A lim ( ) A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0,1]15、设),0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、[0, n]C 、RD 、(0, ∞)16、设)1,0(nA n =, N n ∈, 则=∞→n n A lim ( ) A 、(0, 1)B 、(0, n1) C 、{0} D 、Φ 17、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 18、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( ) A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 19、设A 、B 、C 是三个集合, 则A-(A-B)= ( )A 、B B 、AC 、A ⋂BD 、A ⋃B20、设A 、B 、C 是三个集合, 则A-(B ⋃C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C21、设A 、B 、C 是三个集合, 则A-(B ⋂C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C22、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s -= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B A C s ⋂23、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s ⋃= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B C A s ⋃24、设A 、B 、C 是三个集合, 则A-(B-C) = ( )A 、 A ⋃C-B B 、 A-B-C C 、 (A-B)⋃(A ⋂C)D 、 C-(B-A)25、集合E 的全体内点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包26、集合E 的全体聚点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包27、集合E 的全体边界点和内点所成的集合是E 的 ( )A 、开核B 、边界C 、导集D 、闭包28、E-E '所成的集合是 ( )A 、开核B 、边界C 、外点D 、{E 的全体孤立点}29、E 的全体边界点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包30、设点P 是集合E 的边界点, 则 ( )A 、P 是E 的聚点B 、P 是E 的孤立点C 、P 是E 的内点D 、P 是CE 的边界点31、设)3,2()1,0(⋃=G , 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(21, 1) C 、[0, 1] D 、(0, 2) 32、设)1,0(1=G , )2,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(-1, 21) D 、(-1, 2) 33、设)4,0(1=G , )4,3()1,0(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(3, 4)C 、(0, 4)D 、 (1, 4)34、设)1,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 3)C 、(0, 4)D 、(1, 4)35、设)2,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(1, 2)D 、(1, 4)36、设)2,1()1,0(1⋃=G , )23,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(21, 23) B 、(1, 2) C 、(0, 1) D 、(-1, 0) 37、若B A ⊂ ,则下列命题错误的是: ( )A 、B A ⊂ B 、A '⊂B 'C 、B A ∂⊂∂D 、B A ⊂38、若C B A =⋃, 则下列命题正确的是:( )A 、 CB A =⋃ B 、 A '⋃B '=C ' C 、C B A ∂=∂⋃∂D 、{A 的孤立点}⋃{B 的孤立点}={C 的孤立点}39、若C B A =⋂, 则下列命题错误的是:( )A 、 CB A =⋂ B 、C '⊂ A '⋂B ' C 、C B A =⋂D 、{A 的孤立点}⋂{B 的孤立点}={C 的孤立点}40、设CA 是A 的余集,则下列命题正确的是:( )A 、 )()(CA A C =B 、)(CA A ∂=∂C 、C(A ')=(CA )'D 、CA A C =)(41、设A -B=C, 则下列命题正确的是:( )A 、CB A ∂=∂-∂ B 、C B A =- C 、A '-B '=C 'D 、{A 的孤立点}-{B 的孤立点}={C 的孤立点}42、 (2-4-1-2) 下列命题错误的是:( )A 、A 是闭集B 、A '是闭集C 、A ∂是闭集D 、 A 是闭集43、若A 是闭集,B 是开集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 44、若A 是开集,B 是闭集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 45、若}{n A 是一开集列,则n n A ∞=⋃1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 46、若}{n A 是一开集列,则n n A ∞=⋂1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 47、若}{n A 是一闭集列,则n n A ∞=⋃1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 48、若}{n A 是一闭集列,则n n A ∞=⋂1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 49、若]1,0[ QE =,则=mE ( )A 、0B 、1C 、2D 、350、下述结论( )正确.A 、E m E m **>B 、E m E m *≥*C 、E m E m **<D 、E m E m **≤51、下列说法正确的是( )A 、x x f 1)(=在(0,1)有限B 、x x f 1)(=在)1,21(无界 C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(x x x x f ,在[0,1]有限 D 、⎪⎩⎪⎨⎧=∈=0,1]1,0(,1)(x x x x f ,在[0,1]有界 52、函数列n n x x f =)(在[0,1]上( )于0.A 、a ,e 一致收敛B 、收敛C 、一致收敛D 、基本上一致收敛53、设E 是[0,1]中的不可测集,⎩⎨⎧-∈-∈=Ex E x x f ]1,0[,1,1)( 则下列函数在[0,1]上可测的是( ).A 、)(x fB 、)(x f +C 、|)(|x fD 、)(x f -54、若)(x f 可测,则它必是( ).A 、连续函数B 、单调函数C 、简单函数D 、简单函数列的极限55、若Q E -=]1,0[,则=mE ( )A 、0B 、1C 、2D 、356、下列说法不正确的是( )A 、E 的测度有限,则E 必有界B 、E 的测度无限,则E 必无界C 、有界点集的测度有限D 、n R 的测度无限57、(4-4-2-1)下述论断正确的是( )A 、x x f tg )(=在)4,0(π无界 B 、⎪⎩⎪⎨⎧=∞+∈=2,)2,0[,tg )(ππx x x x f 在]2,0[π有限 C 、⎪⎩⎪⎨⎧=∈=2,1)2,0[,tg )(ππx x x x f 在]2,0[π有界 D 、x x f tg )(=在)2,0(π有限58、函数列n n x x f )21()(=在[0, 2]上( )于0. A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、a.e.一致收敛59、设⎩⎨⎧-∈-∈=E x x E x x x f ]1,0[,,)(其中E 是[0,1]的不可测集,则下列函数在[0, 1]可测的是( ).A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -60、一个函数在其定义域中的( )点处都是连续的.A 、边界点B 、内点C 、聚点D 、孤立点.61、0P 是康托尔(cantor )集,则=0mP ( )A 、0B 、1C 、2D 、362、设A 是B 的真子集,则( )A 、B m A m **< B 、B m A m **≤C 、B m A m **>D 、B m A m **≥63、下列说法正确的是( )A 、x x f ctg )(=在)2,4(ππ无界 B 、⎪⎩⎪⎨⎧=∞+∈=0,]2,0(ctg )(x x x x f π在]2,0[π有限 C 、⎪⎩⎪⎨⎧=∈=0,1]2,0(ctg )(x x xx f π在]2,0[π有界 D 、x x f ctg )(=在)2,0(π有限64、函数列n n n x x f 2)(=在]21,0[上( )于0. A 、收敛 B 、一致收敛、 C 、基本上一致收敛 D 、a. e.一致收敛65、设E 是[0, 1]上的不可测集,⎩⎨⎧-∈-∈=E x xE x x x f ]1,0[)(22则下列函数在[0, 1]可测的是( ). A 、)(x f B 、)(x f + C 、|)(|x f D 、)(x f -66、设E 为可测集,则下列结论中正确的是( )A 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 一致收敛于)(x fB 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 基本上一致收敛于)(x fC 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n ⇒)(x fD 、若)}({x f n 在E 上基本上一致收敛于)(x f ,则)(x f n a , e 收敛于)(x f67、G 表示康托尔(cantor )集在[0,1]中的余集,则mG=( )A 、0B 、1C 、2D 、368、设21,S S 都可测,则21S S ( )A 、可测B 、不可测C 、可能可测也可能不可测D 、以上都不对69、下列说法正确的是( )A 、x x f sec )(=在)4,0(π上无界 B 、x x f sec )(=在)4,0(π上有限C 、⎪⎩⎪⎨⎧=∞+∈=2)2,0[sec )(ππx x x x f 在]2,0[π上有限 D 、⎪⎩⎪⎨⎧=∈=21)2,0[sec )(ππx x x x f 在]2,0[π上有界 70、函数列n n n x x f 3)(=在]31,0[上( )于0 A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、a. e.一致收敛71、设⎩⎨⎧-∈∈-=Ex x E x x x f ]1,0[,,)(33,其中E 是[0, 1]上的不可测集,则( )在[0, 1]可测.A 、)(x f 、B 、)(x f +C 、)(x f -D 、|)(|x f72、关于连续函数与可测函数,下列论述中正确的是( )A 、它们是同一概念B 、a , e 有限的可测函数是连续函数C 、a , e 有限的可测函数是基本上连续的函数D 、a , e 有限的可测函数是a , e 连续的函数73、()=-)2,1()1,0( m ( )A 、1、B 、2C 、3D 、474、A 可测,B 是A 的真子集,则( )A 、mB mA ≥ B 、B m mA *≥C 、B m mA *=D 、以上都不对75、下列说法正确的是( )A 、21)(x x f =在(0, 1)有限、B 、21)(xx f =在]1,21[无界 C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(2x x x x f 在[0, 1]有限 D 、⎪⎩⎪⎨⎧=∈=1,1]1,0(,1)(2x x x x f 在[0, 1]有界76、函数列x x f n n sin )(=在]2,0[π上( )于0.A 、收敛B 、基本上一致收敛C 、一致收敛D 、a. e.一致收敛77、设⎩⎨⎧-∈∈-=Ex x E x x x f ]1,0[,,)(22其中E 是[0, 1]上的不可测集,则( )在[0, 1]上是可测的.A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -78、关于简单函数与可测函数下述结论不正确的是( )A 、简单函数一定是可测函数B 、简单函数列的极限是可测函数C 、简单函数与可测函数是同一概念D 、简单函数列的极限与可测函数是同一概念79、()=-]3,2()1,1[ m ( )A 、1B 、2C 、3D 、480、L 可测集类,对运算( )不封闭.A 、可数和B 、有限交C 、单调集列的极限D 、任意和.81、下列说法正确的是( )A 、31)(x x f =在)1,21(无界B 、31)(xx f =在)1,0(有限C 、⎪⎩⎪⎨⎧=∞+∈=0]1,0(1)(3x x x x f 在[0, 1]有限D 、⎪⎩⎪⎨⎧=∈=01]1,0(1)(3x x x x f 在[0, 1]有界82、函数列x x f n n cos )(=在]2,0[π上( )于0.A 、基本一致收敛B 、收敛C 、一致收敛D 、a. e.一致收敛83、设E 是]2,0[π中的不可测集,⎪⎩⎪⎨⎧-∈-∈=E x x E x x x f ]2,0[,sin ,sin )(π 则下列函数在]2,0[π上可测的是( ).A 、)(x fB 、|)(|x fC 、)(x f +D 、)(x f -84、关于依测度收敛,下列说法中不正确的是( )A 、依测度收敛不一定一致收敛B 、依测度收敛不一定收敛C 、若)}({x f n 在E 上 a.e.收敛于 a.e.有限的可测函数)(x f ,则)()(x f x f n ⇒D 、若)()(x f x f n ⇒,则存在子列)}({x f i n a. e.收敛于)(x f85、设)(x f 是可测集E 上的非负可测函数,则)(x f ( )A 、必可积B 、必几乎处处有限C 、必积分确定D 、不一定积分确定86、设)(x f 在可测集E 上可积,则在E 上( )A 、)(x f +与)(x f -只有一个可积B 、)(x f +与)(x f -皆可积C 、)(x f +与)(x f -不一定可积D 、)(x f +与)(x f -至少有一个不可积87、设0=mE (Φ≠E ),)(x f 是E 上的实函数,则下面叙述正确的是( )A 、)(x f 在E 上不一定可测B 、)(x f 在E 上可测但不一定可积C 、)(x f 在E 上可积且积分值为0D 、)(x f 在E 上不可积88、)(x f 在可测集E 上)(L 可积的必要条件是,)(x f 为( )A 、连续函数B 、几乎处处连续函数C 、单调函数D 、几乎处处有限的可测函数89、设)(x D 为狄立克雷函数,则⎰=10)()(dx x D L ( ) A 、 0 B 、 1 C 、1/2 D 、不存在90、设)(x f 为Cantor 集的特征函数,则⎰=10)()(dx x f L ( ) A 、 0 B 、 1/3 C 、2/3 D 、 1填空题1、设A 为一集合,B 是A 的所有子集构成的集合;若A =n, 则B =2、设A 为一集合,B 是A 的所有子集构成的集合;若A 是一可数集, 则B =3、若c A =, c B =, 则=⋃B A4、若c A =, B 是一可数集, 则=⋃B A5、若c A =, n B =, 则=⋃B A6、若}{n A 是一集合列, 且c A n =, =⋃∞=n n A 1 7、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋂=8、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋃= 9、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋂= 10、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋃= 11、若}{n A 是任意一个集合列, 则=∞→n n A lim 12、若}{n A 是任意一个集合列, 则=∞→n n A lim13、欧氏空间n R 中, 任意两点),,(21n x x x x =, ),,(21n y y y y =的距离d(x, y)=14、C[a, b]空间中,任意两元素x(t), y(t) 的距离 d(x, y)= 15、2l 空间中, 任意两元素 ),,,(21 n x x x x =, ),,(21 n y y y y =的距离 d(x, y)=16、欧氏空间2R 中, 任意两点),(21x x x =, ),(21y y y =的距离 d(x, y)=17、欧氏空间3R 中, 任意两点),,(321x x x x =, ),,(321y y y y =的距离d(x, y)=18、欧氏空间4R 中, 任意两点),,,(4321x x x x x =, ),,,(4321y y y y y =的距离d(x,y)=19、设2R X =,}1:),{(22<+=y x y x E ,则E =20、设3R X =, }1:),,{(222<++=z y x z y x E , 则E =21、设2R X =,}1:),{(22<+=y x y x E ,则E ∂=22、设2R X =,}1:),{(22<+=y x y x E ,则E '=23、设3R X =, }1:),,{(222<++=z y x z y x E , 则 E ∂=24、设3R X =, }1:),,{(222<++=z y x z y x E , 则E '=25、设A= [0, 1] , B = [3, 4] , 则 d(A, B) =26、设C 是康托完备集, G= [0, 1]-C , 则d (C, G) =27、设C 是康托完备集, 则C 的半径)(C δ=28、两个非空集合A, B 距离的定义为 d (A, B ) =29、一个非空集合A 的直径的定义为)(A δ=30、设A = [0, 1] ⋂Q, 则)(A δ=31、n R E ⊂,对每一列覆盖E 的开区间 ∞=⊃1i i E I ,定义=E m *________。

《实变函数》试卷及参考答案

《实变函数》试卷及参考答案

《实变函数》试卷及参考答案《实变函数》试卷一一、单项选择题(3分×5=15分)1、1、下列各式正确的是( ),,,,limAA,,,limAA,,,(A); (B); nknk,,,,nnkn11nknn,,,,,,,,limAA,,,limAA,,,(C); (D); nknk,,,,nnkn1,,nkn1,,n2、设P为Cantor集,则下列各式不成立的是( ),'P,mP,0(A) c (B) (C) (D) P,PP,P3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D)波雷耳集都可测fx()E是上的有限的可测函数列,则下面不成立的是( ) 4、设ae..,,n sup()fxfxfx()(),fxfx()(),(A)若, 则 (B) 是可测函数 ,,nnnnfxfx()(), (C)是可测函数;(D)若,则可测 inf()fxfx(),,nnn5、设f(x)是上有界变差函数,则下面不成立的是( ) [a,b](A) 在上有界 (B) 在上几乎处处存在导数 f(x)[a,b]f(x)[a,b]b'f'(x)dx,f(b),f(a)f(x)(C)在上L可积 (D) [a,b],a二. 填空题(3分×5=15分)()(())CACBAAB,,,,,1、_________ sso'E0,12、设是上有理点全体,则=______,=______,=______. EEE,, nET3、设是中点集,如果对任一点集都有R1 (第页,共47页)EL_________________________________,则称是可测的、可测的________条件是它可以表成一列简单函数的极限函数. 4f(x)(填“充分”,“必要”,“充要”)ab,ab,5、设为上的有限函数,如果对于的一切分划,使fx(),,,,ab,______________________,则称为上的有界变差函数。

《实变函数》综合训练题(四)及解答

《实变函数》综合训练题(四)及解答

《实变函数》综合训练题(四)(含解答)一、多项选择题(每题至少有两个或两个以上的正确答案)1、设E 是[0,1]中的有理点全体,则(C 、D )[考核对典型集合掌握的情况] (A )E 是闭集 (B )E 中的每一点都是内点 (C )E 是可数集 (D )0mE =2、设E 是[0,1]中的无理点全体,则(C 、D )(A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE > 3、若1E R ⊂的外测度为零,则( B 、D )[考核零测集的特点] (A )E 一定是可数集 (B )E 一定是可测集 (C )E 不一定是可数集 (D )0mE =4、若1E R ⊂至少有一个内点,则( B 、D )[考核典型集的外测度可数性的特点](A )*m E 可以等于零 (B )*0m E > (C )E 可能是可数集 (D )E 是不可数集5、设()nmE E R <+∞⊂,函数列{()}n f x 为E 上几乎处处有限的可测函数列,()f x 为E 上几乎处处有限的可测函数,若()()()n f x f x x E ⇒∈,则下列哪些结论不一定成立(A 、B 、C 、D )[考核可测函数与勒贝格积分的简单综合](A )()d Ef x x ⎰存在 (B )()f x 在E 上L 可积(C )..()()()a e n f x f x x E →∈ (D )lim ()d ()d n n EEf x x f x x →∞=⎰⎰6、设[,]E a b ⊂是可测集,则E 的特征函数()E X x 是 (A 、B 、C )[考核特征函数的特点](A )[,]a b 上的简单函数(B )[,]a b 上的可测函数 (C )E 上的连续函数(D )[,]a b 上的连续函数7、若()f x 在可测集E 上有L 积分值,则(A 、C )[考核勒贝格积分的定义](A )()f z +和()f z -中至少有一个在E 上L 可积 (B )()f z +和()f z -都在E 上L 可积 (C )()f z 在E 上也有L 积分值 (D )()f z 在E 上一定L 可积 8、设()f x 在可测集E 上L 可积,则( B 、D )[考核勒贝格积分的定义](A )()f z +和()f z -有且仅有一个在E 上L 可积 (B )()f z +和()f z -都在E 上L 可积(C )()f z 在E 上不一定L 可积 (D )()f z 在E 上一定L 可积9、设()f z 是[,]a b 的绝对连续函数,则( A 、B 、C )[考核绝对连续函数、有界变差函数的基本性质](A )()f z 是[,]a b 上的连续函数 (B )()f z 是[,]a b 上的一致连续函数 (C )()f z 是[,]a b 上的有界变差函数 (D )()f z 在[,]a b 上处处可导10、设()f z 是[,]a b 的单调函数,则( A 、C 、D )[考核绝对连续函数、有界变差函数的基本性质](A )()f z 是[,]a b 的有界变差函数 (B )()f z 是[,]a b 的绝对连续函数 (C )()f z 在[,]a b 上几乎处处连续 (D )()f z 在[,]a b 上几乎处处可导 二、单项选择题 (每题仅有一个正确答案)1.设E 是[0,1]中的无理点全体,则E 是( C ).[考核对典型集合掌握的情况] (A)可数集 (B)有限集 (C)不可数集 (D)零测集 2.下面集合关系成立的是( A ). [考核对集合的基本运算掌握的情况](A)(\)A B B A B ⋃=⋃ (B)(\)A B B A ⋃= (C)(\)B A A A ⋃⊂ (D)\B A A ⊂ 3.若2E R ⊂至少有一个内点,则有(B ). [考核对典型集合外测度掌握的情况](A)*0m E = (B)*0m E > (C)0mE =(D)0mE < 4.设2E R ⊂是开集,则( B ).[考核开集闭集的基本特征] (A)E E '⊂ (B)0E E = (C)E E = (D)E E '=5.设[,]E a b ⊂是可测集,则E 的特征函数()E X x 是[,]a b 上的(A). [考核对集合的特征函数的认识](A)简单函数 (B)常函数 (C)连续函数(D)单调函数 6.设[0,1]Q ⊂是有理数集,1,()0,x QD x x Q ∈⎧=⎨∉⎩,则()D x 是[0,1]上的(C).[考核目标同上题](A)连续函数(B)单调函数(C)简单函数(D)定积分存在的函数 7.设()f x 在可测集E 上勒贝格可积,则(B). [考核勒贝格积分的定义](A)()f x +和()f x -有且仅有一个在E 上勒贝格可积;(B)()f x +和()f x -都在E 上勒贝格可积(C)()f x +和()f x -都在E 上不勒贝格可积;(D)()()()f x f x f x +-=+在E 上不勒贝格可积8.设W 是[0,1]上的无理数集,c 表示连续基数,则(D). [考核对典型集合基数和测度掌握的情况](A)W c > (B)W c < (C)0mW = (D)1mW =9.设()f x 是[,]a b 上的单调函数,则()f x 是[,]a b 上的(D). [考核基本的有界变差函数和绝对连续函数](A)连续函数 (B)绝对连续函数 (C)可导函数 (D)有界变差函数10.设()f x 在[,]a b 上绝对连续,则()f x 在[,]a b 上(A).[考核绝对连续函数的关系的基本性质](A)有界变差 (B)可导 (C)单调 (D)连续可微三、填空题1.设A ,B 为X 的两个子集,则\A B 等于 C A B ⋂ .[考核集合之间的基本关系] 2.设A ,B 为两个集合,则A B ⋃ 等于 (\)B A A ⋃ .[考核目标同上]3.设n E R ⊂,如果E 满足E E '⊂,则E 是 闭 集.[考核开集、闭集的定义] 4.设n E R ⊂,如果E 中的每一点都是内点,则E 是 开 集.[考核开集、闭集的定义]5.若开区间(,)αβ是直线上开集G 的一个构成区间,则(,)αβ满足(,)G αβ⊂且,G αβ∉.[考核开集的构成区间的定义和特点]6.设E 是1R 上的开集,若开区间(,)a b 满足(,)a b E ⊂且,a b E ∉,则称(,)a b 是开集E 的 构成 区间.[考核开集的构成区间的定义和特点]7.设A 是无限集,则A 的基数A 大于或等于 a (其中a 表示可数基数).[考核可数集的性质]8.设A 是偶数集,则A 的基数A 等于 a (其中a 表示可数基数).[考核可数集的性质]9.设1E ,2E 为可测集,2mE <+∞,则12(\)m E E 大于或等于 12mE mE -.[考核测度的性质,单调性和次可加性]10.设A ,B 为可测集,则()m A B ⋃ 小于或等于 mA mB +.[考核测度的性质,次可加性]11.设()f x 是定义在可测集E 上的实函数,若对任意实数a ,都有[()]E x f x a >是 可测集 ,则称()f x 是可测集E 上的可测函数. [考核可测函数的定义]12.设()f x 是可测集E 上的可测函数,则对任意实数a ,b (a b <),有[()]E x a f xb <<是可测 集. [考核可测函数的基本性质]13.设1E R ⊂是可数集,则*m E 等于 0.[考核典型集合的测度和外测度] 14.设[0,1]P ⊂是康托集,则mP 等于 0.[考核典型集合的测度和外测度]15.设函数列{()}n f x 为可测集E 上的可测函数列,且()n f x 在E 上依测度收敛于()f x ,则存在{()}n f x 的子列{()}kn f x ,使得()kn f x 在E 上 几乎处处收敛于 ()f x . [考核函数列收敛与依测度收敛的关系的记忆,本题是其中的黎斯定理]16.设mE <+∞,{()}n f x 是E 上的可测函数列,()f x 是E 上的实函数,若()n f x 在E 上几乎处处收敛于()f x ,则()n f x 在E 上 依测度 收敛于()f x .[考核函数列收敛与依测度收敛的关系的记忆,本题是其中的勒贝格定理]17.设()f x 在[,]a b 上黎曼可积,则()f x 在[,]a b 上勒贝格可积,且它们的积分值 相等 .[考核黎曼积分与勒贝格积分的关系]18.设()f x ,()g x 都在[,]a b 上勒贝格可积,且几乎处处相等,则它们在[,]a b 上勒贝格积分 值 相等 .[考核勒贝格积分的基本性质]19.若()f x 是[,]a b 上的绝对连续函数,则()f x 是 [,]a b 上的有界变差函数.[考核有界变差函数和绝对连续函数的关系]20.若()f x 是[,]a b 上的有界变差函数,则()f x 可以表示成两个单调函数的 和或差 .[考核有界变差函数和单调函数的关系,即约当分解定理]四、判断说明题(注意这类题不仅要求判断对还是不对,而且还要简单的说明理由) 1.无限个闭集的并集仍为闭集.[考核开集、闭集的性质] 答:不对,因为闭集只对有限的并集运算封闭。

实变函数参考答案

实变函数参考答案

习题1解答(A 组题)一、选择题1、C ;2、A ;3、D ;4、C ;5、C ;6、A ;7、A ;8、B ;9、D ;10、C 二、判断题1、×;2、×;3、×;4、×;5、√;6、×;7、×;8、×;9、×; 10、× 三、填空题1、=;2、∅;3、()0,1;4、[]1,1-;5、,EF EF ;6、()2,3-;7、≥;8、c9、设有两个集合A 和B ,若≤A B ,≥A B ,则=A B 。

四、证明题1、(1)()()()()()\\====C C CC A A B A A B AAB A A AB A B ;(2)()()()()()()\\==C C CC A B CD A B CD A C B D()()()()\==CA C BD A C BD 。

2、111\lim \∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C Cn n n n n N n N N n N N n N A B A B A B AB ()111lim(\)∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C C C n n n n n N n N N n N N n N A B A B A B A B 。

同理可证第2个集合等式。

3、当A =∅时,{}∅张成的环和σ-环均为它自身;张成的代数和σ-代数均为{},X ∅。

当A X =时,{}X张成的环、σ-环、代数和σ-代数均为{},X ∅。

当A 为X 的非空真子集时,{}A 张成的环和σ-环均为{},A ∅;张成的代数和σ-代数均为{},,,cA A X∅。

4、首先,令()()tan 12π⎡⎤=-⎢⎥⎣⎦f x x ,由于()f x 是()0,1上的严格单调递减的连续函数,且()()()0,10,=+∞f,所以()f x 是()0,1到()0,+∞的一一映射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a.e
存在fn (x)的子列 fnk (x) ,使得 fnk (x) f (x) (x E) .
7.设 f (x) 为可测集 E ( Rn )上的可测函数,则 f (x) 在 E 上的 L 积分值
| f (x) | 在 E 上
L 可积.(填“一定”“不一定”)
存在且
8.若 f (x) 是[a,b] 上的绝对连续函数,则 f (x) 是[a,b] 上的有
limn0,fnx dx 0故 lim ln x nex cos xdx 0 .
n 0,n
n
七、证明题
于是 f xdx xdx 而 x 在0,1上连续,所以
0,1
0,1
xdx R
0,1
1 x2dx
0
x2 2
|10
1 2
因此 f xdx 1 .
0,1
2
2.解:令
fn
x
0,n
x ln
x
n
nex
cos
x
显然 fn x在 0, 上可测,且
0,n
ln
x
n
n
e
x
cos
xdx
0,
4.设 A 为无限集.则 A 的基数 A __ a (其中 a 表示自然数集 N 的基数)
5.设 E1, E2 为可测集, mE2 ,则 m(E1 \ E2 ) __ mE1 mE2 .
6.设fn (x)为可测集 E 上的可测函数列,且 fn (x) f (x), x E ,则由______定理可知得,
实变函数试题库及参考答案(4) 本科
一、填空题
1.设 A, B 为两个集合,则 A B __ A I Bc . 2.设 E Rn ,如果 E 满足 E E (其中 E 表示 E 的导集),则 E 是 3.若开区间 ( , ) 为直线上开集 G 的一个构成区间,则 ( , ) 满(i() a, b) G (ii) a G,b G
3. 可测集 E 上的可测函数与简单函数有什么关系?
4. a, b 上的有界变差函数与单调函数有什么关系?
六、计算题
7.

f
x
sin x
x
3
x
xP
0,1\
P

P
为康托集,求
0,1
f
xdx
.
8. 求 lim ln x nex cos xdx .
n 0,n
n
七、证明题
1.设 fn (x), gn (x), f (x), g(x) 是 E 上几乎处处有限的可测函数,且 fn (x) f (x) , gn (x) g(x) ,则 fn (x) gn (x) f (x) g(x)
1. 零测集上的函数是可测函数. 2. 可列个闭集的并集仍为闭集 3. 任何无限集均含有一个可列子集


()
()
4. 设 E 为可测集,则一定存在 G 集 G ,使 E G ,且 m G \ E 0 .


五、定义题 1. 为什么说有界变差函数几乎处处可微?
2. 简述无穷多个开集的交集是否必为开集?
实变函数试题库及参考答案(4) 本科
一、填空题
1.等于 2.闭集. 3.(a,b) G 4. 5. 6.黎斯 7.不一定 不一定 8.界变差函数.
2、单选题 1.B 2.B 3.A 4.B 3、多选题 1.BD 2.CD 3.BD 4.ABC 四、判断题
√×√√ 五、定义题 1.答:由若当分解定理,有界变差函数可表示成两个单调增函数的差,而单调函数几乎处 处可微,所以有界变差函数几乎处处可微.
fn
xdx
因为
fn x
ln x nex cos x
n
ln
x
n
,
x
0,
,
n
1,
2,L
n
不难验证
gn
x
ln
x
n
n
,当
n
足够大时,是单调递减非负函数,且
lim
n
g
n
x
0
,所以
ln x n
lim
n 0,
n
dx
lim
n
0,
gn
x
dx
lim
0, n
gn
x
0dx 0
0,
由勒贝格控制收敛定理
A、 m*E 可以等于0 B、 m*E 0 C、 E 可能是可数集 D、 E 不可能是可数集
4.设 E [a, b]是可测集,则 E 的特征函数 E (x) 是(

A、[a, b] 上的符号函数
C、 E 上的连续函数
B、[a, b] 上的可测函数
D、[a, b] 上的连续函数
四、判断题
2.设 f (x), g(x) 是 E 上 L 可积函数,则 f 2 (x) g 2 (x) 在 E 上也是 L 可积的
3.设 f (x) 是可测集 E 上的非负可测函数,如果 f (x)dx 0 ,则 f (x) 0 a.e 于 E E
4.证明等式: A \ (B UC) ( A \ B) I ( A \ C)
二、选择题
1.设 E x, 0 0 x 1,则( )
A mE 1
B mE 0
C E 是 R 2 中闭集
D E 是 R 2 中完备集
2.设 f x, g x是 E 上的可测函数,则( )
A 、 E x f x g x 不一定是可测集
B 、 E x f x g x 是可测集
C 、 E x f x g x 是不可测集
集 3.下列集合关系成立的是( )
A、 ( A \ B) U B A U B
D 、 E x f x g x 不一定是可测
B、 ( A \ B) U B A
C、 (B \ A) U A A
4. 若 E Rn 是开集,则 (

D、 B \ A A
A、 E 的导集 E E
2.答:不一定,如
I
n1
1
1 n
,
1
1 n
1,1
3.答:简单函数必是可测函数但可测函数不一定是简单函数,可测函数一定可表示成简单 函数列的极限形式.
4.答:单调函数必为有界变差函数但有界变差函数不一定为单调函数,有界变差函数可表 示成单调函数之差.
六、解答题
1.解:因为 mP 0 ,所以 f x x, a.e 于0,1
B、 E 的开核 E
三、多项选择题(每题至少有两个以上的正确答案)
C、 E E
1.设 f x是a,b上有界函数,且 L 可积,则(

D、 E 的导集
A f x在a,b上黎曼可积
B f x在a,b上可测
C f x在a,b上几乎处处连续
D f x在a,b上不一定连续
2. 设 E {[0,1]中的无理点} ,则( ) A、 E 是可数集 B、 E 是闭集 C、 E 中的每个点均是聚点 D、 mE 0 3. 若 E ( R )至少有一个内点,则( )
相关文档
最新文档