(完整版)《实变函数与泛函分析基础》试卷及答案要点

合集下载

实变函数与泛函分析报告答案

实变函数与泛函分析报告答案

试卷一 (参考答案及评分标准)一、1. C 2 D 3. B 4. A 5. D二、1.∅ 2、[]0,1; ∅ ; []0,1 3、***()()m T m T E m T CE =⋂+⋂4、充要5、11|()()|n i i i f x f x -=⎧⎫-⎨⎬⎩⎭∑成一有界数集。

三、1.错误……………………………………………………2分例如:设E 是[]0,1上有理点全体,则E 和CE 都在[]0,1中稠密 ………………………..5分2.错误…………………………………………………………2分 例如:设E 是Cantor 集,则0mE =,但E =c , 故其为不可数集……………………….5分3.错误…………………………………………………………2分例如:设E 是[],a b 上的不可测集,[],;(),,;x x E f x x x a b E ∈⎧⎪=⎨-∈-⎪⎩则|()|f x 是[],a b 上的可测函数,但()f x 不是[],a b 上的可测函数………………………………………………………………..5分4.错误…………………………………………………………2分0mE =时,对E 上任意的实函数()f x 都有()0Ef x dx =⎰…5分四、1.()f x 在[]0,1上不是R -可积的,因为()f x 仅在1x =处连续,即不连续点为正测度集………………………………………..3分因为()f x 是有界可测函数,()f x 在[]0,1上是L -可积的…6分 因为()f x 与2x ..a e 相等,进一步,[]120,101()3f x dx x dx ==⎰⎰…8分 2.解:设ln()()cos x n x n f x e x n-+=,则易知当n →∞时,()0n f x → …………………………..2分 又因'2ln 1ln 0t t t t -⎛⎫=< ⎪⎝⎭,(3t ≥),所以当3,0n x ≥≥时,ln()ln()ln 3ln 3(1)33x n n x x n n x x n n x n n ++++=≤≤++………………4分 从而使得ln 3|()|(1)3x n f x x e -≤+…………………………………6分 但是不等式右边的函数,在[)0,+∞上是L 可积的,故有 00lim ()lim ()0n n n n f x dx f x dx ∞∞==⎰⎰…………………………………8分 五、1.设[0,1],E =,\().A E Q B E E Q =⋂=⋂B M B ∴∃⊂Q 是无限集,可数子集 …………………………2分 .A A M M ∴⋃Q :是可数集, ……………………………….3分 (\),(\),()(\),(\),B M B M E A B A M B M A M B M M B M φφ=⋃=⋃=⋃⋃⋃⋂=⋂=Q 且…………..5分 ,.E B B c ∴∴=:………………………………………………6分 2.,{},lim n n n x E E x x x →∞'∀∈=则存在中的互异点列使……….2分 ,()n n x E f x a ∈∴≥Q ………………………………………….3分 ()()lim ()n n f x x f x f x a →∞∴=≥Q 在点连续, x E ∴∈…………………………………………………………5分 E ∴是闭集.…………………………………………………….6分 3.对1ε=,0δ∃〉,使对任意互不相交的有限个(,)(,)i i a b a b ⊂ 当1()n i i i b a δ=-<∑时,有1()()1ni i i f b f a =-<∑………………2分 将[,]a b m 等分,使11ni i i x x δ-=-<∑,对:T ∀101i x z z -=<k i z x <<=L ,有11()()1k i i i f z f z -=-<∑,所以()f x 在1[,]i i x x -上是有界变差函数……………………………….5分所以1()1,i i x x f V -≤从而()b af m V ≤,因此,()f x 是[,]a b 上的有界变差函数…………………………………………………………..6分4、()f x 在E 上可积lim (||)(||)0n mE f n mE f →∞⇒≥==+∞=……2分 据积分的绝对连续性,0,0,,e E me εδδ∀>∃>∀⊂<,有|()|ef x dx ε<⎰………………………………………………….4分 对上述0,,,(||)k n k mE f n δδ>∃∀>≥<,从而|()|n n e n me f x dx ε⋅≤<⎰,即lim 0n n n me ⋅=…………………6分5.,n N ∀∈存在闭集()1,,()2n n n F E m E F f x ⊂-<在nF 连续………………………………………………………………2分令1n k n k F F ∞∞===UI ,则,,,()n n n kx F k x F n k x F f x ∞=∀∈⇒∃∈⋂∀≥∈⇒在F 连续…………………………………………………………4分 又对任意k ,()[()][()]n n n k n k m E F m E F m E F ∞∞==-≤-⋂=⋃-1()2n k n km E F ∞=≤-<∑…………………………………………….6分 故()0,()m E F f x -=在F E ⊂连续…………………………..8分 又()0,m E F -=所以()f x 是E F -上的可测函数,从而是E 上的 可测函数………………………………………………………..10分。

泛函分析基础试卷参考答案

泛函分析基础试卷参考答案
所以T有界,且|| T ||M.(2分)
又对en{0,, 0, 1, 0,, }X, || en||1,
|| T ||sup|| x ||1|| T x |||| T en|||| {0,, 0, an, 0,} || = | an|(5分)
所以|| T ||supn| an|M.
所以|| T ||M.(3分)
所以2A x, y0x, yH
所以A x0xH
所以A0.(5分)
4.证明无穷维赋范线性空间X的共轭空间X '也是无穷空间.
证设{ x1, x2,}是X中线性无关向量,
由Hnha-Banach定理
存在f1X ', f1(x1)0,
存在f2X ', f2(x2)0, f2(x1)0
存在f3X ', f3(x3)0, f3(x1)f3(x2)0
所以(T), (5分)
对[0, 1],定义线性算子T : XX,对xC [0, 1]
(T x) (t) x (t)t[0, 1]
由|| T x ||maxt[ 0, 1]| x (t) |
maxt[ 0, 1]| x (t) |
|| x ||
所以T有界.且
T (AI)(AI) TI
所以(A),
所以(A)[0, 1]. (5分)
令SB1A1B (XX),则
S TB1A1ABI, A B B1A1I (2分)
所以ST1,所以T是正则算子. (1分)
二.以下各题每题15分,共75分
1.设X是度量空间, {xn}是X中Cauchy列,证明若存在{xn}的收敛子列{xn k},则{xn}收敛.
证设xX, xn kx (k)
对任何> 0,存在K, k > K时,

实变函数论与泛函分析课后答案

实变函数论与泛函分析课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(i n f s u p =≥∈x mA nm N b χ ,即)(in f l i m x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

实变函数与泛函分析基础 习题答案

实变函数与泛函分析基础 习题答案

n=0
n=0
xn+p ln
1 x

0,
1 xp 1

0
1 − x ln x dx = −
n=0
1 0
xn+p ln xdx
=
∞ n=0
(n +
1 p+
1)2
=
∞ n=1
1 (n + p)2 .
ßÎ 15. { fn} E
¨
¹ Ö lim
n→∞
fn(x)
=
f (x)a.e.
E,
¿ f (x) Î ¡ ÆÃ ¶¸²³
E −
ǯ± ¡
ÝÌ [0, 1] ÙÄß ℄Ï ¨
¤¤ f
(x)
=
1, 0,
x x
[0,1] [0,1]
· ¨, ¨.
´
¨ ÙÄ n, [0,1]
¿ max 1≤i≤n
mEin
=
1 n

0(n

∞).
¾
Ó Dn = {Ein},
Ein =
i−1 n
,
i n
, i = 1, 2, · · · , n − 1, Enn =
0.
¨ª
mE[| f |= ∞] = 0.
1
¶¹ | f(x) | Î ¶ ¾ Ê´
´¹Ü° ¾ Ö ǫ > 0, δ > 0, e ⊂ E me < δ
´ ¾ ¡ δ > 0,
N,
n>N
| f (x) | dx < ǫ.
e
men < δ,
n · men ≤ | f (x) | dx < ǫ.

实变函数与泛函分析概要答案

实变函数与泛函分析概要答案

实变函数与泛函分析概要答案以下是十道实变函数与泛函分析的概要试题及答案:1.试题:定义实变函数及其特点。

答案:实变函数是以实数为自变量的函数,其特点是定义域和值域均为实数集合,并且满足函数的基本运算法则。

2.试题:定义实变函数的连续性。

答案:实变函数在其中一点连续,意味着在这一点的函数值与自变量趋近这一点时的函数值趋近于相同的值。

3.试题:什么是函数的一致连续性?答案:函数的一致连续性是指函数在整个定义域上均满足连续性的性质,即对于任意给定的正数ε,存在对应的正数δ,使得函数在任意两个自变量间的距离小于δ时,函数值的差的绝对值小于ε。

4.试题:定义函数的导数。

答案:函数在其中一点的导数表示了函数在这一点的变化率,即函数值的变化对应于自变量的变化。

5.试题:什么是函数的凸性?答案:函数的凸性是指函数的导函数是递增的性质,即函数的曲线在任意两点之间的斜率是递增的。

6.试题:定义泛函。

答案:泛函是一类以函数为自变量的函数,其值为实数或复数。

泛函可以看作函数的函数,用来描述函数集合的性质。

7.试题:什么是泛函空间?答案:泛函空间是指一组满足一定运算性质的泛函所构成的向量空间。

8.试题:定义泛函的线性性质。

答案:泛函的线性性质指泛函满足线性运算法则,即对于任意给定的两个函数f和g以及标量α和β,有泛函T(αf+βg)=αT(f)+βT(g)。

9.试题:什么是极小值和极大值?答案:函数在其中一点的极小值是指在这一点的函数值小于或等于附近的其他函数值,而极大值则相反。

10.试题:定义泛函的变分。

答案:泛函的变分是指泛函在给定函数上的微小变化,用来研究泛函的极值性质。

实变函数与泛函分析基础第4章习题答案

实变函数与泛函分析基础第4章习题答案

δ > 0,
Í «Þ ­» ¡ m(E − Eδ) < δ, f(x) E a.e.
Eδ ⊂ E
¨ Á ¡Í E)
<
1 n
.
Å∞ E0 = E − En, n=1
¦ « Å ∞
n, mE0 = m(E −
En)

m(E
− En)
<
1 n
.
n → ∞,
n=1


ÙE
[ lim
n→∞
fn
>
lim fn]
n→∞
¼ 6, lim fn(x) n→∞
Ò ¬¯ Â Ò ¯ ¡¨ fn
lim
n→∞
fn(x)
E
E
[ lim
n→∞
fn
=
−∞]
­» ¡Ý E[ lim fn = +∞]
Â Ò ¯ n→∞
fn
−∞
Â Ò ¯ fn(x) E
E

F [ lim
n→∞
fn
=
+∞]

{fn(x)}
E
¬¤­ ­ ¥ ǫ0 > 0,
mE[| fnk − f |≥ η0] > ǫ0 > 0.
(1)
E
» Ã ¬ ¾ {fnk}
­ ¨ a.e.
f,
mE < +∞,
­ f(x) ª ¦¶
» á ℄« Æ» à ǰ¡ E fnkj ⇒ f(x),
{fnkj } (1)
¾ 13. mE < ∞, ­ ¼ f(x) g(x), È¢
¬ ­ ¡¨

(完整)《实变函数与泛函分析基础》试卷及答案,推荐文档

(完整)《实变函数与泛函分析基础》试卷及答案,推荐文档

试卷一:一、单项选择题(3分×5=15分)1、1、下列各式正确的是( )(A ); (B );1lim n k n n k n A A ∞∞→∞===⋃⋂1lim n k n k n n A A ∞∞==→∞=⋂⋃(C ); (D );1lim n k n n k n A A ∞∞→∞===⋂⋃1lim n k n k n n A A ∞∞==→∞=⋂⋂2、设P 为Cantor 集,则下列各式不成立的是( )(A ) c (B) (C) (D) =P 0mP =P P ='PP = 3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测4、设是上的有限的可测函数列,则下面不成立的是( ){}()n f x E ..a e (A )若, 则 (B) 是可测函数()()n f x f x ⇒()()n f x f x →{}sup ()n nf x (C )是可测函数;(D )若,则可测{}inf ()n n f x ()()n f x f x ⇒()f x 5、设f(x)是上有界变差函数,则下面不成立的是( )],[b a (A) 在上有界 (B) 在上几乎处处存在导数)(x f ],[b a )(x f ],[b a (C )在上L 可积 (D) )('x f ],[b a ⎰-=ba a fb f dx x f )()()('二. 填空题(3分×5=15分)1、_________()(())s s C A C B A A B ⋃⋂--=2、设是上有理点全体,则=______,=______,=______.E []0,1'E o E E 3、设是中点集,如果对任一点集都有E n R T _________________________________,则称是可测的E L 得 分得 分4、可测的________条件是它可以表成一列简单函数的极限函数. )(x f (填“充分”,“必要”,“充要”)5、设为上的有限函数,如果对于的一切分划,使()f x [],a b [],a b _____________________________________________________,则称为 ()f x 上的有界变差函数。

实变函数与泛函分析基础

实变函数与泛函分析基础

实变函数与泛函分析知识点与模拟试卷(含答案)实变函数与泛函分析概要第一章集合基本要求:1、理解集合的包含、子集、相等的概念和包含的性质。

2、掌握集合的并集、交集、差集、余集的概念及其运算性质。

3、会求已知集合的并、交、差、余集。

4、了解对等的概念及性质。

5、掌握可数集合的概念和性质。

6、会判断己知集合是否是可数集。

7、理解基数、不可数集合、连续基数的概念。

8、了解半序集和Zorn引理。

第二章点集基本要求:1、理解n维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。

2、掌握内点、聚点的概念、理解外点、界点、孤立点的概念。

掌握聚点的性质。

3、掌握开核、导集、闭区间的概念及其性质。

4、会求己知集合的开集和导集。

5、掌握开核、闭集、完备集的概念及其性质,掌握一批例子。

6、会判断一个集合是非是开(闭)集,完备集。

7、了解Peano曲线概念。

主要知识点:一、基本结论:1、聚点性质§2 中T1聚点原则:P0是E的聚点⇔ P0的任一邻域内,至少含有一个属于E而异于P0的点⇔存在E中互异的点列{Pn},使Pn→P0 (n→∞)2、开集、导集、闭集的性质§2 中T2、T3T2:设A⊂B,则A⊂B,·A⊂·B,-A⊂-B。

T3:(A∪B)′=A′∪B′.3、开(闭)集性质(§3中T1、2、3、4、5)T1:对任何E⊂Rⁿ,Ė是开集,E´和―E都是闭集。

(Ė称为开核,―E称为闭包的理由也在于此)T2:(开集与闭集的对偶性)设E是开集,则CE是闭集;设E是闭集,则CE是开集。

T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。

T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。

T5:(Heine-Borel有限覆盖定理)设F是一个有界闭集,ℳ是一开集族{Ui}iєI它覆盖了F(即Fс∪iєIUi),则ℳ中一定存在有限多个开集U1,U2…Um,它们同样覆盖了F(即F⊂m∪ Ui)(iєI)4、开(闭)集类、完备集类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷一:一、单项选择题(3分×5=15分)1、1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ⇒, 则()()n f x f x → (B) {}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))('x f 在],[b a 上L 可积 (D) ⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都有_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数. (填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________________________,则称()f x 为[],a b 上的有界变差函数。

三、下列命题是否成立?若成立,则证明之;若不成立,则举反例说明.(5分×4=20分)1、设1E R ⊂,若E 是稠密集,则CE 是无处稠密集。

2、若0=mE ,则E 一定是可数集.3、若|()|f x 是可测函数,则()f x 必是可测函数。

4.设()f x 在可测集E 上可积分,若,()0x E f x ∀∈>,则()0Ef x >⎰四、解答题(8分×2=16分).1、(8分)设2,()1,x x f x x ⎧=⎨⎩为无理数为有理数 ,则()f x 在[]0,1上是否R -可积,是否L -可积,若可积,求出积分值。

2、(8分)求0ln()lim cos xnx n e xdx n∞-+⎰五、证明题(6分×4+10=34分).1、(6分)证明[]0,1上的全体无理数作成的集其势为c .2、(6分)设()f x 是(),-∞+∞上的实值连续函数,则对于任意常数,{|()}a E x f x a =≥是闭集。

3、(6分)在[],a b 上的任一有界变差函数()f x 都可以表示为两个增函数之差。

4、(6分)设,()mE f x <∞在E 上可积,(||)n e E f n =≥,则lim 0n nn me ⋅=.5、(10分)设()f x 是E 上..a e 有限的函数,若对任意0δ>,存在闭子集F E δ⊂,使()f x 在F δ上连续,且()m E F δδ-<,证明:()f x 是E 上的可测函数。

(鲁津定理的逆定理)试卷一 答案:试卷一 (参考答案及评分标准)一、1. C 2 D 3. B 4. A 5. D二、1.∅ 2、[]0,1; ∅ ; []0,1 3、***()()m T m T E m T CE =⋂+⋂4、充要5、11|()()|n i i i f x f x -=⎧⎫-⎨⎬⎩⎭∑成一有界数集。

三、1.错误……………………………………………………2分例如:设E 是[]0,1上有理点全体,则E 和CE 都在[]0,1中稠密 ………………………..5分2.错误…………………………………………………………2分 例如:设E 是Cantor 集,则0mE =,但E =c , 故其为不可数集 ……………………….5分 3.错误…………………………………………………………2分例如:设E 是[],a b 上的不可测集,[],;(),,;x x E f x x x a b E ∈⎧⎪=⎨-∈-⎪⎩则|()|f x 是[],a b 上的可测函数,但()f x 不是[],a b 上的可测函数………………………………………………………………..5分4.错误…………………………………………………………2分0mE =时,对E 上任意的实函数()f x 都有()0Ef x dx =⎰…5分四、1.()f x 在[]0,1上不是R -可积的,因为()f x 仅在1x =处连续,即不连续点为正测度集………………………………………..3分因为()f x 是有界可测函数,()f x 在[]0,1上是L -可积的…6分 因为()f x 与2x ..a e 相等,进一步,[]120,101()3f x dx x dx ==⎰⎰…8分2.解:设ln()()cos xn x n f x e x n-+=,则易知当n →∞时,()0n f x → …………………………..2分 又因'2ln 1ln 0t t t t -⎛⎫=< ⎪⎝⎭,(3t ≥),所以当3,0n x ≥≥时,ln()ln()ln 3ln 3(1)33x n n x x n n x x n n x n n ++++=≤≤++………………4分 从而使得ln 3|()|(1)3x n f x x e -≤+…………………………………6分但是不等式右边的函数,在[)0,+∞上是L 可积的,故有lim ()lim ()0n n nnf x dx f x dx ∞∞==⎰⎰…………………………………8分五、1.设[0,1],E =,\().A E Q B E E Q =⋂=⋂B M B ∴∃⊂是无限集,可数子集 …………………………2分 .A A MM ∴⋃是可数集, ……………………………….3分(\),(\),()(\),(\),B M B M E A B A M B M A M B M M B M φφ=⋃=⋃=⋃⋃⋃⋂=⋂=且…………..5分,.E B B c ∴∴=………………………………………………6分2.,{},lim n n n x E E x x x →∞'∀∈=则存在中的互异点列使……….2分,()n n x E f x a ∈∴≥………………………………………….3分()()lim ()n n f x x f x f x a →∞∴=≥在点连续,x E ∴∈…………………………………………………………5分E ∴是闭集.…………………………………………………….6分3.对1ε=,0δ∃〉,使对任意互不相交的有限个(,)(,)i i a b a b ⊂当1()ni i i b a δ=-<∑时,有1()()1ni i i f b f a =-<∑………………2分将[,]a b m 等分,使11ni i i x xδ-=-<∑,对:T ∀101i x z z -=<k i z x <<=,有11()()1ki i i f z f z -=-<∑,所以()f x 在1[,]i i x x -上是有界变差函数……………………………….5分 所以1()1,ii x x f V -≤从而()baf mV ≤,因此,()f x 是[,]a b 上的有界变差函数…………………………………………………………..6分 4、()f x 在E 上可积lim (||)(||)0n mE f n mE f →∞⇒≥==+∞=……2分据积分的绝对连续性,0,0,,e E me εδδ∀>∃>∀⊂<,有|()|ef x dx ε<⎰………………………………………………….4分对上述0,,,(||)k n k mE f n δδ>∃∀>≥<,从而|()|nn e n me f x dx ε⋅≤<⎰,即lim 0n nn me ⋅=…………………6分5.,n N ∀∈存在闭集()1,,()2n n nF E m E F f x ⊂-<在nF 连续………………………………………………………………2分 令1nk n kF F ∞∞===,则,,,()n n n kx F k x F n k x F f x ∞=∀∈⇒∃∈⋂∀≥∈⇒在F 连续…………………………………………………………4分 又对任意k ,()[()][()]n n n kn km E F m E F m E F ∞∞==-≤-⋂=⋃-1()2n kn km E F ∞=≤-<∑…………………………………………….6分 故()0,()m E F f x -=在F E ⊂连续…………………………..8分 又()0,m E F -=所以()f x 是E F -上的可测函数,从而是E 上的 可测函数………………………………………………………..10分试卷二:《实变函数》试卷二专业________班级_______姓名学号注 意 事 项1、本试卷共6页。

2、考生答题时必须准确填写专业、班级、学号等栏目,字迹要清楚、工整。

一.单项选择题(3分×5=15分)1.设,M N 是两集合,则 ()M M N --=( ) (A) M (B) N (C) M N ⋂ (D) ∅2. 下列说法不正确的是( )(A) 0P 的任一领域内都有E 中无穷多个点,则0P 是E 的聚点 (B) 0P 的任一领域内至少有一个E 中异于0P 的点,则0P 是E 的聚点 (C) 存在E 中点列{}n P ,使0n P P →,则0P 是E 的聚点(D) 内点必是聚点3. 下列断言( )是正确的。

(A )任意个开集的交是开集;(B) 任意个闭集的交是闭集; (C) 任意个闭集的并是闭集;(D) 以上都不对; 4. 下列断言中( )是错误的。

相关文档
最新文档