用导数证明函数不等式的四种常用方法
高中数学:利用导数证明不等式的常见题型

利用导数证明不等式的常见题型题型一构造函数法把不等式的证明转化为利用导数研究函数的单调性或求最值的问题,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是利用导数证明不等式的关键.这四道题比较简单,证明过程略.概括而言,这四道题证明的过程分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论.【启示】证明分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。
题型二通过对函数的变形,利用分析法,证明不等式【启示】解答第一问用的是分离参数法,解答第二问用的是分析法、构造函数,对函数的变形能力要求较高,大家应记住下面的变形:题型三求最值解决任意、存在性变量问题解决此类问题,关键是将问题转化为求函数的最值问题,常见的有下面四种形式:题型四分拆成两个函数研究【注意】(2)如果按题型一的方法构造函数求导,会发现做不下去,只好半途而废,所以我们在做题时需要及时调整思路,改变思考方向.【启示】掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助,这八个函数分别为要求会画它们的图像,以后见到这种类型的函数,就能想到它们的性质题型五设而不求当函数的极值点(最值点)不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明.【启示】设而不求,整体代换是一种常用的方法,在解析几何中体现很多.在本例第(2)问中,只设出了零点而没有求出零点,这是一种非常好的方法,同学们一定要认真体会,灵活应用.题型六估值法题型七利用图象的特点,证明不等式题型八证明数列不等式题型九利用放缩法证明不等式【注意】在解决第(2)问时,用构造函数法证不出来,又试着分开两个函数仍然不行,正当我一筹莫展时,忽然想到与第一问题的切线联系,如果左边的函数的图像在切线的上方,右边函数的图像在切线的下方,这样问题不就得证了吗?心里非常高兴,马上付诸行动。
导数的应用不等式的证明

导数与不等式1.利用导数证明不等式利用导数证明不等式,主要是构造函数,通过研究函数的性质达到证明的目的. 1.1 利用单调性证明不等式构造函数,利用函数的单调性证明不等式例1. ()(1)ln(1)f x x a x x =-++。
(Ⅰ)求()f x 的极值点;(Ⅱ)当1a =时,若方程()f x t =在1[,1]2-上有两个实数解,求实数t 的取值范围;(Ⅲ)证明:当0m n >>时,(1)(1)n m m n +<+。
例2、已知函数)()(R x xe x f x∈=-。
(1)求函数()f x 的单调区间和极值;(2)已知函数()y g x =的图象与函数()y f x =的图象关于直线1x =对称,证明当1x >时,()()f x g x >;(3)如果12x x ≠,且12()()f x f x =,证明122x x +>。
1.2通过求函数的最值证明不等式在对不等式的证明过程中,可以依此不等式的特点构造函数,进而求函数的最值,当该函数的最大值或最小值对不等式成立时,则不等式是永远是成立的,从而可将不等式的证明转化到求函数的最值上来 例3.已知2()ln ,() 3.f x x x g x x ax ==-+-(1)求函数()f x 在[,2)(0)t t t +>上的最小值; (2)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围; (3)证明:对一切(0,)x ∈+∞,都有12ln x x e ex->成立.例4、(2009辽宁卷文)设2()(1)xf x e ax x =++,且曲线y =f (x )在x =1处的切线与x 轴平行。
(1)求a 的值,并讨论f (x )的单调性;(2)证明:当[0,]f(cos )f(sin )22πθθθ∈-<时,1.3多元不等式的证明含有多元的不等式,可以通过对不等式的等价变形,通过换元法,转化为一个未知数的不等式,或可选取主元,把其中的一个未知数作为变量,其他未知数作为参数,再证明之. 例5、 已知函数()ln f x x =.若120x x >>,求证:122221212()()2f x f x xx x x x ->-+.例6、 (2013·陕西高考)已知函数f (x )=e x ,x ∈R .(1)求f (x )的反函数的图像上点(1,0)处的切线方程; (2)证明:曲线y =f (x )与曲线y =12x 2+x +1有唯一的公共点;(3)设a <b ,比较f ⎝⎛⎭⎫a +b 2与f (b )-f (a )b -a 的大小,并说明理由.1.4.与数列有关的不等式证明例8.已知函数f(x)=ln(x+1)-x2-x.(1)若关于x的方程f(x)=-52x+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;(2)证明:对任意的正整数n,不等式2+34+49+…+21nn+>ln(n+1)都成立.例9.已知函数f(x)=ln ax-x ax-(a≠0).(1)求函数f(x)的单调区间及最值;(2)求证:对于任意正整数n,均有1+111ln23nen n⋯≥+++!(e为自然对数的底数);(3)当a=1时,是否存在过点(1,-1)的直线与函数y=f(x)的图象相切?若存在,有多少条?若不存在,请说明理由.例10.已知函数f (x )=e x -kx 2,x ∈R.(1)若k =12,求证:当x ∈(0,+∞)时,f (x )>1; (2)若f (x )在区间(0,+∞)上单调递增,试求k 的取值范围; (3)求证:444422221111123n ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭<e 4(n ∈N *)..2.利用导数求解与不等式有关的恒成立问题或者有解、无解问题不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.()f x a >:min max max ()()()f x af x a f x a⇔>⎧⎪⇔>⎨⎪⇔≤⎩恒成立有解无解例11.设函数()ln f x a x =,21()2g x x =.(1)记'()g x 为()g x 的导函数,若不等式'()2()(3)()f x g x a x g x +<+-在[1,]x e ∈上有解,求实数a 的取值范围;(2)若1a =,对任意的120x x >>,不等式121122[()()]()()m g x g x x f x x f x ->-恒成立.求m (m Z ∈,1m ≤)的值.例12、 (2013·辽宁高考)(1)证明:当x ∈[0,1]时,22x ≤sin x ≤x ;(2)若不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]恒成立,求实数a 的取值范围.3.利用导数解不等式通过构造函数,利用函数的单调性得到不等式的解集.例13.若)(x f 的定义域为R ,2)(>'x f 恒成立,2)1(=-f ,则42)(+>x x f 解集( )A .(1,1)-B .(1)-+∞, C .(,1)-∞- D .(,)-∞+∞ 例14.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x·f (x )>e x+1的解集为( ).A. {}|0x x >B. {}|0x x <C. {}|1,1x x x <->或D. {}|1,1x x x <-<或0<例15.已知定义在R 上的函数)(x f 满足1)2()4(=-=f f ,)(x f '为)(x f 的导函数,且导函数)(x f y '=的图象如右图所示.则不等式1)(<x f 的解集是( )A .)0,2(- B .)4,2(- C .)4,0( D .),4()2,(+∞--∞ 例16.设)(x f 是定义在R 上的奇函数,且0)2(=f ,当0>x 时,有2()()0xf x f x x '-<恒成立,则不等式2()0x f x >的解集是( )A. (-2,0) ∪(2,+∞)B. (-2,0) ∪(0,2)C. (-∞,-2)∪(2,+∞)D. (-∞,-2)∪(0,2)例17.已知函数y =f (x )(x ∈R)的图象如图所示,则不等式xf ′(x )<0的解集为________. 例18、设函数()x f y =在其图像上任意一点00(,)x y 处的切线方程为()()0020063x x x x y y --=-,且()30f =,则不等式解集导数与不等式1.利用导数证明不等式在初等数学中,我们学习过好多种证明不等式的方法,比如综合法、分析法、比较法、反证法、数学归纳法等,有些不等式,用初等方法是很难证明的,但是如果用导数却相对容易些,利用导数证明不等式,主要是构造函数,通过研究函数的性质达到证明的目的.1.2 利用单调性证明不等式构造函数,利用函数的单调性证明不等式 例1. ()(1)ln(1)f x x a x x =-++。
导数证明不等式的方法介绍

导数证明不等式的方法介绍导数证明不等式的方法介绍利用导数是可以证明很多定律的,比如不等式之类的。
下面就是店铺给大家整理的利用导数证明不等式内容,希望大家喜欢。
利用导数证明不等式方法11.当x>1时,证明不等式x>ln(x+1)设函数f(x)=x-ln(x+1)求导,f(x)'=1-1/(1+x)=x/(x+1)>0所以f(x)在(1,+无穷大)上为增函数f(x)>f(1)=1-ln2>o所以x>ln(x+12..证明:a-a^2>0 其中0F(a)=a-a^2F'(a)=1-2a当00;当1/2因此,F(a)min=F(1/2)=1/4>0即有当003.x>0,证明:不等式x-x^3/6先证明sinx因为当x=0时,sinx-x=0如果当函数sinx-x在x>0是减函数,那么它一定<在0点的值0,求导数有sinx-x的导数是cosx-1因为cosx-1≤0所以sinx-x是减函数,它在0点有最大值0,知sinx再证x-x³/6对于函数x-x³/6-sinx当x=0时,它的值为0对它求导数得1-x²/2-cosx如果它<0那么这个函数就是减函数,它在0点的值是最大值了。
利用导数证明不等式方法2要证x²/2+cosx-1>0 x>0再次用到函数关系,令x=0时,x²/2+cosx-1值为0再次对它求导数得x-sinx根据刚才证明的当x>0 sinxx²/2-cosx-1是减函数,在0点有最大值0x²/2-cosx-1<0 x>0所以x-x³/6-sinx是减函数,在0点有最大值0得x-x³/6利用函数导数单调性证明不等式X-X²>0,X∈(0,1)成立令f(x)=x-x² x∈[0,1]则f'(x)=1-2x当x∈[0,1/2]时,f'(x)>0,f(x)单调递增当x∈[1/2,1]时,f'(x)<0,f(x)单调递减故f(x)的最大值在x=1/2处取得,最小值在x=0或1处取得f(0)=0,f(1)=0故f(x)的最小值为零故当x∈(0,1)f(x)=x-x²>0。
【高中数学】利用导数证明不等式

【高中数学】利用导数证明不等式第四节利用导数证明不等式考点1作差法构造函数证明不等式(1)欲证函数不等式f(x)>g(x)(x>a),只需证明f(x)-g(x)>0(x>a),设h(x)=f(x)-g(x),即证h(x)>0(x>a).若h(a)=0,h(x)>h(a)(x>a).接下来往往用导数证得函数h(x)是增函数即可.(2)欲证函数不等式f(x)>g(x)(x∈I,I是区间),只需证明f(x)-g(x)>0(x∈I).设h(x)=f(x)-g(x)(x∈I),即证h(x)>0(x∈I),也即证h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决.已知函数f(x)=ax+x ln x在x=e-2(e为自然对数的底数)处取得极小值.(1)求实数a的值;(2)当x>1时,求证:f(x)>3(x-1).[解](1)因为f(x)定义域为(0,+∞),f(x)=ax+x ln x,所以f′(x)=a+ln x+1,因为函数f(x)在x=e-2处取得极小值,所以f′(e-2)=0,即a+ln e-2+1=0,所以a=1,所以f′(x)=ln x+2.当f′(x)>0时,x>e-2;当f′(x)<0时,0<x<e-2,所以f(x)在(0,e-2)上单调递减,在(e-2,+∞)上单调递增,所以f(x)在x=e-2处取得极小值,符合题意,所以a=1.(2)证明:由(1)知a=1,所以f(x)=x+x ln x.令g(x)=f(x)-3(x-1),即g(x)=x ln x-2x+3(x>0).g′(x)=ln x-1,由g′(x)=0,得x=e.由g′(x)>0,得x>e;由g′(x)<0,得0<x<e.所以g(x)在(0,e)上单调递减,在(e,+∞)上单调递增,所以g(x)在(1,+∞)上的最小值为g(e)=3-e>0.于是在(1,+∞)上,都有g(x)≥g(e)>0,所以f(x)>3(x-1).将不等式转化为函数最值来证明不等式,其主要思想是依据函数在固定区间的单调性,直接求得函数的最值,然后由f(x)≤f(x)max或f(x)≥f(x)min直接证得不等式.(2019·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a 为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.[解](1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2.令f′(x)=0,得x=ln 2,当x<ln 2时,f′(x)<0,f(x)在(-∞,ln 2)上单调递减;当x>ln 2时,f′(x)>0,f(x)在(ln 2,+∞)上单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-2ln 2,f(x)无极大值.(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.考点2拆分法构造函数证明不等式若f(x)min>g(x)max,则f(x)>g(x),常借助此结论,将要证明的不等式拆、分成两个函数,然后比较它们的最值.设函数f(x)=ax2-(x+1)ln x,曲线y=f(x)在点(1,f(1))处切线的斜率为0.(1)求a的值;(2)求证:当0<x≤2时,f(x)>1 2x.[解](1)f′(x)=2ax-ln x-1-1 x,由题意,可得f′(1)=2a-2=0,所以a=1.(2)证明:由(1)得f(x)=x2-(x+1)ln x,要证当0<x≤2时,f(x)>12x,只需证当0<x≤2时,x-ln xx-ln x>12,即x-ln x>ln xx+12.令g(x)=x-ln x,h(x)=ln xx+12,令g′(x)=1-1x=0,得x=1,易知g(x)在(0,1)上单调递减,在(1,2]上单调递增,故当0<x≤2时,g(x)min=g(1)=1.因为h′(x)=1-ln xx2,当0<x≤2时,h′(x)>0,所以h(x)在(0,2]上单调递增,故当0<x≤2时,h(x)max=h(2)=1+ln 22<1,即h(x)max<g(x)min.故当0<x≤2时,h(x)<g(x),即当0<x≤2时,f(x)>1 2x.在证明的不等式中,若对不等式的变形无法转化为一个函数的最值问题,可以借助两个函数的最值进行证明.已知函数f(x)=eln x-ax(a∈R).(1)讨论f(x)的单调性;(2)当a=e时,求证:xf(x)-e x+2e x≤0.[解](1)f′(x)=ex-a(x>0),①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增;②若a>0,令f′(x)=0,得x=ea,则当0<x<ea时,f′(x)>0;当x>ea时,f′(x)<0,故f (x )在? ????0,e a 上单调递增,在? ??e a ,+∞上单调递减. (2)证明:因为x >0,所以只需证f (x )≤e xx -2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max =f (1)=-e.记g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e.综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx -2e ,即xf (x )-e x +2e x ≤0.考点3 换元法构造函数证明不等式换元法构造函数证明不等式的基本思路是直接消掉参数a ,再结合所证问题,巧妙引入变量c =x 1x 2,从而构造相应的函数.其解题要点为:联立消参利用方程f (x 1)=f (x 2)消掉解析式中的参数a抓商构元令c =x 1x 2,消掉变量x 1,x 2,构造关于c 的函数h (c ) 用导求解利用导数求解函数h (c )的最小值,从而可证得结论x 1,x 2(x 1≠x 2).求证:x 1x 2>e 2.[证明] 不妨设x 1>x 2>0,因为ln x 1-ax 1=0,ln x 2-ax 2=0,所以ln x 1+ln x 2=a (x 1+x 2),ln x 1-ln x 2=a (x 1-x 2),所以ln x 1-ln x 2x 1-x 2=a ,欲证x 1x 2>e 2,即证ln x 1+ln x 2>2.因为ln x 1+ln x 2=a (x 1+x 2),所以即证a >2x 1+x 2,所以原问题等价于证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2(x 1-x 2)x 1+x 2,令c =x 1x 2(c >1),则不等式变为ln c >2(c -1)c +1. 令h (c )=ln c -2(c -1)c +1,c >1,所以h ′(c )=1c -4(c +1)2=(c -1)2c (c +1)2>0,所以h (c )在(1,+∞)上单调递增,所以h (c )>h (1)=ln 1-0=0,即ln c -2(c -1)c +1>0(c >1),因此原不等式x 1x 2>e 2得证.破解含双参不等式证明题的三个关键点(1)转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式.(2)巧构造函数,再借用导数,判断函数的单调性,从而求其最值.(3)回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.已知函数f (x )=ln x -12ax 2+x ,a ∈R .(1)当a =0时,求函数f (x )的图象在(1,f (1))处的切线方程;(2)若a =-2,正实数x 1,x 2满足f (x 1)+f (x 2)+x 1x 2=0,求证:x 1+x 2≥5-12.[解] (1)当a =0时,f (x )=ln x +x ,则f (1)=1,所以切点(1,1),又因为f ′(x )=1x +1,所以切线斜率k =f ′(1)=2,故切线方程为y -1=2(x -1),即2x -y -1=0.(2)证明:当a =-2时,f (x )=ln x +x 2+x (x >0).由f (x 1)+f (x 2)+x 1x 2=0,得ln x 1+x 21+x 1+ln x 2+x 22+x 2+x 1x 2=0,从而(x 1+x 2)2+(x 1+x 2)=x 1x 2-ln(x 1x 2),令t =x 1x 2(t >0),令φ(t )=t -ln t ,得φ′(t )=1-1t =t -1t ,易知φ(t )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以φ(t )≥φ(1)=1,所以(x 1+x 2)2+(x 1+x 2)≥1,因为x 1>0,x 2>0,所以x 1+x 2≥5-12成立. 课外素养提升③ 逻辑推理——用活两个经典不等式保证.利用两个经典不等式解决其他问题,降低了思考问题的难度,优化了推理和运算过程.(1)对数形式:x ≥1+ln x (x >0),当且仅当x =1时,等号成立.(2)指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.进一步可得到一组不等式链:e x >x +1>x >1+ln x (x >0,且x ≠1).【例1】 (1)已知函数f (x )=1ln (x +1)-x,则y =f (x )的图象大致为( )(2)已知函数f (x )=e x ,x ∈R .证明:曲线y =f (x )与曲线y =12x 2+x +1有唯一公共点.(1)B [因为f (x )的定义域为x +1>0,ln (x +1)-x ≠0,即{x |x >-1,且x ≠0},所以排除选项D.当x >0时,由经典不等式x >1+ln x (x >0),以x +1代替x ,得x >ln(x +1)(x >-1,且x ≠0),所以ln(x +1)-x <0(x >-1,且x ≠0),即x >0或-1<x <0时均有f (x )<0,排除A ,C ,易知B 正确.](2)[证明] 令g (x )=f (x )-? ????12x 2+x +1=e x -12x 2-x -1,x ∈R ,则g ′(x )=e x -x -1,由经典不等式e x ≥x +1恒成立可知,g ′(x )≥0恒成立,所以g (x )在R 上为单调递增函数,且g (0)=0.所以函数g (x )有唯一零点,即两曲线有唯一公共点.【例2】设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)求证:当x ∈(1,+∞)时,1<x -1ln x <x .[解] (1)由题设知,f (x )的定义域为(0,+∞),f ′(x )=1x -1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )在(0,1)上单调递增;当x >1时,f ′(x )<0,f (x )在(1,+∞)上单调递减.(2)证明:由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,x -1ln x >1.①因此ln 1x <1x -1,即ln x >x -1x ,x -1ln x <x .②故当x ∈(1,+∞)时恒有1<x -1ln x <x .。
利用导数证明不等式的四种常用方法

利用导数证明不等式的四种常用方法方法一:使用函数的单调性如果函数f(x)在区间[a,b]上单调递增(或递减),则对于任意的x1,x2∈[a,b],有f(x1)≤f(x2)(或f(x1)≥f(x2))。
举例说明:证明当x>0时,e^x>1+x。
我们考虑函数f(x)=e^x-(1+x),取f'(x)=e^x-1、如果f'(x)≥0,则f(x)在x>0上单调递增,且f(x)在x=0处取到最小值。
通过计算可得f'(x)≥0,所以f(x)在x>0上单调递增,即e^x-(1+x)≥0。
即e^x>1+x。
方法二:使用函数的极值点如果函数f(x)在一些点x0处取得极小值(或极大值),则该点附近的函数值也有相应的性质。
举例说明:证明(1+x)^n > 1+nx,其中n为自然数。
我们考虑函数f(x) = (1+x)^n - (1+nx),取f'(x) = n(1+x)^(n-1) - n。
令f'(x) = 0,可得x = -1/(n-1)。
我们先考虑x ∈ (-∞, -1/(n-1)),在此区间上f'(x) > 0,所以f(x)在此区间上单调递增。
当x < -1/(n-1)时,有f(x) > f(-1/(n-1)) = 0。
所以在此区间上(1+x)^n > 1+nx。
同理可得,当x ∈ (-1/(n-1), +∞)时,也有(1+x)^n > 1+nx。
方法三:使用函数的凹凸性如果函数f(x)在一些区间上是凹的(或凸的),则函数的函数值也有相应的性质。
举例说明:证明当a>0时,有√a≤(a+1)/2我们考虑函数f(x) = √x,取f''(x) = -x^(-3/2)。
我们知道,当f''(x)≥0时,函数f(x)在该区间上为凹函数。
计算可得f''(x)≥0,所以f(x)在[0, +∞)上为凹函数。
利用导数证明不等式的几种策略

利用导数证明不等式的几种策略导数在数学中起着至关重要的作用,不仅可以用来求函数的极值点和拐点,还可以用来证明不等式。
在证明不等式时,我们可以利用导数的性质来进行推导。
下面将介绍几种利用导数证明不等式的策略。
1.利用单调性证明不等式对于一个给定的函数,在其定义域内,如果函数在一段区间上是单调递增或者单调递减的,则可以利用该函数的导数证明一些不等式。
例如,我们要证明对于任意正实数x,有ln(x+1) < x。
我们可以设函数f(x) = x - ln(x+1),然后计算导数f'(x) = 1 - 1/(x+1)。
观察导数的符号可以发现,当x > 0时,导数f'(x) < 0,即函数f(x)在x > 0上是单调递减的。
因此,我们可以得出结论:ln(x+1) < x 对于任意正实数x成立。
2.利用极值点证明不等式对于一个给定的函数,如果该函数在一些点处取得极大值或者极小值,我们可以通过证明该极值点处的函数值与其他点处的函数值之间的关系,来证明不等式。
例如,我们要证明对于任意非负实数x,有x^3-3x^2+1>=0。
我们可以设函数f(x)=x^3-3x^2+1,然后计算导数f'(x)=3x^2-6x。
观察导数的零点可以发现,f'(x)=0时,x=0或者x=2,即函数f(x)在x=0和x=2处取得极小值或者极大值。
进一步计算f(0)=1和f(2)=-1可以发现,f(0)是函数f(x)在其定义域内的最小值。
因此,我们可以得出结论:x^3-3x^2+1>=0对于任意非负实数x成立。
3.利用泰勒展开证明不等式对于一个给定的函数,在一些点的邻域内,我们可以使用该函数的泰勒展开式来近似表示该函数。
通过比较泰勒展开式的高阶项可以得出一些不等式。
例如,我们要证明对于任意正实数x,有e^x>x^2、我们可以使用泰勒展开式来近似表示函数e^x和函数x^2,在x=0处进行展开。
导数中证明不等式技巧——构造切线放缩二元变量凹凸反转唯手熟尔!

导数中证明不等式技巧——构造切线放缩二元变量凹凸反转唯手熟尔!在导数中证明不等式时,我们可以运用一些技巧来简化证明过程。
以下是几种常用的技巧:1.构造法:构造一个函数,使其导数的符号与要证明的不等式的符号相同。
例如,要证明$f(x)>g(x)$,可以构造一个函数$h(x)=f(x)-g(x)$,然后证明$h'(x)>0$。
这样,当$h'(x)>0$时,$h(x)$就递增,从而$f(x)-g(x)$也递增,即$f(x)>g(x)$。
2.切线放缩法:通过构造一个切线来放缩函数。
例如,要证明$f(x)>g(x)$,可以找到函数$f(x)$在其中一点处的切线,然后利用切线的性质来证明不等式。
具体地,找到函数$f(x)$在其中一点$x_0$处的切线$y=h(x_0)+h'(x_0)(x-x_0)$,然后证明$h(x_0)+h'(x_0)(x-x_0)>g(x)$成立。
3.二元变量法:将不等式中的一些变量表示为另一个变量的函数,然后对新的不等式进行处理。
例如,对于$f(x)>g(x)$,我们可以将其中的一个变量表示为另一个变量的函数,例如$x=h(y)$,然后将不等式转化为$F(y)>G(y)$的形式进行证明。
4.凹凸反转法:利用函数的凹凸性质来证明不等式。
例如,要证明$f(x)>g(x)$,可以证明$-f(x)<-g(x)$,然后利用函数的凹凸性质,通过证明$-f(x)$是凸函数,而$-g(x)$是凹函数,从而得到$-f(x)<-g(x)$成立。
最后,无论采用哪种技巧,熟练掌握基本的导数计算和不等式性质是非常重要的。
只有通过大量的练习,加深对导数和不等式的理解,才能真正掌握这些技巧,并在实际应用中灵活运用。
5用导数证明函数不等式的四种常用方法

用导数证明函数不等式地四种常用方法本文将介绍用导数证明函数不等式地四种常用方法.例1 证明不等式:)0)1ln(>+>x x x (.证明 设)0)(1ln()(>+-=x x x x f ,可得欲证结论即()(0)(0)f x f x >>,所以只需证明函数()f x 是增函数.而这用导数易证:1()10(0)1f x x x '=->>+ 所以欲证结论成立. 注 欲证函数不等式()()()f x g x x a >>(或()()()f x g x x a ≥≥),只需证明()()0()f x g x x a ->>(或()()0()f x g x x a -≥≥).设()()()()h x f x g x x a =->(或()()()()h x f x g x x a =-≥),即证()0()h x x a >>(或()0()h x x a ≥≥).若()0h a =,则即证()()()h x h a x a >>(或()()()h x h a x a ≥≥).接下来,若能证得函数()h x 是增函数即可,这往往用导数容易解决.例2 证明不等式:)1ln(+≥x x .证明 设()ln(1)(1)f x x x x =-+>-,可得欲证结论即()0(1)f x x >>-.显然,本题不能用例1地单调性法来证,但可以这样证明:即证)1)(1ln()(->+-=x x x x f 地最小值是0,而这用导数易证:1()1(1)11x f x x x x '=-=>-++ 所以函数()f x 在(1,0],[0,)-+∞上分别是减函数、增函数,进而可得min ()(1)0(1)f x f x =-=>-所以欲证结论成立.注 欲证函数不等式()()()(,f x g x x I I >≥∈是区间),只需证明()()()0()f x g x x I ->≥∈.设()()()()h x f x g x x I =-∈,即证()()0()h x x I >≥∈,也即证min ()()0()h x x I >≥∈(若min ()h x 不存在,则须求函数()h x 地下确界),而这用导数往往容易解决.例3 (2014年高考课标全国卷I 理科第21题)设函数1e ()e ln x xb f x a x x -=+,曲线()y f x =在点(1,(1))f 处地切线为e(1)2y x =-+.(1)求,a b ;(2)证明:()1f x >.解 (1)112()e ln e e e x x x x a b b f x a x x x x--'=+-+. 题设即(1)2,(1)e f f '==,可求得1,2a b ==.(2)即证2ln e (0)ex x x x x ->->,而这用导数可证(请注意11e ≠): 设()ln (0)g x x x x =>,得min 11()e e g x g ⎛⎫==- ⎪⎝⎭. 设2()e (0)ex h x x x -=->,得max 1()(1)e h x h ==-. 注 i)欲证函数不等式()()(,f x g x x I I ≥∈是区间),只需证明min max ()()()f x g x x I ≥∈,而这用导数往往可以解决.欲证函数不等式()()(,f x g x x I I >∈是区间),只需证明min max ()()()f x g x x I >∈,或证明min max ()()()f x g x x I ≥∈且两个最值点不相等,而这用导数往往也可以解决.ii)例3第(2)问与《2009年曲靖一中高考冲刺卷理科数学(一)》压轴题第(3)问完全一样,这道压轴题(即第22题)是:已知函数2()ln ,()3f x x x g x x ax ==-+-.(1)求函数()f x 在[,2](0)t t t +>上地最小值;(2)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 地取值范围;(3)证明:对一切(0,)x ∈+∞,都有12ln e e x x x>-成立. 例4 (2013年高考北京卷理科第18题)设L 为曲线C :y =ln x x在点(1,0)处地切线.(1)求L 地方程;(2)证明:除切点(1,0)之外,曲线C 在直线L 地下方.解 (1)(过程略)L 地方程为y =x -1.(2)即证1ln -≤x xx (当且仅当1=x 时取等号). 设x x x x g ln 1)(--=,得g ′(x )=x 2-1+ln x x 2)0(>x . 当0<x <1时,x 2-1<0,ln x <0,所以g ′(x )<0,得g (x )单调递减;当x >1时,x 2-1>0,ln x >0,所以g ′(x )>0,得g (x )单调递增.所以0)1()(min ==g x g ,得欲证结论成立.(2)地另解 即证1ln -≤x x x (当且仅当1=x 时取等号),也即证0ln 2≥--x x x (当且仅当1=x 时取等号).设x x x x g ln )(2--=,可得)0)(1(12)(>-+='x x xx x g . 进而可得0)1()(min ==g x g ,所以欲证结论成立.(2)地再解 即证1ln -≤x xx (当且仅当1=x 时取等号),也即证x x x -≤2ln (当且仅当1=x 时取等号). 如图1所示,可求得曲线x y ln =与)0(2>-=x x x y 在公共点(1,0)处地切线是1-=x y ,所以接下来只需证明)0(1,1ln 2>-≤--≤x x x x x x (均当且仅当1=x 时取等号)前者用导数易证,后者移项配方后显然成立.所以欲证结论成立.图1例5 (2013年高考新课标全国卷II 理21(2)地等价问题)求证:e ln(2)x x >+.分析 用前三种方法都不易解决本问题,下面介绍用导数证明函数不等式地第四种常用方法.设()e (2),()ln(2)(2)xf x xg x x x =>-=+>-,我们想办法寻找出一个函数()h x ,使得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到.当然,函数()h x 越简洁越好.但()h x 不可能是常数(因为函数()ln(2)(2)g x x x =+>-地值域是R ),所以我们可尝试()h x 能否为一次函数,当然应当考虑切线.如图2所示,可求得函数()e (2)x f x x =>-在点(0,1)A 处地切线是1y x =+,进而可得()()(2)f x h x x ≥>-;还可求得函数()ln(2)(2)g x x x =+>-在点(1,0)B -处地切线也是1y x =+,进而可得()()(2)h x g x x ≥>-.图2进而可用导数证得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到,所以欲证结论成立.当然,用例2地方法,也可给出该题地证明(设而不求):设)2ln(e )(+-=x x f x ,得1()e (2)2x f x x x '=->-+. 可得()f x '是增函数(两个增函数之和是增函数),且1e 20,(1)e 102f f ⎛⎫''=<=-> ⎪⎝⎭,所以函数()g x '存在唯一地零点0x (得21e ,e 2,1e )2(000000+==+=+-x x x x x x ),再由均值不等式可得 00min 0000011()()e ln(2)ln e 22022x x f x f x x x x x -⎛⎫==-+=-=++-> ⎪++⎝⎭(因为可证01x ≠-)所以欲证结论成立.例6 求证:e ln 2x x >+.证法1 (例5地证法)用导数可证得1e +≥x x (当且仅当0=x 时取等号),2ln 1+≥+x x (当且仅当1=x 时取等号),所以欲证结论成立.证法2 (例2地证法)设x x f x ln e )(-=,得1()e (0)x f x x x'=->.可得()f x '是增函数且1110,(0)02 1.52g g ⎛⎫''-=-<=> ⎪⎝⎭,所以函数)(x g 存在唯一地零点0x (得00001e ,e x x x x -==),再由均值不等式可得 00min 0000011()()e ln ln e 2x x f x f x x x x x -==-=-=+>(因为可证01x ≠) 所以欲证结论成立.注 欲证函数不等式()()(,f x g x x I I >∈是区间),只需寻找一个函数()h x (可以考虑曲线()y h x =是函数(),()y f x y g x ==地公切线)使得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到,而这用导数往往容易解决.下面再给出例5和例6地联系.对于两个常用不等式e 1,ln 1x x x x ≥+≤-,笔者发现e xy =与ln y x =互为反函数,1y x =+与1y x =-也互为反函数,进而得到了本文地几个结论.定理 已知(),()f x g x 都是单调函数,它们地反函数分别是11(),()fx g x --. (1)若()f x 是增函数,()()f s g s ≥恒成立,则11()()ft g t --≤恒成立; (2)若()f x 是减函数,()()f s g s ≥恒成立,则11()()ft g t --≥恒成立; (3)若()f x 是增函数,()()f s g s ≤恒成立,则11()()ft g t --≥恒成立; (4)若()f x 是减函数,()()f s g s ≤恒成立,则11()()ft g t --≤恒成立. 证明 下面只证明(1),(4);(2),(3)同理可证.(1)设不等式()()f s g s ≥中s 地取值范围是A ,当s A ∈时,(),()f s g s 地取值范围分别是,A A f g ,得不等式11()()f t g t --≤中t 地取值范围是A A f g ⋂,所以1000,,(),()A A t f g x A t g x x g t -∀∈⋂∃∈==.由()()f s g s ≥恒成立,得00()()g x f x ≤.由()f x 是增函数,得1()f x -也是增函数,所以1110000(())(())(())f g x f f x x g g x ---≤==,即11()()f t g t --≤.得11,()()A A t f g f t g t --∀∈⋂≤,即欲证结论成立.(4)设不等式()()f s g s ≤中s 地取值范围是A ,当s A ∈时,(),()f s g s 地取值范围分别是,A A f g ,得不等式11()()f t g t --≥中t 地取值范围是A A f g ⋂,所以1000,,(),()A A t f g x A t g x x g t -∀∈⋂∃∈==.由()()f s g s ≤恒成立,得00()()g x f x ≥.由()f x 是减函数,得1()f x -也是减函数,所以1110000(())(())(())f g x f f x x g g x ---≤==,即11()()f t g t --≤.得11,()()A A t f g f t g t --∀∈⋂≤,即欲证结论成立.推论1 已知(),()f x g x 都是单调函数,它们地反函数分别是11(),()fx g x --. (1)若(),()f x g x 都是增函数,则()()f s g s ≥恒成立11()()ft g t --⇔≤恒成立; (2)若(),()f x g x 都是减函数,则()()f s g s ≥恒成立11()()ft g t --⇔≥恒成立. 证明 (1)由定理(1)知“⇒”成立.下证“⇐”:因为()g x 是增函数,11()()g t f t --≥恒成立,11(),()g x f x --地反函数分别是(),()g x f x ,所以由“⇒”地结论得()()g s f s ≤恒成立,即()()f s g s ≥恒成立.(2)同(1)可证.推论2 把定理和推论1中地“,≥≤”分别改为“,><”后,得到地结论均成立. (证法也是把相应结论中地“,≥≤”分别改为“,><”.)在例5与例6这一对姊妹结论“e ln(2),ln e 2x x x x >+<-”中e x y =与ln y x =互为反函数,ln(2)y x =+与e 2x y =-也互为反函数,所以推论2中地结论“若(),()f x g x 都是增函数,则()()f s g s >恒成立11()()ft g t --⇔<恒成立”给出了它们地联系.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用导数证明函数不等式的四种常用方法本文将介绍用导数证明函数不等式的四种常用方法.例1 证明不等式:)0)1ln(>+>x x x (.证明 设)0)(1ln()(>+-=x x x x f ,可得欲证结论即()(0)(0)f x f x >>,所以只需证明函数()f x 是增函数.而这用导数易证:1()10(0)1f x x x '=->>+ 所以欲证结论成立. 注 欲证函数不等式()()()f x g x x a >>(或()()()f x g x x a ≥≥),只需证明()()0()f x g x x a ->>(或()()0()f x g x x a -≥≥).设()()()()h x f x g x x a =->(或()()()()h x f x g x x a =-≥),即证()0()h x x a >>(或()0()h x x a ≥≥).若()0h a =,则即证()()()h x h a x a >>(或()()()h x h a x a ≥≥).接下来,若能证得函数()h x 是增函数即可,这往往用导数容易解决.例2 证明不等式:)1ln(+≥x x .证明 设()ln(1)(1)f x x x x =-+>-,可得欲证结论即()0(1)f x x >>-.显然,本题不能用例1的单调性法来证,但可以这样证明:即证)1)(1ln()(->+-=x x x x f 的最小值是0,而这用导数易证:1()1(1)11x f x x x x '=-=>-++ 所以函数()f x 在(1,0],[0,)-+∞上分别是减函数、增函数,进而可得min ()(1)0(1)f x f x =-=>-所以欲证结论成立.注 欲证函数不等式()()()(,f x g x x I I >≥∈是区间),只需证明()()()0()f x g x x I ->≥∈.设()()()()h x f x g x x I =-∈,即证()()0()h x x I >≥∈,也即证min ()()0()h x x I >≥∈(若min ()h x 不存在,则须求函数()h x 的下确界),而这用导数往往容易解决.例3 (2014年高考课标全国卷I 理科第21题)设函数1e ()e ln x xb f x a x x -=+,曲线()y f x =在点(1,(1))f 处的切线为e(1)2y x =-+.(1)求,a b ;(2)证明:()1f x >.解 (1)112()e ln e e e x x x x a b b f x a x x x x--'=+-+. 题设即(1)2,(1)e f f '==,可求得1,2a b ==.(2)即证2ln e (0)ex x x x x ->->,而这用导数可证(请注意11e ≠): 设()ln (0)g x x x x =>,得min 11()e e g x g ⎛⎫==- ⎪⎝⎭. 设2()e (0)ex h x x x -=->,得max 1()(1)e h x h ==-. 注 i)欲证函数不等式()()(,f x g x x I I ≥∈是区间),只需证明min max ()()()f x g x x I ≥∈,而这用导数往往可以解决.欲证函数不等式()()(,f x g x x I I >∈是区间),只需证明min max ()()()f x g x x I >∈,或证明min max ()()()f x g x x I ≥∈且两个最值点不相等,而这用导数往往也可以解决.ii)例3第(2)问与《2019年曲靖一中高考冲刺卷理科数学(一)》压轴题第(3)问完全一样,这道压轴题(即第22题)是:已知函数2()ln ,()3f x x x g x x ax ==-+-.(1)求函数()f x 在[,2](0)t t t +>上的最小值;(2)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围;(3)证明:对一切(0,)x ∈+∞,都有12ln e e x x x>-成立.例4 (2018年高考北京卷理科第18题)设L 为曲线C :y =ln x x在点(1,0)处的切线. (1)求L 的方程;(2)证明:除切点(1,0)之外,曲线C 在直线L 的下方.解 (1)(过程略)L 的方程为y =x -1.(2)即证1ln -≤x xx (当且仅当1=x 时取等号). 设x x x x g ln 1)(--=,得g ′(x )=x 2-1+ln x x 2)0(>x . 当0<x <1时,x 2-1<0,ln x <0,所以g ′(x )<0,得g (x )单调递减;当x >1时,x 2-1>0,ln x >0,所以g ′(x )>0,得g (x )单调递增.所以0)1()(min ==g x g ,得欲证结论成立.(2)的另解 即证1ln -≤x x x (当且仅当1=x 时取等号),也即证0ln 2≥--x x x (当且仅当1=x 时取等号).设x x x x g ln )(2--=,可得)0)(1(12)(>-+='x x xx x g . 进而可得0)1()(min ==g x g ,所以欲证结论成立.(2)的再解 即证1ln -≤x xx (当且仅当1=x 时取等号),也即证x x x -≤2ln (当且仅当1=x 时取等号). 如图1所示,可求得曲线x y ln =与)0(2>-=x x x y 在公共点(1,0)处的切线是1-=x y ,所以接下来只需证明)0(1,1ln 2>-≤--≤x x x x x x (均当且仅当1=x 时取等号)前者用导数易证,后者移项配方后显然成立.所以欲证结论成立.图1例5 (2018年高考新课标全国卷II 理21(2)的等价问题)求证:e ln(2)x x >+.分析 用前三种方法都不易解决本问题,下面介绍用导数证明函数不等式的第四种常用方法.设()e (2),()ln(2)(2)xf x xg x x x =>-=+>-,我们想办法寻找出一个函数()h x ,使得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到.当然,函数()h x 越简洁越好.但()h x 不可能是常数(因为函数()ln(2)(2)g x x x =+>-的值域是R ),所以我们可尝试()h x 能否为一次函数,当然应当考虑切线.如图2所示,可求得函数()e (2)x f x x =>-在点(0,1)A 处的切线是1y x =+,进而可得()()(2)f x h x x ≥>-;还可求得函数()ln(2)(2)g x x x =+>-在点(1,0)B -处的切线也是1y x =+,进而可得()()(2)h x g x x ≥>-.图2进而可用导数证得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到,所以欲证结论成立.当然,用例2的方法,也可给出该题的证明(设而不求):设)2ln(e )(+-=x x f x ,得1()e (2)2x f x x x '=->-+. 可得()f x '是增函数(两个增函数之和是增函数),且1e 20,(1)e 102f f ⎛⎫''=<=-> ⎪⎝⎭,所以函数()g x '存在唯一的零点0x (得21e ,e 2,1e )2(000000+==+=+-x x x x x x ),再由均值不等式可得 00min 0000011()()e ln(2)ln e 22022x x f x f x x x x x -⎛⎫==-+=-=++-> ⎪++⎝⎭(因为可证01x ≠-)所以欲证结论成立.例6 求证:e ln 2x x >+.证法1 (例5的证法)用导数可证得1e +≥x x (当且仅当0=x 时取等号),2ln 1+≥+x x (当且仅当1=x 时取等号),所以欲证结论成立.证法2 (例2的证法)设x x f x ln e )(-=,得1()e (0)x f x x x'=->.可得()f x '是增函数且1110,(0)02 1.52g g ⎛⎫''-=-<=> ⎪⎝⎭,所以函数)(x g 存在唯一的零点0x (得00001e ,e x x x x -==),再由均值不等式可得 00min 0000011()()e ln ln e 2x x f x f x x x x x -==-=-=+>(因为可证01x ≠) 所以欲证结论成立.注 欲证函数不等式()()(,f x g x x I I >∈是区间),只需寻找一个函数()h x (可以考虑曲线()y h x =是函数(),()y f x y g x ==的公切线)使得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到,而这用导数往往容易解决.下面再给出例5和例6的联系.对于两个常用不等式e 1,ln 1x x x x ≥+≤-,笔者发现e xy =与ln y x =互为反函数,1y x =+与1y x =-也互为反函数,进而得到了本文的几个结论.定理 已知(),()f x g x 都是单调函数,它们的反函数分别是11(),()fx g x --. (1)若()f x 是增函数,()()f s g s ≥恒成立,则11()()ft g t --≤恒成立; (2)若()f x 是减函数,()()f s g s ≥恒成立,则11()()ft g t --≥恒成立; (3)若()f x 是增函数,()()f s g s ≤恒成立,则11()()ft g t --≥恒成立; (4)若()f x 是减函数,()()f s g s ≤恒成立,则11()()ft g t --≤恒成立. 证明 下面只证明(1),(4);(2),(3)同理可证.(1)设不等式()()f s g s ≥中s 的取值范围是A ,当s A ∈时,(),()f s g s 的取值范围分别是,A A f g ,得不等式11()()f t g t --≤中t 的取值范围是A A f g ⋂,所以1000,,(),()A A t f g x A t g x x g t -∀∈⋂∃∈==.由()()f s g s ≥恒成立,得00()()g x f x ≤.由()f x 是增函数,得1()f x -也是增函数,所以1110000(())(())(())f g x f f x x g g x ---≤==,即11()()f t g t --≤.得11,()()A A t f g f t g t --∀∈⋂≤,即欲证结论成立.(4)设不等式()()f s g s ≤中s 的取值范围是A ,当s A ∈时,(),()f s g s 的取值范围分别是,A A f g ,得不等式11()()f t g t --≥中t 的取值范围是A A f g ⋂,所以1000,,(),()A A t f g x A t g x x g t -∀∈⋂∃∈==.由()()f s g s ≤恒成立,得00()()g x f x ≥.由()f x 是减函数,得1()f x -也是减函数,所以1110000(())(())(())f g x f f x x g g x ---≤==,即11()()f t g t --≤.得11,()()A A t f g f t g t --∀∈⋂≤,即欲证结论成立.推论1 已知(),()f x g x 都是单调函数,它们的反函数分别是11(),()fx g x --. (1)若(),()f x g x 都是增函数,则()()f s g s ≥恒成立11()()ft g t --⇔≤恒成立; (2)若(),()f x g x 都是减函数,则()()f s g s ≥恒成立11()()ft g t --⇔≥恒成立. 证明 (1)由定理(1)知“⇒”成立.下证“⇐”:因为()g x 是增函数,11()()g t f t --≥恒成立,11(),()g x f x --的反函数分别是(),()g x f x ,所以由“⇒”的结论得()()g s f s ≤恒成立,即()()f s g s ≥恒成立.(2)同(1)可证.推论2 把定理和推论1中的“,≥≤”分别改为“,><”后,得到的结论均成立. (证法也是把相应结论中的“,≥≤”分别改为“,><”.)在例5与例6这一对姊妹结论“e ln(2),ln e 2x x x x >+<-”中e x y =与ln y x =互为反函数,ln(2)y x =+与e 2x y =-也互为反函数,所以推论2中的结论“若(),()f x g x 都是增函数,则()()f s g s >恒成立11()()f t g t --⇔<恒成立”给出了它们的联系.。