考研高等数学重要定理必看(6大定理)
考研数学必考的定理证明整理

考研数学必考的定理证明整理在考研数学中,有一些定理是非常重要且必考的,掌握了这些定理的证明方法,可以在考试中帮助我们更好地理解和解答数学问题。
下面整理了一些考研数学中必考的定理证明,希望对大家复习有所帮助。
1.逆序数定理:逆序数是指在一个排列中,如果一个数之前有比它大的数,则称这个数是逆序的。
逆序数定理指出,对于任意的排列,其逆序数的奇偶性与该排列的逆序数的个数是相同的。
即如果逆序数的个数是偶数,则排列的逆序数是偶数;如果逆序数的个数是奇数,则排列的逆序数是奇数。
证明思路:利用归纳法进行证明,首先证明初始情况成立,然后假设逆序数的定理对于所有小于n的情况成立,再证明对于n的情况也成立。
2.幂级数:幂级数在数学中是一个重要的概念,特别是在微积分和函数论中应用广泛。
幂级数的收敛半径和收敛域是幂级数的重要性质。
幂级数的收敛半径可以通过柯西-阿达玛公式求得,而收敛域的边界上收敛性需要通过级数的边界性分析得到。
证明思路:根据幂级数的定义,首先确定幂级数的通项项、幂级数求和函数的定义域和收敛半径。
然后通过柯西-阿达玛公式计算幂级数的收敛半径。
最后通过比较判断幂级数的收敛性。
3.极值定理:极值定理也是考研中的一个重要定理,它指出一个连续函数在闭区间上必有最大值和最小值。
极值定理有两个重要的推论,即费马定理和魏尔斯特拉斯定理。
费马定理指出,如果函数在一点处取得极值,则该点处的导数为0。
魏尔斯特拉斯定理指出,一个函数在闭区间上连续,则它在该区间上必有最大值和最小值。
证明思路:根据连续函数的定义和闭区间的定义,利用极值定理的条件和结论,通过反证法进行证明。
首先假设函数在闭区间上没有取得最大值或最小值,然后通过构造序列和利用辅助函数等方法逐步推导出矛盾,从而证明极值定理成立。
以上是一些考研数学中必考的定理证明,这些定理在数学理论和应用中都有着重要的地位,掌握了它们的证明方法可以提高我们对数学知识的理解和应用能力。
在备考过程中,除了熟悉定理的证明过程,还要注意练习相关的例题和应用题,加强对定理的理解和掌握,提高解题的能力。
考研高等数学有哪些重要定理证明

考研高等数学有哪些重要定理证明考研高等数学有哪些重要定理证明考生们在进行考研高等数学的复习阶段时,有很多重要定理证明需要去掌握。
店铺为大家精心准备了考研高等数学定理证明的复习指导,欢迎大家前来阅读。
考研高等数学重要的定理证明高数定理证明之微分中值定理:这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。
除泰勒中值定理外,其它定理要求会证。
费马引理的条件有两个:1.f'(x0)存在2.f(x0)为f(x)的极值,结论为f'(x0)=0。
考虑函数在一点的导数,用什么方法?自然想到导数定义。
我们可以按照导数定义写出f'(x0)的极限形式。
往下如何推理?关键要看第二个条件怎么用。
“f(x0)为f(x)的极值”翻译成数学语言即f(x)-f(x0)<0(或>0),对x0的某去心邻域成立。
结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。
若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。
费马引理中的“引理”包含着引出其它定理之意。
那么它引出的定理就是我们下面要讨论的罗尔定理。
若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。
该定理的条件和结论想必各位都比较熟悉。
条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。
该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。
如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。
闲言少叙,言归正传。
既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。
我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。
话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。
考研数学常见定理速记口诀

考研数学常见定理速记口诀数学是考研考试中必考的科目之一,在数学考试中,掌握和记忆数学定理是提高解题效率和答题准确性的关键。
为了帮助考生更好地备考和记忆常见数学定理,以下是一些常见数学定理的速记口诀,希望能对考生们有所帮助。
一、数列相关定理1. 等差数列的前 n 项和:差乘商,除以二,2. 等差数列通项公式:首项加等比,乘以项数减 1,3. 等比数列的前 n 项和:首项减末项,乘以公比除以 1 减公比,4. 等比数列通项公式:首项乘等比,乘以公比的 n 减 1 次方。
二、集合相关定理1. 全集的补集是空集,空集的补集是全集,2. 交换率、结合率都是集合运算法则,3. 并集运算满足交换、结合和分配律,4. 交集运算满足交换、结合和分配律。
三、导数相关定理1. 基本函数导数会,求导法则要牢记,2. 一切理论解析,函数变量要贴身。
四、概率相关定理1. 加法规则一定记,互斥模式别忘,2. 乘法规则切记住,独立事件要相乘,3. 做题中来了全集,概率一定是 1。
五、三角函数相关定理1. 正弦的定理好记牢,比与边成比例,2. 余弦的定理知根据,边与边构造函数,3. 正切的定理对角度,弧的比值好记得。
六、极限相关定理1. 夹逼定理用好用,无穷小量不放过,2. 极限运算确定性,变量逼近难不倒。
以上口诀只是对常见数学定理的简要概括,希望考生们能够通过这些口诀记忆和掌握数学定理,提高解题的速度和准确性。
然而,仅仅依靠速记口诀可能不足以完全理解和掌握定理的应用,考生们还需要在备考过程中深入学习和练习,加强对各个定理的理解和应用能力。
最后,祝愿所有考生在考研数学考试中取得优异成绩!加油!。
考研数学中的常见定理整理

考研数学中的常见定理整理数学作为一门精密的科学,广泛应用于各个领域。
在考研数学中,常见的定理扮演着至关重要的角色,因为它们是建立数学体系的基石。
本文将整理一些考研数学中常见的定理,帮助考生更好地掌握和应用这些定理。
1. 极限相关定理1.1 Cauchy极限定理若对于任意给定的正数ε,存在正整数N,使得当n > N时,满足|an - a| < ε,其中an为数列,a为实数常数,则称a为该数列的极限。
1.2 Heine定理若函数f(x)在点x0的某个领域内有定义,且对于任何一个收敛到x0的数列{x_n},都有f(x_n)收敛到A,则称A为f(x)在x0处的极限。
2. 微分与积分相关定理2.1 导数定义定理若函数f(x)在点x0处有定义,则函数f(x)在x0处可导的充要条件是极限:lim (h→0) [f(x0 + h) - f(x0)] / h存在。
2.2 四则运算法则若函数f(x)和g(x)在点x0处可导,则下列定理成立:(a) (f(x) ± g(x))’ = f’(x) ± g’(x)(b) (c f(x))’ = cf’(x),其中c为常数。
2.3 积分定义定理若函数f(x)在区间[a, b]上有定义,且在[a, b]上可积分,则函数F(x) = ∫[a, x] f(t) dt在[a, b]上连续,并且在[a, b]上满足F’(x) = f(x)。
3. 矩阵和行列式相关定理3.1 矩阵的转置和逆矩阵定理(a) (A^T)^T = A(b) (AB)^T = B^T A^T(c) (A^T)^-1 = (A^-1)^T(d) (AB)^-1 = B^-1 A^-13.2 行列式的性质定理(a) 互换行列式的两行,行列式的值不变。
(b) 以某一行的元素乘以一个数k,再加到另一行对应元素上,行列式的值不变。
(c) 有两行完全相同或成比例,则行列式的值为0。
(d) 行列式的转置等于行列式本身。
考研数学理解高等数学中的重要定理与公式应用

考研数学理解高等数学中的重要定理与公式应用重要定理与公式的应用在高等数学的学习中起到了关键性的作用。
这些定理和公式是数学领域中的基石,被广泛应用于解决各种问题和证明数学的相关理论。
本文将讨论数学中的一些重要定理和公式,并探讨它们在实际问题中的应用。
一、极限与连续在高等数学中,极限理论是非常重要的基础。
极限是指当自变量趋近于某个确定的值时,函数的取值会趋近于一个特定的值。
极限有许多重要的性质和定理,如极限的唯一性、四则运算法则等。
这些定理在数学推导和证明中经常被使用。
公式1:极限的四则运算法则设lim(f(x))=A,lim(g(x))=B,则以下性质成立:(1)lim(f(x)+g(x))=A+B(2)lim(f(x)-g(x))=A-B(3)lim(f(x)×g(x))=A×B(4)lim(f(x)/g(x))=A/B (B≠0)在实际问题中,极限的应用非常广泛。
例如,在物理学中,我们经常需要求解速度、加速度等问题,这些问题可以通过极限的方法来求解。
同时,在经济学和金融学中,也可以应用极限的概念来进行分析和建模。
二、微分与导数微分学是高等数学中的一个重要分支,它研究函数的变化率和相关的性质。
微分学的核心概念是导数,导数描述了函数在某一点的瞬时变化率。
微分与导数的定理和公式在求解最值、曲线的切线、近似计算等方面起着至关重要的作用。
定理1:导数的基本计算法则对于可导函数f(x),常数a和b,以下公式成立:(1)导数的线性性质:[af(x)+bg(x)]' = af'(x) + bg'(x)(2)乘积法则:[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)(3)商法则:[f(x)/g(x)]' = [f'(x)g(x) - f(x)g'(x)] / [g(x)]^2微分学的应用非常广泛。
在物理学中,微分学被用来描述运动的变化率,求解速度、加速度等问题。
高等数学考研几个重要定理的证明

1、 罗尔定理(考过)如果函数f(x)在闭区间[a ,b ]上连续,在开区间(a ,b )上可导,且f(a)= f(b),则在开区间(a ,b )内至少存在一点£,使得)('ξf =0.证: ∵函数f(x)在闭区间[a ,b ]上连续∴由最大最小值定理有: m< f(x)<M(1) 若m=M ,此时f(x)在[a ,b ]上为恒定值对任意的x ∈(a ,b )都有)('ξf =0。
(2) 若m ≠M , 因为f(a)= f(b),则m 和M 中至少有一个不等于区间的端点值。
不妨设M ≠f(a),则存在ξ∈(a ,b )使得)(ξf =M 。
∴ 对任意的x ∈[a ,b ]使得f(x)≤)(ξf ,从而由费马引理,可知)('ξf =0.证毕。
2、 拉格朗日中值定理(考过)如果函数f(x)满足:(1)在闭区间[a ,b ]上连续;(2)在开区间(a ,b )上可导,那么在(a ,b )内至少存在(a ,b )一点ξ,使得))((')()(a b f a f b f -=-ξ成立。
证: 引进辅助函数 )()()()()()(a x ab a f b f a f x f x -----=ϕ 易知F (a )=F (b )=0,且F (x )在[a ,b ]内连续,在(a ,b )内可导 且a b a f b f x f x ---=)()()(')('ϕ 根据罗尔定理,可知在(a ,b )内至少存在有一点ξ,使)('x ϕ=0,即0)()()('=---ab a f b f f ξ 由此可得)(')()(ξf a b a f b f =--, 即))((')()(a b f a f b f -=-ξ证毕。
三、积分中值定理(考过)如果函数f (x )在积分区间[a ,b ]上连续,则在(a ,b )内至少存在一点ξ,使得))(()(a b f dx x f ba-=⎰ξ证:由于f (x )在[a ,b ]上连续,则存在m ,M 使得M x f m ≤≤)(又由定积分估值定理,有)()()(a b M dx x f a b m ba-≤≤-⎰即 M a b dx x f m ba ≤-≤⎰)(由介值定理得: a b dx x f f ba -=⎰)()(ξ证毕。
河南省考研数学复习资料高等数学重点定理总结

河南省考研数学复习资料高等数学重点定理总结河南省考研数学复习资料-高等数学重点定理总结高等数学是考研数学科目中的重点和难点之一,对于考研学子来说,熟悉和掌握高等数学的重点定理是必不可少的。
在这篇文章中,我将为大家总结河南省考研数学复习资料中的高等数学重点定理,希望对大家的备考有所帮助。
一、数列与级数1. 数列极限柯西收敛原理:数列收敛的柯西收敛原理表述了数列收敛的一个重要条件。
2. 级数求和号与积分号的对比:通过对比求和号与积分号之间的联系和区别,可以深入理解级数的性质。
3. 收敛级数的性质正项级数收敛的判定:正项级数收敛的多种判定方法,如比较判别法、比值判别法和根值判别法等。
4. 幂级数幂级数收敛半径与收敛域:幂级数的收敛半径和收敛域在计算中起到重要作用。
二、微分学1. 函数极限与连续性极限的性质与运算:熟悉函数极限的性质与运算是解决微分学问题的关键。
2. 导数与微分基本的导数公式:高等数学中常用的导数公式,包括常数函数、幂函数和指数函数的导数等。
3. 高阶导数与高阶微分函数的高阶导数与高阶微分:了解高阶导数与高阶微分的计算方法,掌握求解相关问题的技巧。
4. 微分中值定理罗尔定理、拉格朗日中值定理和柯西中值定理:三个微分中值定理的应用场景和计算方法,可以帮助我们解决相关的问题。
5. 函数的单调性与曲线的凹凸性单调性与导数:借助导数判断函数的单调性,结合凹凸性判别条件判断函数的凹凸性。
三、积分学1. 不定积分基本初等函数的不定积分:熟悉基本初等函数的不定积分公式和计算方法。
2. 定积分定积分的性质与运算:熟悉定积分的性质与运算,掌握换元积分法和分部积分法等计算技巧。
3. 微积分基本定理第一、第二微积分基本定理:掌握微积分基本定理的应用和计算方法。
4. 积分中值定理平均值定理和柯西中值定理:了解积分中值定理的应用场景和计算方法,可以帮助我们解决相关的问题。
四、级数、随机变量与概率论1. 幂级数展开函数的幂级数展开:了解如何通过幂级数展开将函数展开成近似多项式的形式。
天津市考研数学复习资料高等数学重要定理整理

天津市考研数学复习资料高等数学重要定理整理在天津市考研数学复习中,高等数学是一门重要的学科,涵盖了各种重要定理。
为了帮助考生更好地复习,本文将对高等数学的一些重要定理进行整理和梳理。
1. 极限定理(1) 函数极限的四则运算性质:两个函数极限之和的极限等于两个函数各自的极限之和,两个函数极限的差的极限等于两个函数各自的极限之差,两个函数极限的积的极限等于两个函数各自的极限之积,两个函数极限的商的极限等于两个函数各自的极限之商(前提是除数不为零)。
(2) 夹逼定理:如果一个函数被两个有限的函数夹住,而这两个函数的极限值相等,那么被夹住的函数也存在极限,并且极限等于这两个函数的极限值。
(3) 单调有界准则:单调递增有上界的数列必定存在极限,单调递减有下界的数列必定存在极限。
(4) 柯西收敛原理:一个数列收敛的充要条件是它是柯西数列。
2. 导数和微分(1) 极限定义:导数的极限定义是函数在某点的切线斜率的极限。
(2) 导函数的四则运算:导函数具有四则运算的性质。
(3) 高阶导数:对于一个可导函数,可以计算其高阶导数。
(4) 微分的定义:微分是函数在某点的变化量与自变量的增量之比。
3. 积分(1) 定积分的定义:定积分是函数曲线与x轴之间的面积。
(2) 定积分的性质:定积分具有线性性质、积分中值定理、换元积分法等性质。
(3) 牛顿-莱布尼茨公式:定积分与不定积分之间有牛顿-莱布尼茨公式的关系。
4. 级数(1) 等比数列求和:等比数列求和公式是一个重要的级数求和公式。
(2) 收敛级数:收敛级数的定义是其部分和数列存在极限。
(3) 收敛级数的性质:收敛级数具有线性性质和比较判别法等性质。
(4) 幂级数:幂级数是一个重要的级数形式,可以展开为函数。
5. 偏导数和多元函数的极值(1) 偏导数的定义:多元函数对于某一个自变量求导时,将其他自变量视为常数进行求导。
(2) 偏导数的计算:可以利用偏导数的定义和求导法则计算偏导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
饶思中
《考研管综逻辑强化讲义》
《管理类联考数学阅卷人核心笔记·逻辑》
《管理类联考数学阅卷人核心笔记·写作》
《管理类联考数学阅卷人核心笔记·写作》
数学冲刺
管理类联考数学冲刺串讲,系统串联知识体系,指导考生针对核心题深度 学习
8
刘京环
逻辑真题解析
了解逻辑真题的主要考查内容,试题结构,预测逻辑真题的命题趋向
2
王晓东
《考研管综真题》
数学基础
通过学习管理类联考数学的基本概念、基本理论、基本方法,为强化提高 打基础
20
刘京环
《考研管综初数基础讲义-刘京环》
《管理类联考数学阅卷人核心教程》
《经济类联考综合阅卷人核心笔记·写作》
包含课程:
政治,英语,数学一(数学三)+金融硕士专业课(根据学校的要求不 同,部分学校有经济类联考的课程)
包含服务:
1、全程 24 小时在线答疑
2、1 次择校择专业指导
3、3 次计划调整服务
4、3 次阶段性测评
5、5 次作文批改
经济类联考数学全程规划班
写作冲刺
掌握写作大小作文的模版,能利用模版衍生解决应试模版的能力,规范写 作
8
王诚
《考研管综写作冲刺讲义》
写作模考
通过应试技巧的学习,提供写作的速度,发现考试中的问题,及时解决, 提高考试分值
4
王诚
《考研管综写作 4 套卷》
掌握经济类联考数学的复习方法,制定全复习规划
1
李擂
《考研经综数学导学讲义》
无
逻辑真题解析
了解逻辑真题的主要考查内容,试题结构,预测逻辑真题的命题趋向
2
王晓东
《经济类联考综合真题及其答案》
高等数学基础班
全面学习高等数学的基本知识点,理解基本概念,掌握基本运算方法,为 强化提高打下基础。
16
李擂
《考研经综数学基础讲义》
《经济类联考综合阅卷人核心教程》
高等数学
强化课程,依据考试大纲及历真题介绍分别高等数学、线性代数、概率论 主要知识点,归纳总结命题方向和常见的解题思想,结合强化课,帮助考生 进一步强化解题思路。
24
李擂
2
王晓东
《经济类联考综合真题及其答案》
高等数学基础班
全面学习高等数学的基本知识点,理解基本概念,掌握基本运算方法,为 强化提高打下基础。
16
李擂
《考研经综数学基础讲义》
《经济类联考综合阅卷人核心教程》
高等数学
强化课程,依据考试大纲及历真题介绍分别高等数学、线性代数、概率论 主要知识点,归纳总结命题方向和常见的解题思想,结合强化课,帮助考生 进一步强化解题思路。
《经济类联考综合阅卷人核心笔记·数学》
《经济类联考综合阅卷人核心笔记·数学》
逻辑强化
熟悉逻辑各题型的特点和表现形式,能熟练地运用各知识点和相关的逻辑 方法解题
16
饶思中
《考研管综逻辑强化讲义》
《经济类联考综合阅卷人核心笔记·逻辑》
《经济类联考综合阅卷人核心笔记·写作》
写作冲刺
掌握写作大小作文的模版,能利用模版衍生解决应试模版的能力,规范写 作
8
王诚
《考研经综写作冲刺讲义》
写作模考
通过应试技巧的学习,提供写作的速度,发现考试中的问题,及时解决, 提高考试分值
4
王诚
《考研管综写作 4 套卷》
考研高等数学重要定理必看(6 大定理)
考研高等数学重要定理必看(6 大定理),更多考研冲刺经验、考研备考指 导等信息,请及时关注
经济类联考数学全程规划班
掌握经济类联考数学的复习方法,制定全复习规划
1
李擂
《考研经综数学导学讲义》
无
逻辑真题解析
了解逻辑真题的主要考查内容,试题结构,预测逻辑真题的命题趋向
《考研管综初数冲刺讲义》
《管理类联考数学阅卷人核心预测 4 套卷》
逻辑冲刺
提高运用各种知识点和逻辑方法解答各种类型的逻辑题的数学能力;消灭 逻辑理解中的盲点和误区;提高解题的速度和正确率
4
饶思中
《考研管综逻辑冲刺讲义》
《管理类联考数学阅卷人考前 8 天写作大预测》
24
李擂
《经济类联考综合阅卷人核心笔记·数学》
《经济类联考综合阅卷人核心笔记·数学》
逻辑强化
熟悉逻辑各题型的特点和表现形式,能熟练地运用各知识点和相关的逻辑 方法解题
16
饶思中
《考研管综逻辑强化讲义》
《经济类联考综合阅卷人核心笔记·逻辑》
李擂
《考研经综数学冲刺讲义》
《经济类联考综合阅卷人核心预测 4 套卷》
逻辑冲刺
提高运用各种知识点和逻辑方法解答各种类型的逻辑题的综合能力;消灭 逻辑理解中的盲点和误区;提高解题的速度和正确率
4
饶思中
《考研经综逻辑冲刺讲义》
《经济类联考综合阅卷人考前 8 天写作大预测》
数学强化
依据考试大纲及历真题介绍管理数学数学主要知识点,归纳总结命题方向 和常见的解题思想。
32
刘京环
《考研管综初数强化讲义》
《管理类联考数学阅卷人核心笔记·数学》
逻辑强化
熟悉逻辑各题型的特点和表现形式,能熟练地运用各知识点和相关的逻辑 方法解题
写作强化
通过课程学习巩固考研写作的要点重点难点,并掌握写作的大体思路
12
王诚
《经济类联考综合阅卷人冲刺串讲
各科冲刺串讲,系统串讲各科知识体系,指导考生针对核心考点进行深度 学习。
8