数字显示电容表的制作方法
简易数字微电容表的设计

简易数字微电容表的设计【摘要】本文利用AT89C2051单片机设计一款可用于测量2uF以内微电容的数字电容表,系统采用3位半数字显示,最大显示值为1999,读数单位统一采用nf,量程分四档,读数分别乘以相应的倍率。
【关键词】AT89C2051;微电容;数字电容表0 引言在电子产品的生产和维修中,电容测量这一环节至关重要,一个好的电子产品应具备一定规格年限的使用寿命。
因此在生产这一环节中,对其产品的检测至关重要,而电容在基本的电子产品的集成电路部分有着其不可替代的作用。
同样,在维修人员在对电子产品的维修中,电路的检测是最基本的,有时需要检测电路中各个部件是否工作正常,电容器是否工作正常。
因此,设计可靠、安全、便捷的电容测试仪具有极大的现实必要性。
1 基本工作原理本文旨在利用单片机测量微电容,实现方案可有很多种,比如单片机结合555定时芯片,单片机结合电压比较器、利用专用电容测量芯片等方案。
由于AT89C2051单片机内部含有一个电压比较器,可以实现简单的模数转换,因此本文采用第二种方案。
1.1 电容测量原理本数字电容表以电容器的充电规律作为测量依据,测试原理见图1。
1.2 测量电路1.3 整体电路z电路由单片机电路、电容充电测量电路和数码显示电路等部分组成。
AT89C2051内部的电压比较器和电阻R2-R7等组成测量电路,其中R2-R5为量程电阻,由波段开关S1选择使用,电压比较器的基准电压由5V电源电压经R6、RP1、R7分压后得到,调节RP1可调整基准电压。
当P1.2口在程序的控制下输出高电平时,电容CX即开始充电。
量程电阻R2-R5每档以10倍递减,故每档显示读数以10倍递增。
由于单片机内部P1.2口的上拉电阻经实测约为200K,其输出电平不能作为充电电压用,故用R5兼作其上拉电阻,由于其它三个充电电阻和R5是串联关系,因此R2、R3、R4应由标准值减去1K,分别为999K、99K、9K。
由于999K和1M相对误差较小,所以R2还是取1M。
DIY数字显示直流电压表

DIY数字显示直流电压表最近想做一个电源,因为经常DIY,没有一个电源不像样子,虽然是业余的,但是电压有时也会有不同的电压值,如做成固定的电压应用起来就不方便,如做成可调的,电源值就不能直观的展示出来,每调一次就用万用表量一起也不方便。
如果有一个电压表装在电源上就方便多了,指针式的表头读起数来总是有点别扭,所以就想找一个数字式的电压表头。
因此在这样的背景下自己通过DIY 制作了一个4位数字显示的电压表头。
做数字式电压表用什么IC好呢?选来选去最后决定用ICL7017吧!定好芯片就开要画个完整的电路图。
既然要做就做好点,不想用洞洞板来接线路板,电线飞来飞去的有点头痛的感觉,所以还要画一块PCB板。
电路图及PCB板的设计如下图示:有了图就要准备物料了,不想一个一个的写出来,给个物料清单吧如下组件编号组件数值组件规格用量号C1 0.1uF 瓷片电容±20% 50V 1C2 100P 瓷片电容±5% 50V 1C3 0.1uF 金属膜电容±5% 63V 1C4 0.1uF 独石电容±5% 63V 1C6 0.22uF 金属膜电容±5% 63V 1C5 0.47uF 金属膜电容±5% 63V 1C7,C8 10uF/25V 电解电容+80-20% 2R1 150Ω金属膜电阻±1% 1/4W 1R8 1K 金属膜电阻±1% 1/4W 1R9 1M 1/2W 金属膜电阻±1% 1/2W 1R7 1M 金属膜电阻±1% 1/4W 1R3 2.95K 金属膜电阻±1% 1/4W 1R2,R5 10K 金属膜电阻±1% 1/4W 2R4 20K 金属膜电阻±1% 1/4W 1R6 154K 金属膜电阻±1% 1/4W 1R10 470K 金属膜电阻±1% 1/4W 1VR2 5K 精密微调电阻922C0 W 502 1D2,D3 4148 ST 1N4148 DO-35 2J1,J2 DC5V 鱼骨针2pin 2D1 DIODE 1N4004 DO-41 1DS1~4 HS-5161BS2 共阳8段数码管 4U1 ICL7107 IC ICL7107CPLZ DIP-40 1U2 TC4069 IC TC4069UBP DIP-14 1U3 TL431 IC TL431A TO-92 1IC插座14 pin 2.54mm 1IC插座40 pin 2.54mm 1PCB光板36x68x1.6mm 双面FR-4 1塑料外壳尺寸要与PCB板配合,网上购的 1镙丝 4锡线适量工具就是电子爱好者的常用工具了由于手头上没有150Ω的电阻就用100Ω串了个51Ω。
数字万用表检测电容的方法

数字万用表检测电容的方法
嘿,朋友们!今天咱来唠唠怎么用数字万用表检测电容呀!这可是个很实用的技能哦。
你看啊,电容就像是电路里的一个小仓库,能储存电荷呢。
那怎么知道这个小仓库好不好使呢?这就得靠我们的数字万用表啦!
先把万用表的旋钮转到电容测量的挡位,就像给它选好了专门的工具一样。
然后呢,把电容的两只脚插进万用表相应的插孔里,嘿,就跟给电容找了个合适的窝似的。
这时候,万用表就会显示出电容的数值啦!要是数值和电容上标的差不多,那说明这个电容挺健康的呀!要是差得老远,那可就得好好琢磨琢磨是不是电容出问题啦。
你说这是不是挺有意思的?就好像我们是医生,万用表是我们的听诊器,给电容做体检呢!
有时候啊,可能测出来的数值不太稳定,别着急,多测几次看看。
就像我们有时候看东西也会眼花一样,多瞅两眼心里才有底嘛。
还有哦,不同大小的电容测量的时候可得注意啦!小电容就像个小不点,得仔细点对待;大电容呢,就像个大块头,得有耐心哦。
想象一下,如果我们连电容的好坏都搞不清楚,那电路出问题了可咋办呀?就像一个人身体不舒服却不知道是哪里出了毛病,多让人着急呀!所以学会用数字万用表检测电容真的很重要呢。
大家可别小瞧这个小小的操作,它能帮我们解决很多电路上的问题呢!就像是一把钥匙,能打开电路世界的大门。
好啦,说了这么多,相信大家对用数字万用表检测电容也有了一定的了解吧!那就赶紧去试试吧,看看你能不能成为电容检测小能手!反正我觉得这事儿挺简单的,只要用心,谁都能学会!大家加油哦!。
数字式电容测量仪的设计与制作报告

数字式电容测量仪的设计与制作摘要: 针对现有的电容测量仪器量程不高且精度有限问题,使用AT89C51 单片机NE555 单稳态电路及LED 数码显示,通过程序设计,实现了一种直观经济的电容测试仪实验表明,该仪器提高了电容量程和测量精度,性能稳定可靠,可广泛应用于电容等电子元器件检测之中。
关键词: 电容测试仪; 单片机; 量程; 精度1.引言电容容量是电学理论分析与电路设计中的重要参数。
电容容量测量的主要方法有电桥平衡法、谐振频率测量法或脉冲宽度测量法等等。
交流电桥虽然测量准确,但存在笨重、操作繁琐、不能自动测量的缺陷。
目前一般的数字万用表测量电容的最大值仅为20 F,且测量精度有限,遇到要测量较大的电容时往往无能为力随着单片机性能的不断提高,将其应用于对电容的测量中具有方便直观经济的优点,并可以进行软件校准,减少测量误差( 一般能够精确在0.5% 左右) 同时,通过对LED 数码显示管或LCD 液晶的合理使用还可使检测人员能够更直观地读取电容数值。
2.设计要求与方案论证2.1设计要求1、基本部分(1) 自制稳压电源、绿色发光管指示接通电源,正常工作。
(2) 被测电容的容量在0.01μF至200μF范围内(3) 能够根据测量电容的大小自动转换合适量程。
(4) 用4个数码管或液晶显示测量结果,测量误差小于10%。
(5) 当电容值超出上述范围时测量仪溢出报警,黄色发光管LED点亮。
(6) 当电容短路时测量仪发出声光报警,红色发光管LED点亮。
2、发挥部分(1)被测电容的容量扩大到1000PF至1000μF范围内。
(2) 测量误差小于10%。
2.2方案设计根据设计要求,系统可以分为测量电路、通道选择和控制电路三大部分, 如图2-1 所示。
2-1 系统硬件结构框图2.2.1测量电路方案方案一测量电路的核心是由555 定时器构成的多谐振荡器, 将电容的大小转换成频率的大小,然后使用单片机计数后再运算求出电容值。
数字万用表测量电容的方法

数字万用表测量电容的方法数字万用表(DMM)是测量电子电路中电流、电压、电阻等重要参数的基本工具。
除了这些参数之外,数字万用表也可以用来测量电容。
本文将介绍数字万用表测量电容的方法。
电容是电子电路中一种重要的元件,它能够存储电荷。
电容的单位是法拉(farad,F),常见的电容值有皮法(pF)、纳法(nF)、微法(μF)和毫法(mF)等。
在数字万用表中,电容值通常以皮法、纳法和微法为单位进行测量。
先简单介绍一下数字万用表的显示屏幕。
显示屏幕通常由一个数字显示和若干个单位符号组成。
例如,万用表显示“12.3 μF”时,数字“12.3”表示电容的大小,而“μF”则表示电容的单位是微法。
在进行电容的测量之前,需要将数字万用表的旋钮旋转到电容测量档位。
通常,数字万用表的电容测量档位标识为“C”。
一些数字万用表具有多个电容测量档位,用户可以选择合适的档位进行测量。
如果不确定应该选择哪个档位,可以先选择较小的档位进行尝试。
当数字万用表放置在电容测量档位上时,将电容的两端与测试笔连接。
需要注意,由于数字万用表的测试笔本身也会带有一定的电容,因此在测量电容时应先将测试笔接触在一起,以消除测试笔带来的电容影响。
测量电容时,可以采用两种方法:直接测量和间接测量。
下面将分别介绍这两种方法。
直接测量电容直接测量方法是最简单的电容测量方法。
在直接测量法中,数字万用表需要直接测量连接在电容上的电压,以计算电容的大小。
具体来说,将数字万用表的测试笔连接到电容的两端,等待数字万用表稳定后记录电容的大小。
在使用直接测量方法时,应注意以下几点:1. 电容需要先被放电。
电容在使用前可能带有一定的电荷,这会影响电容的测量结果。
因此,在进行电容测量之前,需要先将电容放电。
2. 测量时应注意数字万用表的精度。
电容的精度与数字万用表的精度直接相关。
如果使用的数字万用表精度不高,则测量结果可能存在一定的误差。
3. 需要进行多次测量并取平均值。
电容的大小可能会因不同的时间和温度而发生变化。
简易数字电容表的设计说明

铁道大学四方学院毕业设计简易数字电容表的设计The Design of Simple Digital CapacitorPublished2013届电气工程系专业电气工程及其自动化学号学生指导老师完成日期 2013年5月27日毕业设计成绩单毕业设计任务书毕业设计开题报告摘要随着电子工业的发展,电子元器件急剧增加,电子元器件的适用围也逐渐广泛起来,正在不断地走向深入,同时带动传统控制检测日新月益更新。
在应用中我们常常要测定电容的大小,本文设计了一种测定电容的数字电容表。
本课题选用STC12C5204AD单片机作为一个核心部件来设计数字电容表,该设计的系统是由:单片机、555芯片电路、显示电路等部分组成。
采用Keil C语言进行编程,通过由555芯片和电容、电阻组成的振荡电路来输出方波,通过单片机软件计数,从而达到测量其频率,对数据进行进一步的计算从而得出被测电容的值,通过LCD1602显示出其测量值。
本次设计的数字电容表通过实际证明,该系统具有硬件设计简单,软件可调整性大,系统稳定可靠等优点,并且在体积方面比较小,方便携带,在生活生产中可以得到更普遍的应用。
关键字:单片机 LCD1602 数字电容表 555芯片AbstractWhile the traditional control test drive the crescent benefit update. With the development of electronic industry, electronic components increases rapidly, the scope of electronic components widely up gradually, in applications we often measured capacitance.The project uses STC12C5204AD MCU to design the digital capacitance meter, the design of the system is composed of MCU, 555: chip circuit, display circuit. Using Keil C programming language, through an oscillation circuit composed of 555 chip and capacitance, resistance to output square wave, measuring the pulse width of the microcontroller timer T0, so as to achieve the measurement of its cycle, and then through the single-chip microcomputer software counting, make further calculation of the data so that the measured capacitance value,the LCD1602 displays the measured value.The design of the digital capacitance meter through practice, this system has simple hardware design, the software can be adjusted, the advantages of the system is stable and reliable, and the volume is small, easy to carry, can be more generally applied in life and production.Key words:Single-chip LCD1602 Digital capacitance meter 555 chips目录第1章绪论 (1)1.1课题研究的目的及意义 (1)1.2国外研究现状 (1)1.3主要研究容 (2)第2章设计方案 (3)2.1设计要求 (3)2.2设计方案选择 (3)第3章硬件设计 (5)3.1硬件设计的任务 (5)3.2电容测量系统硬件设计 (5)3.2.1 STC12C5204AD单片机的使用 (5)3.2.2 电容测量系统555芯片电路 (8)3.2.3 电容测量系统显示电路 (10)第4章基于单片机电容测量软件设计 (13)4.1软件设计 (13)4.2软件设计任务 (13)4.3软件设计的工具 (13)4.4程序设计算法设计 (14)4.5软件设计流程 (15)4.5.1 主程序流程图 (15)4.5.2 中断子程序流程图 (16)4.5.3 显示子程序 (16)4.6编写程序 (17)4.7结果分析 (18)第5章结论 (19)参考文献 (20)致谢 (21)附录 (22)附录A外文资料 (22)附录B总原理图及仿真图 (35)附录C程序清单 (37)第1章绪论1.1 课题研究的目的及意义当今电子测试领域,电容的测量已经在测量技术和产品研发中应用的十分广泛。
一款简单的数字电感电容表设计制作
一款简单的数字电感电容表设计制作本文介绍一款由555时基构成多谐振荡器构成的参数变换电路,反相器、晶振构成标准脉冲发生器,以及三个独立LED数码管组成的数显电路构成的简易数字电感电容表,经过测试电路数显直观、方便有效,精确度高,较好的解决了设计时因制作均衡电容、音箱分频电感产生误差导致音质受损的问题,值得电子发烧友们亲自动手操作一试。
一、数字电感电容表的工作原理数字电感电容表原理图1、参数变换电路:参数变换电路由555时基构成多谐振荡器,可把被测元件Lx/Cx转换成与元件参数成正比的脉宽。
然后把这具有特定脉宽的矩形作为门控信号,在脉宽时间内对一个已知周期的标准脉冲计数通过显示器就可以把脉宽(实际上是元件参数)显示出来。
测量电容时(这时波段开关在5、6、7位)是以Cx为定时元件的多谐振荡器,产生的矩形波经3脚输出,送到计数器的门控端,脉宽tw=CRcln2。
测量电感时(波段开关在1、2、3位),是以Lx为定时元件的多谐振荡器,刚接通电源时,V2(6)=Vcc,555的3脚输出低电平,7脚通地,电源经RL的Lx充电,随着充电的进行,V2(6),当达到V2(6)=1/3Vcc时,电路翻转,3脚输出高电平,7脚与地断开,因Lx电流不能突变,必将产生一个感生电动势使D1导通,Lx经D1、RL放电,V2(6),当达到V2(6)=2/3Vcc时,电路又翻转,5脚输出低电平,7脚又与地接通,Lx又开始充电,这样5脚输出占空比为1:1的方波,送到计数器的门控端。
这时脉宽为tw=Lx/RLln2。
2、标准脉冲发生器:该电路由反相器3、4和晶体构成,晶振频率为1MHz,标准脉冲周期为T=1s,以它作为计数器的计数脉冲。
3、计数、显示电路:显示器由三位LED数码管构成,计数器由MC14553三位动态扫描计数器为核心构成。
T=1s。
(整理)电容ESR表的设计制作
电容ESR表的设计制作1电容ESR表的特点可能不少人都没听说过这种表。
笔者以前也仅知道,专业仪器的LCR电桥可以测量电容的ESR。
何为ESR?测量电容的ESR有什么用?相信很多读者心中会有这样的疑问。
为此,先进行简单的背景知识介绍。
一、背景知识介绍1.电容的ESRESR是英语Equivalent Series Resistance的缩写,意为等效串联电阻。
自身不会产生任何能量损耗的完美电容只存在于理论,实际的电容总是存在着一些缺陷。
这个损耗,在外部的表现就像一个电阻跟电容串联在一起。
另一方面,由于引线、卷绕等物理结构因素,电容内部还存在着电感成分。
因此,实际电容的等效模型可以表示为图1所示的模式。
其中电容C为理想电容,R为等效串联电阻,即ESR,L为等效串联电感,即ESL。
引入ESR和ESL,使得模型更接近于电容在电路中的实际表现。
图1 实际电容的等效模型图2 实际电容与理想电容的差别。
斜直线为理想电容的阻抗曲线,呈V字形的是实际电容的阻抗曲线。
图3 不同容量电容的阻抗特性曲线ESR的存在,令电容的行为表现背离其原来的定义。
比如说,理论上“电容两端的电压不能突变”,但实际上,ESR上会产生一定的压降,与突然施加的电流大小有关,令电容不再遵循理论规律。
又如,电容会因ESR上的功耗而产生内部发热。
笔者曾将两只早期生产的10μF/ 16V高ESR电解电容,正常地接到微型计算机开关电源的5V输出两端。
由于此处高频脉动电压较大,电容内部损耗产生的热量加热内部气体,发出“吱吱”之声,竟在几秒内导致电容炸开,前后两次均是如此。
图2、图3显示了电容的实际阻抗特性。
由于ESR以及ESL带来的影响,当频率上升到一定程度,即到了高频区,电容的阻抗不再遵从理论上的规律随频率的升高而降低。
在图2中的低频段,电容的容抗在起主要作用,基本上还遵从理想电容的规律。
在中间频率段,本应是ESL 与C共同谐振而呈现阻抗深谷,但有ESR的存在,改变了曲线的走向,换言之,ESR在这里起主要作用。
简易数字显示交流毫伏表的设计
3.2.1自动量程转换程序
有效值测量部分的待测电压范围宽,为保证精度,必须设定多个不同的量程。我们分别选择此两个增益调节范围为“交流毫伏档”和“交流伏特档”。前者把电压范围为10mV到2.82V的搬移到2V,后者能把1V到282V的电压搬移到2V。我们通过D/A转换器微调程控放大器的增益,使输入电压搬移到2V附近,然后经A/D转换器得到较为准确的结果电压(接近2V)。通过D/A给出的增益值和A/D得到的结果电压可以运算出待测电压的有效值。
2.系统的硬件设计与实现
2.1系统硬件的基本组成概述
本系统由电源、保护电路、分压跟随、信号放大、信号真有效值转换、A/D、D/A、CPLD频率测试、算法控制器、键盘、显示、语音播报、打印、电源等十几个模块组成。各部分紧密联系,形成了一套完善的测量系统。
2.2有效值测量单元电路的设计
2.2.1有效值转换电路总揽
4.2 指标测试...................................................6
4.2.1真有效值测试..............................................6
4.2.2频率测试..................................................7
1.001V
0.1%
5
100kHz
1.000V
1.007V
0.2%
6
1MHz
1.000V
0.997V
-0.3%
7
2MHz
1.000V
0.996V
-0.4%
幅值响应测试:
序号
频率
输入电压
测量结果
项目十二-数字毫伏表制作
MC14433是双积分A/D 转换器,采用电压—时间 间隔(V/T)转换方式。
(2)基准电源 输入5V电压,为A/D转换 器提供2V的基准电压
h
21
任务2 数字毫伏表制作
(3)七段显示译码器 将MC14433输出的三位半8421BCD码译成a~g七段信号
h
22
任务2 数字毫伏表制作
数字毫伏表测量精度高、读数清晰、使用方 便,是精确测量电压的实用仪表。
数字毫伏表由MC14433三位半A/D 转换器、 CD4511显示译码器、能隙基准电源 MC1403和共阴极三位半LED数码管组成。
h
4
任务1 认识模数转换(A/D) 和数模转换(D/A)
知识链接1 认识数模转换(D/A)
数字量到模拟量的转换称为数模转换,简称D/A转换。
学一学 DAC的主要技术指标
1. 转换精度 DAC的精度通常用分辨率表示。
n位DAC的分辨率即为n。
2. 转换速度 当DAC输入数字量发生变化时,输出模拟量需 要一段时间才能达到对应的量值。 3. 温度系数 输入数字量不变的情况下,输出模拟电压随温 度变化的变化量。
h
9
任务1 认识模数转换(A/D) 和数模转换(D/A)
(4)显示驱动器 三极管V1~V4接 MC14433的DS1~ DS4端输出选通脉 冲, 产生千、百、 十和个位的负向驱 动脉冲
h
23
任务2 数字毫伏表制作
扫描工作频率 DS1~DS4选通脉冲宽度18TCP,间隔2TCP 扫描周期约:T=(18+2)×5TCP 扫描工作频率 1 1 fCP 6k6H 6z6 H0z
位和千位输出端
20~23脚:Q0~Q3是A/D 转换数据BCD8421码 的4位输出端
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字显示电容表的制作方法
本文介绍一种测量范围为10pF~99.9μF的数字显示电容表。
附图是本电容表的电路图。
图中定时电路所用的IC3为NE556,内含两
个555定时器,S1-b所接的5个高精度电阻与要测量的电容器组成定时电路。
这样,所测电容器的容量大小就转换成了定时器的时间长短。
当定时器输出为高电平时,使NE556余下部分组成的振荡电路起振,这
样电容量转换成振荡的脉冲数,然后利用三位计数电路IC1(MC14553),转换成三位十进制数值,用MC14511B进行7段LED显示。
晶体管
Vl~V3(A1015)进行数位转换,这样就可把电容器的容量表示成三位数的值。
若数值在三位(999)以上,把溢出信号送到由两个施密特与非门
(MC14093B)组成的触发电路,使溢出信号LED亮。
在测量控制电路中,R0(15kΩ)电阻和C0(0.0022μF)电容器,使计数器ICl的复位信号稍稍延迟,这样,可以减少电路和布线电容的影响。