中型载货汽车车架有限元静力学分析

合集下载

货车车架的有限元分析及车厢对其性能的影响

货车车架的有限元分析及车厢对其性能的影响

)R 建立几何模型,应用 ’S/</ 建立有限元模型。
分别在各个铆钉的实际位置,应用短梁元来模拟部 件间铆钉连接, 短梁元用其真实的材料和截面尺寸, 并使其沿自身轴线的转动刚度为零,保持平动自由 度。整个车架有限元模型中包括: 梁单元 Q13PT , *.# 个; 壳单元 /8(QQ*+ , 节点 总 数 , $" -++ 个; $" .-" 个; 共 * 万余自由度。 为便于与测试结果进行比较,钢板弹簧、发动 机、 油箱、 驾驶室、 车厢等暂未考虑。 车架纵梁、横梁部分采用 $*U3 钢,部分采用 材料特性如表 $ 所列。 V!+.,
$
$"%
考虑车厢影响的车架强度、 刚度分析
考虑车厢影响的车架有限元模型的建立 车厢及货物通过木块将载荷传递给车架,车厢
!"#
车架弯曲工况计算 该工况主要对载货汽车在满载状态下四轮着地
与车架通过 > 型螺栓及铆接搭块上的螺栓连接。车 厢建模时采用三维梁单元,木块应用壳单元进行模 拟以便将载荷传递给车架。整个车架有限元模型中 包括: 梁单元 ?-*2@, 梁单元 A/B,%@@ , 01# 个; % ##6 个;壳单元 CDE??0’ , %# @6’ 个;节点总数: %0 6#% 个; 共 %" 万余自由度。载荷处理时将车厢自身质量 处理为惯性载荷, 其它与光车架时基本相同。
$"#
考虑车厢影响的车架强度、 刚度分析 车辆匀速直线行驶工况时车架强度、刚度分析
表明, 车架的变形主要表现为驾驶室部位抬起约 %"
,,, 尾 部 下 弯 %1 ,,, 与 光 车 架 变 形 相 比 减 小 1 车 架 应 力 的 最 大 值 为 %@% 9:; , 小于光车架时 ,,; 的 %6’ 9:; , 主要位于左右纵梁处。

重型半挂车架有限元静态分析

重型半挂车架有限元静态分析

重型半挂车架有限元静态分析2007-12-18 [ 字体:大中小 ]1 概述重型半挂车的车架为边梁式结构,中间有两根主承载梁纵梁,纵梁为优质成型工字钢或焊接工字钢,其结构做成阶梯形,以降低重心。

两纵梁间采用焊接横梁,横梁采用优质钢板冲压成型或成型槽钢,两纵梁外侧采用翼梁焊接,翼梁为变截面优质钢板,横梁、翼梁与纵梁连接采用交叉结构,增加了车架抗弯强度和抗扭刚度。

整个车架是全金属结构焊接而成,车架前部可通过牵引销连接牵引车,中前部可停放重型履带式车辆,左右侧分别装有工具箱、防护网和备胎等附件,表面铺有压花钢板和若干防滑条,下部可通过钢板弹簧连接三个车桥,车架为对称结构,如图1所示。

有限元法是一种求解数理方程的数值计算方法,是解决实际工程问题的强有力的分析手段,它的基本思想是将结构进行有限元离散化,用有限个容易分析的单元来表示复杂的工程结构,各单元之间通过有限元节点相互连接,根据有限元理论建立有限元总体方程,然后求解。

其计算结果的可靠性在科学方面已经得到广泛的认可。

ANSYS软件是融结构、热、流体、电磁、声学和耦合场于一体的大型CAE有限元处理工具。

有限元静态分析为复杂重型车架结构受力分析提供了有效的手段。

在载荷作用点恒定、加载速度缓慢或者为零、加载量值缓慢变化或保持恒定情况下,计算结构的应力、应变、位移的过程,能够在车架设计初期全面了解该半挂车车架在不同工况下的强度和刚度状况,确定应力、应变危险点,同时也能对车架结构优化设计进行分析指导。

在重型半挂车开发设计阶段,由于缺乏必要的动态试验设备和完善的实验方法,对车架在各种载荷工况和路面条件下的可靠性不能进行准确的有效分析和计算。

采用有限元分析,通过建立适当的有限元模型,可在车架的开发设计阶段,对其进行强度分析,以提高车架的开发速度和质量。

2 有限元分析车架静态有限元分析是计算在固定不变的载荷作用下的结构响应,它不考虑惯性和阻尼的影响,如结构随时间变化载荷的情况,静态分析主要是结合有限元理论,从静力学、几何学、物理学三方面对结构进行分析。

载货汽车车架拓扑优化设计及有限元分析的开题报告

载货汽车车架拓扑优化设计及有限元分析的开题报告

载货汽车车架拓扑优化设计及有限元分析的开题报告一、研究背景随着物流业的快速发展,货车需求也不断增加。

而车辆的持久稳定性和安全性是货车发展的基础,因此在设计过程中车架的优化设计和有限元分析尤为重要。

从材料及制造工艺角度来看,目前较为成熟的结果是焊接结构,但是这种结构重量较重、成本高、制造周期长、不环保等问题日益凸显,因此要求综合考虑设计材料、拓扑结构、工艺等多方面因素,通过优化设计来提高车辆的质量、性能、经济性和可靠性。

二、研究内容1.车架结构拓扑优化设计。

在满足安全性和结构强度的前提下,结合实际的工作条件和载荷特点,通过最优化设计方法寻找最佳的车架结构形式,减轻车身质量,实现经济性和环保性。

2.车架有限元分析。

采用有限元分析方法,对拓扑优化设计后的车架进行有限元模拟分析,验证其强度和刚度的可靠性,进行有限元分析计算,为车辆的改进提供依据。

3.材料选择及加工工艺的分析。

车架材料的选择及加工工艺直接影响着车体的质量、成本、环保性等方面,以现代先进制造工艺,适当选择适合的材料,实现车体质量的低成本、高品质。

三、研究意义与价值根据研究内容,主要达到以下目的:1.提高载货汽车的安全性和可靠性,减少事故数量和损失,同时提高企业的经济效益。

2.减少我国的能源和环境负担,优化设计和改进制造工艺,避免资源的浪费和环境污染。

3.积累相关技术和经验,在相应领域做出贡献,并推动该领域技术的进步。

四、研究方法1.车架结构拓扑优化设计。

综合考虑载荷、强度、刚度等因素,采用最优化模拟设计方法,缩短设计周期,降低制造成本。

同时,为了防止优化设计过程中出现失控情况,我们建立了一套预警机制来发现和纠正问题。

2.车架有限元分析。

建立标准分析模型,通过有限元分析计算车架的应力、位移和应变,以确定车架的强度和刚度,在改进设计过程中应用结果。

3.材料选择及加工工艺的分析。

在选择材料的过程中,我们将考虑性能、成本等各方面因素。

在加工工艺的选择过程中,我们将专注于工艺稳定性、效率和成本。

车辆工程毕业设计70中型载货汽车车架有限元静力学分析

车辆工程毕业设计70中型载货汽车车架有限元静力学分析

第1章绪论1.1 选题的背景车架是汽车各总成的安装基体,它将发动机和车身等总成连成一个有机的整体,承受着来自道路及各种复杂载荷的作用,而且汽车上许多重要总成都是以车架为载体,因此设计出重量轻且各方面性能达到要求的车架结构是一项重要工作。

传统的车架结构设计是采用类比的思想进行经验设计,车架的这种设计模式导致的问题包括两个方面:一是车架简化计算精度不够,为保证强度及刚度要求而使车架的设计过于安全,造成设计出的车架结构过重,增加了设计成本;二是造成车架的设计与计算分离,不利于提高车架设计人员的设计水平。

设计出的车架结构除了个别部位的应力水平比较高外,大部分部位的应力水平较低。

因此,有必要采用有限元法对车架结构进行优化设计,以降低车架的重量,减少汽车的制造成本,提高市场竞争力。

1.2 选题的目的通过本文的研究,预计达到以下目的:(1)将有限元技术应用于中型载货汽车车架设计做好基础性工作。

(2)通过运用有限元软件对车架结构进行分析,可供车架设计有关人员提供参考。

(3)对所研究的车架进行结构的静、动态特性分析,为车架的设计提供理论支持。

(4)利用有限元法进行结构模态分析,可以得到车架结构的动态特性。

从设计上避免车架出现共振的现象。

1.3 选题的意义(1)运用有限元法对初步设计的车架进行辅助分析将大大提高车架开发、设计、分析和制造的效能和车架的性能。

(2)车架在各种载荷作用下,将发生弯曲、偏心扭转和整体扭转等变形。

传统的车架设计方法很难综合考虑汽车的复杂受力及变形情况,有限元法正好能够解决这一问题。

(3)利用有限元法进行结构模态分析,可以得到车架结构的动态特性。

从设计上避免车架出现共振的现象。

(4)通过对车架结构的优化设计,可以进一步降低车架的重量,在保证车架性能的前提下充分的节省材料,对降低车架的成本具有重要的意义。

1.4 研究现状有限元法是当今工程分析中获得广泛应用的数值计算法。

由于他的通用性和有效性,受到工程技术界的高度重视。

基于有限元模型的车架结构静态分析

基于有限元模型的车架结构静态分析

基于有限元模型的车架结构静态分析【摘要】本文利用大型有限元软件ANSYS对车架在满载扭转、满载弯曲两种工况下的位移与应力情况进行了结构静力学分析,并对计算结果进行了对比分析,发现车架存在局部应力集中的现象。

对此针对性的提出优化方案,并对车架的结构改良提出了可行性建议。

【关键词】车架结构;静态分析;有限元模型1.结构静态分析基础[1][2]农用货车车架一方面要承量,另一方面还要承受汽车行使过程中所产生的各种力和力矩的作用。

因此车架就必须要有足够的强度和刚度来承受作用于其上的各种载荷。

对车架进行强度、刚度分析的同时也是对车架进行优化设计和结构改进的基础。

通过结构强度和刚度的有限元静力分析,可以找到车身在各种工况下各零部件变形和材料应力的最大值以及分布情况。

第四强度理论[3]认为:单元体的均方根剪应力是引起材料屈服破坏的主要因素。

对车架的静态强度校核可以根据第四强度理论,选择V onMiss等效应力来判断车架结构的强度。

ANSYS中静力分析的求解步骤[4]为以下几个步骤:(1)建模,并将其依次转化物理模型、有限元模型;(2)施加载荷、边界条件、求解;(3)结果评价和分析;2.车架静态分析[5]就其载荷形式而言,车架在汽车行驶中所受到的主要载荷有弯曲载荷、扭转载荷等几种。

本文只研究满载弯曲和满载扭转两种工况进行。

本文所研究的车架所使用的材料为16Mn钢,其材料特性如下:弹性模量E=2.07e5MPa、泊松比μ=0.3、密度=7.85g/㎝3、抗拉强度为510~660MPa、屈服极限为350MPa。

各载荷所施加的情况为:动力总成重1200kg、驾驶室和乘客重量满载时上1340kg、货物和车厢重,满载时是5820kg、电瓶24.5kg、油箱满载按80kg计算、发动机是175kg以及备胎按25kg计算。

驾驶室和乘客的载荷均布施加到左右两纵梁上的编号为3、13、14、29、39、40的面上;后车厢及货物的载荷均布施加到编号为28、228的面上;发动机载荷均布施加到编号为200、201、202、205、216的面上;油箱载荷均布施加到编号为217、223的面上;电瓶载荷均布施加到编号为229、235的面上;备胎载荷集中施加到编号为20637、20643、22542和22548的节点上。

基于ANSYS电动中巴车架结构静力学分析

基于ANSYS电动中巴车架结构静力学分析

基于ANSYS电动中巴车架结构静力学分析摘要:对车架结构强度进行力学分析。

运用ANSYS软件建立中巴车架模型,据中巴实际载荷和悬挂点添加载荷和约束条件。

仿真得出相应的应力和变形分布图,结果表明该中巴车架的强度和刚度满足要求。

上述中巴静力学分析可以为车辆结构优化设计提供重要的参考依据,同时该分析方法也可以为许多车架静力学分析所应用。

关键词:中巴车架;ANSYS;静力学分析1.引言当前,汽车安全可靠性已成为人们日常交流讨论的焦点话题,如何生产出性能好、结构强度高、安全性强的汽车,也是汽车研发部门关注的核心。

因此,汽车研发前对其结构刚度、强度以及可靠性评估就显得尤为关键。

目前大量运用现代优化设计方法,通过有限元法对车架进行分析可以得到较为准确的应力和变形等强度、刚度安全指标,进而评估汽车结构强度的可靠性。

2.基于ANSYS中巴模型建立2.1 中巴模型介绍根据中巴车实体建立三维立体模型,模型由很多零件和子装配组成,整个车身由铝梁和钢梁组成,车身三维由不同截面和尺寸的铝梁通过榫卯方式形成骨架,车身下部由钢梁和铝梁交替形成。

最大的底盘特点是三层结构特性,加强了整个车身的结构稳定性[1]。

车架三维模型如图1所示。

图 1 中巴车架三维模型2.2 ANSYS建模程序编写此中巴车架结构复杂,杆件种类繁多。

节点(point)数共计590个,杆件(line)数388个,截面种类13种,材料有铝和钢。

记录整个车架数据,给所有节点编号,从point 1到point 388,在pro/e中生成相应point,批量导出point坐标;然后记录每个杆件相应的连接点,同时记录它的方向节点(用来确立杆件的截面方向);最后加上每个杆件的截面类型和材料类型。

其中材料属性设置时,取弹性模量:铝为69000MPa,钢为210000MPa,泊松比取0.33。

根据这些数据编写ANSYS建模程序。

2.3 输入程序建立中巴车架模型基于以上所编写程序,先输入节点坐标生成车架节点点云图;接着输入杆件line连接关系和材料截面属性以及截面方向程序,同时划分网格,形成中巴车架模型[2]。

货车车架有限元模型的建立及分析

货车车架有限元模型的建立及分析

品 主产竞 争相适 应 ;也不 能对 车架结 构 的应力 分 布及
刚度 分布 进行定 量分 析 。因此, 设计 中不 可避 免地造 成 车架 各部 分强度 分配 不合 理现 象 :使 得 整个 车架设 计 成本 提高, 而且 某些 部位 强度 不足 , 易 引起 事 故 ; 些 容 某

图 1 车 架 有 限 元 模型
用 设施 的安装 基础 和关 键承 载部 件 。我 国对 于一 般 车
和 简化 ,本文 最 终模 型 包含 2 65 6个节 点 .2 8 0 1 2 03 7 个单 元 。从 H p r s y emeh中 以 c b或 ip格 式文 件 导人 d n 到有 限元 软件 A S S中 ,得 到 整个 车 架 的有 限元 模 NY 型 , 图 1 左为 车头 , 为车尾 ) 见 ( 右 。
架 的设计 及强 度校 核 , 依靠 经典 的材 料力 学 、 是 弹性力 学 、 构力 学 的经验 公式 。传 统 分析设 计 方 法。 有简 结 具
单 易行 的优 点,目前在 我 国 的车辆 设计 计算 中仍起 一 定 作用 。 统方 法也 有 明显不 足, 传 带有 相 当的盲 目性 , 每 次 车架设 计改进 都 不会有 明显 的 突破 ;而且设 计周 期 长 , 得 车架 的更 新 换代 的速度 较 慢, 能 与 现代 化 商 使 不
1 工况及 模型 简 化
主 要从 弯 曲和扭转 工 况考 虑时 .由于所有 载荷 的 加入 都 是在 超载 状况 下分 析 的 ,而 超载 时的受 力是 规 定 载荷 的 25倍左 右 ,所 以得 到 的结 果就 不 用加 动 载 . 系数 , 是极 限应 力状 况 , 就 符合 实际 工况 。
1 略去某些 功能 件和 非承 载构件 。有 些构 件仅 为满 足 ) 工艺 或使 用要 求设 置, 非根 据强 度要 求设 置 . 车 架 并 对 结构 内力 分布 和变 形 的影 响较 小,因此建 模 时可 以忽

货车车架有限元模型的建立及分析 (1)

货车车架有限元模型的建立及分析 (1)

作者简介:柴新伟(1981-),男,山西夏县人,在读硕士研究生,研究方向:车辆工程。

收稿日期:2009-07-02;修回日期:2009-12-01引言汽车车架是发动机、底盘、车身各总成及专用车专用设施的安装基础和关键承载部件。

我国对于一般车架的设计及强度校核,是依靠经典的材料力学、弹性力学、结构力学的经验公式。

传统分析设计方法,具有简单易行的优点,目前在我国的车辆设计计算中仍起一定作用。

传统方法也有明显不足,带有相当的盲目性,每次车架设计改进都不会有明显的突破;而且设计周期长,使得车架的更新换代的速度较慢,不能与现代化商品主产竞争相适应;也不能对车架结构的应力分布及刚度分布进行定量分析。

因此,设计中不可避免地造成车架各部分强度分配不合理现象;使得整个车架设计成本提高,而且某些部位强度不足,容易引起事故;某些部位强度又过于富余,造成浪费,达不到优化设计的目的。

随着CAD/CAE 技术的推广及计算机软硬件的发展,汽车行业已将CAD/CAE 技术用于汽车车架的设计与研究,为工作人员提供了可靠的计算工具[1]。

如果直接从CAD 软件导入Ansys ,会出现一些模型上相关问题,例如失去面,且其前处理不是很好;然而hyperworks 却有良好的CAD 兼容性和很好的有限元模型前后处理功能。

在CAD 中建立车架三维模型时,由于结构复杂,对一些附属结构和工艺结构,简化:1)略去某些功能件和非承载构件。

有些构件仅为满足工艺或使用要求设置,并非根据强度要求设置,对车架结构内力分布和变形的影响较小,因此建模时可以忽略(如工艺孔,缓冲座等)。

2)对某些部件进行简化。

车架主要是用槽钢和钢板铆接和螺栓连接而成,建立结合模型时只保证零件间的相对准确位置和连接孔的对应.根据副车架和主车架的连接方式,可将其简化为主车架左右边梁上的均部载荷,不再单独建模[2]。

将模型从CAD 软件导入hypermesh 中,车架边梁和横梁采用壳单元(SHELL63),实体零件(如吊耳,平衡悬架等)选用实体单元(solid45),钢板和板簧使用刚性梁单元和弹簧单元模拟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要汽车车架作为汽车关键的承载部件,它将发动机和车身等总成连成一个有机的整体,承受着来自道路及各种复杂载荷的作用,而且汽车上许多重要总成都是以车架为载体,因此设计出重量轻且各方面性能达到要求的车架结构是一项重要工作。

传统的车架结构设计是采用类比的思想进行经验设计,车架的这种设计模式导致的问题包括两个方面:一是车架简化计算精度不够,为保证强度及刚度要求而使车架的设计过于安全,造成设计出的车架结构过重,增加了设计成本;二是造成车架的设计与计算分离,不利于提高车架设计人员的设计水平。

设计出的车架结构除了个别部位的应力水平比较高外,大部分部位的应力水平较低。

因此,有必要采用有限元法对车架结构进行优化设计,以降低车架的重量,减少汽车的制造成本,提高市场竞争力。

本文以解放J4R中型载货汽车车架为研究对象,在现有CAD图纸的情况下进行简化,通过对ANSYS软件的学习,以Pro/E软件创建车架实体模型,对车架的静力以及模态进行了分析。

得到一些有益的结论,并掌握了一般静力分析中的网格划分、约束加载、分析求解等过程进行了认真的学习,为车架的设计和改进提供了指导作用。

关键词:中型载货汽车;车架;ANSYS;静力分析;模态分析ABSTRACTAs an important component, frame carrying the whole vehicle, such as assembly, take the engine and body together into an organic whole,endure the loads from the road and many kind of complex loads, and many important assemblys are based on frame,use the frame as a vector. So design a lightweight and all aspects of performance to meet the requirements of the frame structure is an important work. The frame structure of traditional design is the idea of experience with analog design, this methed caused two problems: First, simplify the calculation accuracy of the frame is not enough to ensure the strength and stiffness requirements of leaving the frame design is too safe, resulting the frame structure designed overweight. Second is caused by separation of design and calculation of the frame, the frame is not conducive to raising the level of the designer's design. In addition to the frame structure designed for individual parts of the stress level is relatively high, most parts of the stress level low. Therefore, it is necessary to use finite element method to optimize the design of the frame structure to reduce the chassis weight, reduce vehicle manufacturing costs, improve market competitiveness.In this paper, use FAW J4R medium truck frame for the study, in study of ANSYS software ,and use Pro / E software to create solid models of the static frame and the mode were analyzed. Get some useful conclusions, and mastery of the general process of static analysis for improved frame design and provide guidance.Key words: MediumTruck ;Frame;ANSYS;Static Analysis;Modal Analysis目录摘要 (I)A bstract (II)第1章绪论 (1)1.1 选题的背景 (1)1.2 选题的目的 (1)1.3 选题的意义 (1)1.4 研究现状 (2)1.5 课题主要内容 (4)第2章有限元基础及ANSYS软件介绍 (5)2.1 有限元分析简介 (5)2.2 有限元方法的基本求解过程 (6)2.3 有限元分析的误差及建模准则 (7)2.4有限元分析软件ANSYS简介 (9)2.4.1 ANSYS的发展概述 (9)2.4.2 典型的ANSYS分析过程 (10)2.4.3 ANSYS的主要功能 (11)2.4.4 ANSYS的主要特点 (12)2.4.4 ANSYS软件提供的分析类型 (13)2.5 本章小结 (14)第3章车架有限元模型的建立 (15)3.1 车架的实体建模 (15)3.1.1 Pro/E软件简介 (15)3.1.2 Pro/E软件基本功能 (16)3.1.3 几何建模的简化 (16)3.2 应用Pro/E软件三维几何模型的建立 (18)3.3 应用ANSYS软件对车架模型进行网格划分 (19)3.4 实体单元Solid 45的简介 (21)3.5 本章小结 (24)第4章车架有限元的静力级模态分析 (25)4.1 车架静力分析 (25)4.1.1 车架受力情况 (25)4.1.2车架结构静力分析及约束处理 (26)4.2 车架模态分析 (33)4.2.1 结构动力性能分析方程 (34)4.2.2 车架结构模态分析 (34)4.2.3 分析结果 (41)4.3 本章小结 (41)结论 (42)参考文献 (43)致谢 (44)附录 (45)第1章绪论1.1 选题的背景车架是汽车各总成的安装基体,它将发动机和车身等总成连成一个有机的整体,承受着来自道路及各种复杂载荷的作用,而且汽车上许多重要总成都是以车架为载体,因此设计出重量轻且各方面性能达到要求的车架结构是一项重要工作。

传统的车架结构设计是采用类比的思想进行经验设计,车架的这种设计模式导致的问题包括两个方面:一是车架简化计算精度不够,为保证强度及刚度要求而使车架的设计过于安全,造成设计出的车架结构过重,增加了设计成本;二是造成车架的设计与计算分离,不利于提高车架设计人员的设计水平。

设计出的车架结构除了个别部位的应力水平比较高外,大部分部位的应力水平较低。

因此,有必要采用有限元法对车架结构进行优化设计,以降低车架的重量,减少汽车的制造成本,提高市场竞争力。

1.2 选题的目的通过本文的研究,预计达到以下目的:(1)将有限元技术应用于中型载货汽车车架设计做好基础性工作。

(2)通过运用有限元软件对车架结构进行分析,可供车架设计有关人员提供参考。

(3)对所研究的车架进行结构的静、动态特性分析,为车架的设计提供理论支持。

(4)利用有限元法进行结构模态分析,可以得到车架结构的动态特性。

从设计上避免车架出现共振的现象。

1.3 选题的意义(1)运用有限元法对初步设计的车架进行辅助分析将大大提高车架开发、设计、分析和制造的效能和车架的性能。

(2)车架在各种载荷作用下,将发生弯曲、偏心扭转和整体扭转等变形。

传统的车架设计方法很难综合考虑汽车的复杂受力及变形情况,有限元法正好能够解决这一问题。

(3)利用有限元法进行结构模态分析,可以得到车架结构的动态特性。

从设计上避免车架出现共振的现象。

(4)通过对车架结构的优化设计,可以进一步降低车架的重量,在保证车架性能的前提下充分的节省材料,对降低车架的成本具有重要的意义。

1.4 研究现状有限元法是当今工程分析中获得广泛应用的数值计算法。

由于他的通用性和有效性,受到工程技术界的高度重视。

伴随着计算机的快速发展,现已成为计算机辅助设计(CAD)和计算机辅助制造(CAM)的重要组成部分。

近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器,国防军工,船舶,铁道,石化,能源,科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃,主要表现在以下几个方面:(1)增加产品和工程的可靠性;(2)在产品的设计阶段发现潜在的问题;(3)经过分析计算,采用优化设计方案,降低原材料成本;(4)缩短产品投向市场的时间;(5)模拟试验方案,减少试验次数,从而减少试验经费。

当前,国外各大汽车公司利用有限元软件进行车架结构静态分析、模态分析的技术已非常成熟,其工作重心已转向瞬态响应分析、噪声分析、碰撞分析等领域。

特别是随机激励响应分析备受青睐,主要是因为它可用来进行车辆的强度、刚度、振动舒适性和噪声等方面的分析:国外将有限元法引入到车架强度计算比较早,而我国大约是在七十年代末才把有限元法应用于车架的结构强度设计分析中。

在有限元法对汽车车架结构的分析中,早期多采用梁单元进行结构离散化。

分析的初步结果是令人满意的,但由于梁单元本身的缺陷,例如梁单元不能很好的描述结构较为复杂的车架结构,不能很好的反映车架横梁与纵梁接头区域的应力分布,而且它还忽略了扭转时截面的翘曲变形,因此梁单元分析的结果是比较粗糙的。

而板壳单元克服了梁单元在车架建模和应力分析时的局限,基本上可以作为一种完全的强度预测手段。

近十年来,由于计算机软件与硬件的飞速发展,板壳单元逐渐被应用到汽车车架结构分析中,使分析精度大为提高,由过去的定性或半定量的分析过度到定量阶段。

相关文档
最新文档