(完整word版)2018年黄浦区高三二模数学Word版(附解析)

合集下载

黄浦区二中2018-2019学年高三上学期11月月考数学试卷含答案

黄浦区二中2018-2019学年高三上学期11月月考数学试卷含答案

黄浦区二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 直线:(为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心2. PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是据某地某日早7点至晚8点甲、乙两个PM 2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A .甲B .乙C .甲乙相等D .无法确定3. 下列说法正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是特殊到一般的推理 C .归纳推理是个别到一般的推理 D .合情推理可以作为证明的步骤4. 某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )A .程序流程图B .工序流程图C .知识结构图D .组织结构图 5. △ABC 中,A (﹣5,0),B (5,0),点C在双曲线上,则=( )A.B.C.D .± 6. 若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .27. 如图,空间四边形OABC 中,,,,点M 在OA上,且,点N 为BC 中点,则等于( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .8. 已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f ()﹣f (x )>0的解集为( )A .(0,1)B .(1,2)C .(1,+∞)D .(2,+∞)9. 不等式x (x ﹣1)<2的解集是( )A .{x|﹣2<x <1}B .{x|﹣1<x <2}C .{x|x >1或x <﹣2}D .{x|x >2或x <﹣1}10.已知变量x 与y 负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是( )A . =﹣0.2x+3.3B . =0.4x+1.5C . =2x ﹣3.2D . =﹣2x+8.611.已知实数x ,y 满足有不等式组,且z=2x+y 的最大值是最小值的2倍,则实数a 的值是( )A .2B .C .D .12.将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )A .x=πB .C .D .二、填空题13.函数y=lgx 的定义域为 .14.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力. 15.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且所成的角为,则的值是 所示的框图,输入,则输出的数等于17.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.18.设α为锐角,若sin (α﹣)=,则cos2α= .三、解答题19.(本题满分15分)设点P 是椭圆14:221=+y x C 上任意一点,过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.(1)求证:PB PA =;(2)OAB ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.20.(本题满分12分)已知数列}{n a 的前n 项和为n S ,233-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:27<n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.21.已知,数列{a n }的首项(1)求数列{a n }的通项公式;(2)设,数列{b n }的前n 项和为S n ,求使S n >2012的最小正整数n .22.已知椭圆C :+=1(a >b >0)的短轴长为2,且离心率e=,设F 1,F 2是椭圆的左、右焦点,过F 2的直线与椭圆右侧(如图)相交于M ,N 两点,直线F 1M ,F 1N 分别与直线x=4相交于P ,Q 两点. (Ⅰ)求椭圆C 的方程; (Ⅱ)求△F 2PQ 面积的最小值.23.(本小题满分12分)已知直三棱柱111C B A ABC -中,上底面是斜边为AC 的直角三角形,F E 、分别是11AC B A 、的中点.(1)求证://EF 平面ABC ; (2)求证:平面⊥AEF 平面B B AA 11.24.(本小题满分12分)已知圆M 与圆N :222)35()35(r y x =++-关于直线x y =对称,且点)35,31(-D 在圆M 上.(1)判断圆M 与圆N 的位置关系;(2)设P 为圆M 上任意一点,)35,1(-A ,)35,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.黄浦区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2.圆心到直线的距离为:,所以直线与圆相交。

2018届黄浦区高考数学二模和参考答案

2018届黄浦区高考数学二模和参考答案

黄浦区2018年高考模拟考数学试卷(完卷时间:120分钟 满分:150分) 2018.4考生注意:1.每位考生应同时收到试卷和答题卷两份材料,解答必须在答题卷上进行,写在试卷上的解答一律无效; 2.答卷前,考生务必将姓名等相关信息在答题卷上填写清楚,并在规定的区域贴上条形码; 3.本试卷共21道试题,满分150分;考试时间120分钟.一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对前6题得4分、后6题得5分,否则一律得零分.1.已知集合{}{}1,2,31,A B m ==,,若3m A -∈,则非零实数m 的数值是 . 2.不等式|1|1x ->的解集是 .3.若函数()f x 是偶函数,则该函数的定义域是 .4.已知ABC ∆的三内角A B C 、、所对的边长分别为a b c 、、,若2222sin a b c bc A =+-,则内角A 的大小是 .5.已知向量a 在向量b 方向上的投影为2-,且3b =,则a b ⋅= .(结果用数值表示)6.方程33log (325)log (41)0x x⋅+-+=的解x = .7.已知函数2sin cos 2()1cos x x f x x-=,则函数()f x 的单调递增区间是 .8.已知α是实系数一元二次方程22(21)10x m x m --++=的一个虚数根,且||2α≤,则实数m 的取值范围是 .9.已知某市A 社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是 人. 10.将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是 .(结果用数值表示) 11.已知数列{}n a 是共有k 个项的有限数列,且满足11(2,,1)n n nna a n k a +-=-=-,若1224,51,0k a a a ===,则k = .12.已知函数2()(02)f x ax bx c a b =++<<对任意R x ∈恒有()0f x ≥成立,则代数式(1)(0)(1)f f f --的最小值是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.在空间中,“直线m ⊥平面α”是“直线m 与平面α内无穷多条直线都垂直 ”的答( ).(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )非充分非必要条件14.二项式40的展开式中,其中是有理项的项数共有 答( ). (A ) 4项 (B ) 7项 (C ) 5项 (D ) 6项15.实数x y 、满足线性约束条件3,0,0,10,x y x y x y +≤⎧⎪≥≥⎨⎪-+≥⎩则目标函数23w x y =+-的最大值是答( ).(A ) 0 (B ) 1 (C ) 2- (D ) 316.在给出的下列命题中,是假命题的是 答( ). (A )设O A B C 、、、是同一平面上的四个不同的点,若(1)(R)OA m OB m OC m =⋅+-⋅∈, 则点A B C 、、必共线(B )若向量a b 和是平面α上的两个不平行的向量,则平面α上的任一向量c 都可以表示为(R)c a b λμμλ=+∈、,且表示方法是唯一的(C )已知平面向量OA OB OC 、、满足||||(0)OA OB OC r r ==>|=|,且0OA OB OC ++=, 则ABC ∆是等边三角形(D )在平面α上的所有向量中,不存在这样的四个互不相等的非零向量a b c d 、、、,使得其 中任意两个向量的和向量与余下两个向量的和向量相互垂直三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分. 在四棱锥P A B -中,P A A B ⊥平面,,,1,AB AD BC AD BC ⊥=045CD CDA =∠=.(1)画出四棱锥P ABCD -的主视图;(2)若PA BC =,求直线PB 与平面PCD 所成角的大小.(结果用反三角函数值表示)18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知10,(010)OA OB x x ==<<米米,线段BA CD 、线段与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度. (1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知动点(,)M x y 到点(2,0)F 的距离为1d ,动点(,)M x y 到直线3x =的距离为2d,且12d d =. (1)求动点(,)M x y 的轨迹C 的方程; (2)过点F 作直线:(2)(0)l y k x k =-≠交曲线C 于P Q 、两点,若OPQ ∆的面积OPQ S ∆(O 是坐标系原点),求直线l 的方程.20.(本题满分16分)本题共有2个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数22, 10,()=1, 0 1.x x f x x x --≤<⎧⎨-≤≤⎩(1) 求函数()f x 的反函数1()fx -;(2)试问:函数()f x 的图像上是否存在关于坐标原点对称的点,若存在,求出这些点的坐标;若不存在,说明理由; (3)若方程()|()240f x f x ax +---=的三个实数根123x x x 、、满足:123x x x <<,且32212()x x x x -=-,求实数a 的值.21.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分. 定义:若数列{}n c 和{}n d满足*10,0,N nn n c d n +>>=∈且c ,则称数列{}n d 是数列{}n c 的“伴随数列”.已知数列{}n b 是数列{}n a 的伴随数列,试解答下列问题: (1)若*(N )nn b a n =∈,1b {}n a 的通项公式n a ;(2)若*11(N )n n n b b n a +=+∈,11b a 为常数,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列; (3)若*1N )n nb n +=∈,数列{}n a 是等比数列,求11a b 、的数值.黄浦区2018年高考模拟考数学试卷参考答案和评分标准2018.4说明:1.本解答仅列出试题的一种解法,如果考生的解法与所列解答不同,可参考解答中的评分精神进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分. 一、填空题. 1.2 2.(,0)(2,)-∞+∞ 3.[2,2]- 4.4π5.6- 6.27.3[,],Z 88k k k ππππ-+∈ 8.3(4- 9.140 10.51611.50 12.3.二、选择题.13.()A 14.()B 15.()D 16.()D三、解答题. 17.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分. 解 (1)主视图如下:(2) 根据题意,可算得1,2AB AD ==. 又1PA BC ==,按如图所示建立空间直角坐标系, 可得,(0,0,0),(1,0,0),(1,1,0),(0,2,0),(0,0,1)A B C D P . 于是,有(1,0,1),(1,1,0),(0,2,1)PB CD PD =-=-=- . 设平面PCD 的法向量为(,,)n x y z =,则0,0,n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩即0,20.x y y z -+=⎧⎨-=⎩令2z =,可得1,1y x ==,故平面PCD 的一个法向量为(1,1,2)n =.设直线PB 与平面PCD 所成角的大小为θ,则||3sin 6||||n PB n PB θ⋅==. 所以直线PB 与平面PCD 所成角的大小为arcsin 6.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 解 (1)根据题意,可算得弧BC x θ=⋅(m ),弧10AD θ=(m ). 又30BA CD BC CD +++=弧弧,于是,10101030x x x θθ-+-+⋅+=,所以,210(010)10x x x θ+=<<+.(2) 依据题意,可知22111022OAD OBC y S S x θθ=-=⨯-扇扇化简,得2550yx x =-++25225()24x =--+. 于是,当52x =(满足条件010x <<)时,max 2254y =(2m ).答 所以当52x =米时铭牌的面积最大,且最大面积为2254平方米.19. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 解 (1)结合题意,可得12|3|d d x ==-.又12d d =3=,化简得 22162x y +=. 因此,所求动点(,)M x y 的轨迹C 的方程是22162x y +=. (2) 联立方程组221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=.设点1122(,)(,)P x y Q x y 、,则2122212212,13126,130.k x x k k x x k ⎧+=⎪+⎪-⎪=⎨+⎪∆>⎪⎪⎩于是,弦||PQ == 点O 到直线l的距离d =.由OPQS ∆== 42210k k -+=,解得1k =±,且满足0∆>,即1k =±都符合题意. 因此,所求直线的方程为2020x y x y --=+-=或.20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 解 (1)22, 10,()=1, 0 1.x x f x x x --≤<⎧⎨-≤≤⎩∴当10x -≤<时,()2,0()2f x x f x =-<≤且.由2y x =-,得12x y =-,互换x y 与,可得11()(02)2f x x x -=-<≤. 当01x ≤≤时,2()1,()0f x x f x =-≤≤且-1.由21y x =-,得x =x y 与,可得1()10)f x x -=-≤≤.11, 0<2,2() 10.x x f x x -⎧-≤⎪∴=-≤≤(2) 答 函数图像上存在两点关于原点对称.设点00000(,)(01)(,)A x y x B x y <≤--、是函数图像上关于原点对称的点,则00()()0f x f x +-=,即200120x x -+=,解得001(1,)x x ==舍去,且满足01x <≤ .因此,函数图像上存在点1,2(12)A B -和关于原点对称.(3) 考察函数()y f x =与函数y =当12x -≤≤-时,有()f x ≥4240x ax ---=,解得 2+2x a =-,且由21+22a -≤-≤-,得02a ≤≤.当1x <≤时,有()f x <240ax -=,化简得 22(4)40a x ax ++=,解得24=0+4a x x a =-,或(当02a ≤≤时,24024aa -<-<+). 于是,123224,,024ax x x a a =-=-=++. 由32212()x x x x -=-,得22442=2(+)+442a a a a a -++,解得32a -±=.因为312a -=<-,故32a --=不符合题意,舍去;02a <=<,满足条件.因此,所求实数a =21.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分. 解 (1)根据题意,有*10,0,N n n n a b a n +>>=∈且.由*(N )nn b a n =∈,1b =111n a a b +====*N n ∈.所以n a =,*N n ∈. 证明 (2)*11(N )n n n b b n a +=+∈,*10,0,N n n n a b a n +>>=∈且,∴11nn b a ++==11n n b a ++=*N n ∈.∴22111n n n n b b a a ++⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,*N n ∈.∴数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为211b a ⎛⎫ ⎪⎝⎭、公差为1的等差数列.解(3)*1N )n n b n +=∈,*10,0,N n n n a b a n +>>=∈且,*N n n a b n <+≤∈,得11n a +<.{}n a 是等比数列,且0n a >,设公比为(0)r r >,则1*1(N )n n a a r n -=∈.∴当1r >,即lim n n a →∞→+∞,与11n a +<≤矛盾.因此,1r >不成立. 当01r <<,即lim 0n n a →∞→,与11n a +<01r <<不成立.∴1r =,即数列{}n a 是常数列,于是,1n a a =(11a <≤).*11(N )n n b n +∴=∈. 100n b b >∴>,,数列{}n b 也是等比数列,设公比为(0)q q >,有11n n b b q +=.2n a +∴=可化为222221111111(1)2(1)0(1n n b a q a b q a a a --+-=<≤,*N n ∈.2222422111111111(1)0,20,(1)0,4(2)0b a a b a a a b a ->≠->∆=-≥,∴关于x 的一元二次方程22222111111(1)2(1)0b a x a b x a a --+-=有且仅有两个非负实数根.一方面,n q (*N n ∈)是方程22222111111(1)2(1)0b a x a b x a a --+-=的根;另一方面,若1(0)q q ≠>,则无穷多个互不相等的234,,,,,,n q q q q q 都是该二次方程的根.这与该二次方程有且仅有两个非负实数根矛盾!1q ∴=,即数列{}n b 也是常数列,于是,1n b b =,*N n ∈.∴由*1N )n nb n +=∈,得1a =把1a =1n a +=解得1b11a b ⎧=⎪∴⎨=⎪⎩ .。

上海2018届高三二模数学卷汇总(全)

上海2018届高三二模数学卷汇总(全)

宝山2018届高三二模数学卷一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。

1. 设全集R U =,若集合{}2,1,0=A ,{}21|<<-=x x B ,()B C A U ⋂= .2. 设抛物线的焦点坐标为()01,,则此抛物线的标准方程为 . 3. 某次体检,8位同学的身高(单位:米)分别为68.1,71.1,73.1,63.1,81.1,74.1,66.1,78.1,则这组数据的中位数是 (米).4. 函数()x x x f 4cos 4sin 2=的最小正周期为 .5. 已知球的俯视图面积为π,则该球的表面积为 .6. 若线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛210221c c 的解为⎩⎨⎧==31y x ,则=+21c c . 7. 在报名的8名男生和5名女生中,选取6人参加志愿者活动,要求男、女都有,则不同的选取方式的种数为 (结果用数值表示)8. 设无穷数列{}n a 的公比为q ,则2a ()n n a a a +⋅⋅⋅++=∞→54lim ,则=q .9. 若B A 、满足()()()525421===AB P B P A P ,,,则()()P AB P AB -= . 10. 设奇函数()f x 定义为R ,且当0x >时,2()1m f x x x=+-(这里m 为正常数). 若()2f x m ≤-对一切0x ≤成立,则m 的取值范围是 .11. 如图,已知O 为矩形4321P P P P 内的一点,满足7,543131===P P OP OP ,,则24OP OP ⋅u u u r u u u r 的值为 .12. 将实数z y x 、、中的最小值记为{}z y x ,,m in ,在锐角︒=∆60POQ ,1=PQ ,点T 在POQ ∆的边上或内部运动,且=TO {}TQ TO TP ,,m in ,由T 所组成的图形为M .设M POQ 、∆的面积为M POQ S S 、∆,若()2:1-=∆M POQ M S S S :,则=M S . 二.选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸相应编号上将代表答案的小方格涂黑,选对得 5分,否则一律得零分.13. “1sin 2x =”是“6x π=”的 ( ) )(A 充分不必要条件. )(B 必要不充分条件. )(C 充要条件. )(D 既不充分也不必要条件.14.在62x x ⎛⎫- ⎪⎝⎭的二项展开式中,常数项等于 ( ))(A 160- )(B 160 )(C 150- )(D 15015.若函数()()f x x R ∈满足()1f x -+、()1f x +均为奇函数,则下列四个结论正确的是( ))(A ()f x -为奇函数 )(B ()f x -为偶函数 )(C ()3f x +为奇函数 )(D ()3f x +为偶函数16. 对于数列12,,,x x L 若使得0n m x ->对一切n N *∈成立的m 的最小值存在,则称该最小值为此数列的“准最大项”。

(word完整版)2018年上海高三数学二模分类汇编(2),推荐文档

(word完整版)2018年上海高三数学二模分类汇编(2),推荐文档

2018届上海市高三数学二模分类汇编一、填空题1.集合1.设全集R U =,若集合{}2,1,0=A ,{}21|<<-=x x B ,()B C A U ⋂= .【答案】{}2【来源】18届宝山二模1【难度】集合、基础题2.集合⎭⎬⎫⎩⎨⎧<-=02x x x A ,{|}B x x Z =∈,则A B ⋂等于 . 【答案】{}1或{}1=x x 【来源】18届奉贤二模1【难度】集合、基础题3. 已知(,]A a =-∞,[1,2]B =,且A B ≠∅I ,则实数a 的范围是【答案】1a ≥【来源】18届虹口二模1【难度】集合、基础题4.已知集合{}{}1,2,31,A B m ==,,若3m A -∈,则非零实数m 的数值是 .【答案】2【来源】18届黄浦二模1【难度】集合、基础题5.已知集合},2,1{m A =,}4,2{=B ,若}4,3,2,1{=B A Y ,则实数=m _______.【答案】3【来源】18届长嘉二模1【难度】集合、基础题6. 设集合1|,2x M y y x R ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,()()()1|1112,121N y y x m x x m ⎧⎫⎛⎫==+-+--≤≤⎨⎬ ⎪-⎝⎭⎩⎭,若N M ⊆,则实数m 的取值范围是 .【答案】(1,0)-【来源】18届普陀二模11【难度】集合、中档题7.已知全集R U =,集合{}0322>--=x x x A ,则=A C U .【答案】]3,1[-【来源】18届徐汇二模1【难度】集合、基础题8. 已知集合{|(1)(3)0}P x x x =+-<,{|||2}Q x x =>,则P Q =I【答案】(2,3)【来源】18届金山二模3【难度】集合、基础题9.已知集合{1,0,1,2,3}U =-,{1,0,2}A =-,则U C A =【答案】{1,3}【来源】18届崇明二模1【难度】集合、基础题2.命题、不等式1.不等式|1|1x ->的解集是 .【答案】(,0)(2,)-∞+∞U【来源】18届黄浦二模2【难度】不等式、基础题2.已知函数2()(02)f x ax bx c a b =++<<对任意R x ∈恒有()0f x ≥成立,则代数式(1)(0)(1)f f f --的最小值是 . 【答案】3【来源】18届黄浦二模2【难度】不等式、压轴题3.不等式|3|2x -<的解集为__________________. 【答案】{}15x x <<或()1,5【来源】18届青浦二模1【难度】不等式、基础题4.若为等比数列,0n a >,且2018a =,则2017201912a a +的最小值为 . {}n a【答案】4【来源】18届杨浦二模10【难度】不等式、中档题5. 函数9y x x=+,(0,)x ∈+∞的最小值是 【答案】6【来源】18届金山二模4【难度】不等式、基础题3.函数1.给出下列函数:①1y x x=+;②x x y +=2;③2x y =;④23y x =;⑤x y tan =;⑥()sin arccos y x =;⑦(lg lg 2y x =-.从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是 . 【答案】37【来源】18届奉贤二模9【难度】函数、中档题2.已知函数()()θ-=x x f 2sin 5,⎥⎦⎤⎝⎛∈2,0πθ,[]π5,0∈x ,若函数()()3-=x f x F 的所有零点依次记为n x x x x ,,,,321Λ,且n n x x x x x <<<<<-1321Λ,*N n ∈若π283222212321=++++++--n n n x x x x x x Λ,则=θ . 【答案】9π【来源】18届奉贤二模12【难度】函数、压轴题3.已知函数20()210x x x f x x -⎧-≥=⎨-<⎩,则11[(9)]f f ---= 【答案】-2【来源】18届虹口二模5【难度】函数、基础题4.若函数()f x =是偶函数,则该函数的定义域是 .【答案】[2,2]-【来源】18届黄浦二模3【难度】函数、基础题5.已知函数)1lg()(2ax x x f ++=的定义域为R ,则实数a 的取值范围是_________.【答案】]1,1[-【来源】18届长嘉二模10【难度】函数、中档题6.若函数1()21f x x m =-+是奇函数,则实数m =________.【答案】12【来源】18届普陀二模2【难度】函数、基础题7.若函数()f x =()g x ,则函数()g x 的零点为________.【答案】x =【来源】18届普陀二模3【难度】函数、基础题8.已知()f x 是定义在[2,2]-上的奇函数,当(0,2]x ∈时,()21x f x =-,函数 2()2g x x x m =-+. 如果对于任意的1[2,2]x ∈-,总存在2[2,2]x ∈-,使得12()()f x g x ≤,则实数m 的取值范围是 .【答案】5m ≥-【来源】18届青浦二模10【难度】函数、中档题9.若函数222(1)sin ()1x x f x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 1g x M m x M m x =+++-⎡⎤⎣⎦图像的一个对称中心是 . 【答案】114⎛⎫⎪⎝⎭, 【来源】18届徐汇二模11【难度】函数、中档题10.设()f x 是定义在R 上以2为周期的偶函数,当[0,1]x ∈时,2()log (1)f x x =+,则函数()f x 在[1,2]上的解析式是【答案】2()log (3)f x x =-【来源】18届崇明二模9【难度】函数、中档题4.指数函数、对数函数1.方程33log (325)log (41)0x x ⋅+-+=的解x = .【答案】2【来源】18届黄浦二模6【难度】对数函数、基础题2.[]x 是不超过x 的最大整数,则方程271(2)[2]044x x -⋅-=满足1x <的所有实数解是 【答案】12x =或1x =- 【来源】18届虹口二模11【难度】指数函数、中档题3.若实数x 、y 满足112244+++=+y x y x ,则y x S 22+=的取值范围是____________.【答案】]4,2(【来源】18届长嘉二模12【难度】指数函数、压轴题4.函数()lg(32)x xf x =-的定义域为_____________.【答案】(0,)+∞【来源】18届徐汇二模3【难度】对数函数、基础题5.定义在R 上的函数()21x f x =-的反函数为1()y f x -=,则1(3)f -= 【答案】2【来源】18届松江二模4【难度】指数函数、基础题6.若函数2()log (1)a f x x ax =-+(0a >且1a ≠)没有最小值,则a 的取值范围【答案】()[)0,12,+∞U【来源】18届松江二模10【难度】指数函数、中档题7.函数lg 1y x =-的零点是 .【答案】10x =【来源】18届杨浦二模1【难度】对数函数、基础题8.函数lg y x =的反函数是【答案】1()10x f x -=【来源】18届金山二模2【难度】对数函数、基础题5. 三角函数1.已知在ABC ∆中,a ,b ,c 分别为AB ∠∠,,C ∠所对的边.若222b c a +-=,则A ∠= . 【答案】4π或045 【来源】18届奉贤二模5【难度】三角函数、基础题2.已知ABC ∆的三内角A B C 、、所对的边长分别为a b c 、、,若2222sin a b c bc A =+-,则内角A 的大小是 . 【答案】4π【来源】18届黄浦二模4【难度】三角函数、基础题3.若1sin 3α=,则cos 2πα⎛⎫-= ⎪⎝⎭_______________. 【答案】13【来源】18届青浦二模3【难度】三角函数、基础题4.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若222()tan b c a A bc +-=,则角A 的大小为________.【答案】6π 【来源】18届普陀二模5【难度】三角函数、基础题5..函数()x x x f 4cos 4sin 2=的最小正周期为 . 【答案】4π 【来源】18届宝山二模4【难度】三角函数、基础题6.已知22s 1(,,0)cos 1a a in M a a a a θθθ-+=∈≠-+R ,则M 的取值范围是 .【答案】⎣⎦ 【来源】18届青浦二模12【难度】三角函数、压轴题7. 函数3sin(2)3y x π=+的最小正周期T = 【答案】π【来源】18届金山二模1【难度】三角函数、基础题8.若53sin )cos(cos )sin(=---x y x x y x ,则y 2tan 的值为 【答案】2424.77-或 【来源】18届杨浦二模9【难度】三角函数、中档题9.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,2a =,2sin sin A C =. 若B 为钝角,412cos -=C ,则ABC ∆的面积为 .【来源】18届杨浦二模11【难度】三角函数、中档题10. 若2018100922sin (2cos )(3cos cos )(1cos cos )αββαβα--≥---+,则sin()2βα+= 【答案】-1或1【来源】18届金山二模12【难度】三角函数、压轴题题6. 数列1.已知数列{}n a 是公比为q 的等比数列,且2a 、4a 、3a 成等差数列,则q =【答案】1或12- 【来源】18届虹口二模7【难度】数列、基础题2.已知数列{}n a 是共有k 个项的有限数列,且满足11(2,,1)n n nn a a n k a +-=-=-L ,若1224,51,0k a a a ===,则k = .【答案】50【来源】18届黄浦二模11【难度】数列、中档题3.设函数()log m f x x =(0m >且1m ≠),若m 是等比数列{}n a (*N n ∈)的公比,且2462018()7f a a a a =L ,则22221232018()()()()f a f a f a f a ++++L 的值为_________. 【答案】1990-【来源】18届普陀二模9【难度】数列、中档题4.在等比数列{}n a 中,公比2q =,前n 项和为n S ,若51S =,则10S = .【答案】33【来源】18届青浦二模5【难度】数列、基础题7. 向量1.如图,已知O 为矩形4321P P P P 内的一点,满足7,543131===P P OP OP ,,则24OP OP ⋅u u u r u u u r 的值为 .【答案】-4【来源】18届宝山二模11【难度】向量、中档题2.已知向量a r 在向量b r 方向上的投影为2-,且3b =r ,则a b ⋅r r = .(结果用数值表示)【答案】-6【来源】18届黄浦二模5【难度】向量、基础题3.在△ABC 中,M 是BC 的中点,︒=∠120A ,21-=⋅,则线段AM 长的最小值为____________. 【答案】21 【来源】18届长嘉二模114.已知曲线C y =:2l y =:,若对于点(0,)A m ,存在C 上的点P 和l 上的点Q ,使得0AP AQ +=u u u r ,则m 取值范围是 .11、 【答案】1,12⎡⎤-⎢⎥⎣⎦【来源】18届青浦二模11【难度】向量、中档题5.已知向量a r 、b r 的夹角为60°,||1a =r ,||2b =r ,若(2)()a b xa b +⊥-r r r r ,则实数x 的值为【答案】3【来源】18届松江二模7【难度】向量、基础题6.点1F ,2F 分别是椭圆22:12x C y +=的左、右两焦点,点N 为椭圆C 的上顶点,若动点M 满足:2122MN MF MF =⋅u u u u r u u u u r u u u u r ,则122MF MF +u u u u r u u u u r 的最大值为__________.【答案】6【来源】18届普陀二模12【难度】向量、压轴题7.已知两个不同向量(1,)OA m =u u u r ,(1,2)OB m =-u u u r ,若OA AB ⊥u u u r u u u r ,则实数m =____________.【答案】1【来源】18届青浦二模48.已知非零向量OP uuu r 、OQ uuu r 不共线,设111m OM OP OQ m m =+++u u u u r u u u r u u u r ,定义点集{|}||||FP FM FQ FM A F FP FQ ⋅⋅==u u u r u u u u r u u u r u u u u r u u u r u u u r . 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ 上时,不等式12||||F F k PQ ≤u u u u r u u u r 恒成立,则实数k 的最小值为 . 【答案】34【来源】18届杨浦二模12【难度】向量、压轴题9.已知向量,a b r r的夹角为锐角,且满足||a =r、||b =r ,若对任意的{}(,)(,)||1,0x y x y xa yb xy ∈+=>r r ,都有||1x y +≤成立,则a b ⋅r r 的最小值为 . 【答案】815【来源】18届徐汇二模12【难度】向量、压轴题10. 在平面四边形ABCD 中,已知1AB =,4BC =,2CD =,3DA =,则AC BD ⋅u u u r u u u r的值为【答案】10【来源】18届崇明二模12【难度】向量、压轴题8. 解析几何1.设抛物线的焦点坐标为()01,,则此抛物线的标准方程为 .【答案】24y x =【来源】18届宝山二模2【难度】解析几何、基础题2.抛物线2y x =的焦点坐标是 . 【答案】(0,14) 【来源】18届奉贤二模3【难度】解析几何、基础题3.椭圆的长轴长等于m ,短轴长等于n ,则此椭圆的内接矩形的面积的最大值为 【答案】2mn 【来源】18届虹口二模10【难度】解析几何、中档题4.角的始边是x 轴正半轴,顶点是曲线2522=+y x 的中心,角的终边与曲线2522=+y x 的交点A 的横坐标是3-,角的终边与曲线2522=+y x 的交点是B ,则过B 点的曲线2522=+y x 的切线方程是 .(用一般式表示)11、【答案】7241250x y ±+=【来源】18届奉贤二模11【难度】解析几何、压轴题5.直线(1)10ax a y +-+=与直线420x ay +-=互相平行,则实数a =【答案】2【来源】18届虹口二模2【难度】解析几何、基础题 ααα26.已知平面直角坐标系xOy 中动点),(y x P 到定点)0,1(的距离等于P 到定直线1-=x 的距离,则点P 的轨迹方程为______________.【答案】x y 42=【来源】18届长嘉二模4【难度】解析几何、基础题7. 抛物线212x y =的准线方程为_______.【答案】3y =-【来源】18届普陀二模1【难度】解析几何、基础题8.双曲线22219x y a -=(0a >)的渐近线方程为320x y ±=,则a = 【答案】2a =【来源】18届松江二模1【难度】解析几何、基础题9.已知直线12:0,:20l mx y l x my m -=+--=.当m 在实数范围内变化时,1l 与2l 的交点P 恒在一个定圆上,则定圆方程是 .【答案】2220x y x y +--=【来源】18届徐汇二模10【难度】解析几何、中档题10.已知抛物线2x ay =的准线方程是14y =-,则a = . 【答案】1【来源】18届徐汇二模4【难度】解析几何、基础题11.若双曲线222161(0)3x y p p -=>的左焦点在抛物线22y px =的准线上,则p = .【答案】4【来源】18届杨浦二模8【难度】解析几何、中档题12.平面上三条直线210x y -+=,10x -=,0x ky +=,如果这三条直线将平面化分为六个部分,则实数k 的取值组成的集合A =【答案】{2,1,0}--【来源】18届金山二模10【难度】解析几何、中档题13.已知双曲线22:198x y C -=,左、右焦点分别为1F 、2F ,过点2F 作一直线与双曲线C 的右半支交于P 、Q 两点,使得190F PQ ∠=︒,则1F PQ ∆的内切圆的半径r =【答案】2【来源】18届金山二模11【难度】解析几何、中档题14.已知圆锥的母线长为5,侧面积为15π,则此圆锥的体积为 (结果保留π)【答案】12π【来源】18届崇明二模6【难度】解析几何、基础题15. 已知椭圆2221x y a+=(0a >)的焦点1F 、2F ,抛物线22y x =的焦点为F ,若 123F F FF =u u u r u u u u r ,则a =【来源】18届崇明二模8【难度】解析几何、中档题9. 复数1.设z 是复数,()a z 表示满足1n z =时的最小正整数n ,i 是虚数单位,则⎪⎭⎫⎝⎛-+i i a 11=______.【答案】4【来源】18届奉贤二模7【难度】复数、基础题2.已知α是实系数一元二次方程22(21)10x m x m --++=的一个虚数根,且||2α≤,则实数m 的取值范围是 .【答案】3(4-【来源】18届黄浦二模8【难度】复数、中档题3.已知复数z 满足i 342+=z (i 为虚数单位),则=||z ____________. 【答案】5【来源】18届长嘉二模3【难度】复数、基础题4.若复数z 满足2315i z -=+(i 是虚数单位),则=z _____________. 【答案】512i - 【来源】18届青浦二模2【难度】复数、基础题5.设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m =【答案】-1【来源】18届松江二模3【难度】复数、基础题6.若复数z 满足1z =,则z i -的最大值是 .【答案】2【来源】18届杨浦二模6【难度】复数、中档题7.i 是虚数单位,若复数(12)()i a i -+是纯虚数,则实数a 的值为【答案】-2【来源】18届崇明二模3【难度】复数、基础题10. 立体几何1.已知球的俯视图面积为π,则该球的表面积为 .【答案】4π【来源】18届宝山 二模5【难度】立体几何、基础题2.已知半径为2R 和R 的两个球,则大球和小球的体积比为 .【答案】8或1:8【来源】18届奉贤 二模2【难度】立体几何、基础题3.长方体的对角线与过同一个顶点的三个表面所成的角分别为α、β、γ,则222cos cos cos αβγ++=4.2【答案】2【来源】18届虹口 二模4【难度】立体几何、中档题4.如图,长方体1111ABCD A B C D -的边长11AB AA ==,AD =O ,则A 、1A 这两点的球面距离等于 【答案】3π 【来源】18届虹口 二模9【难度】立体几何、中档题5.将圆心角为32π,面积为π3的扇形围成一个圆锥的侧面,则此圆锥的体积为___________.【答案】π322【来源】18届长嘉二模7【难度】立体几何、中档题6.三棱锥ABCP-及其三视图中的主视图和左视图如下图所示,则棱PB的长为________.【答案】24【来源】18届长嘉二模8【难度】立体几何、中档题7.如图所示,一个圆柱的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个圆柱的体积为__________.【答案】4π【来源】18届青浦二模7【难度】立体几何、中档题8.若一个球的体积为323π,则该球的表面积为_________.【答案】16π【来源】18届徐汇二模5【难度】立体几何、基础题9.若一圆锥的底面半径为3,体积是12π,则该圆锥的侧面积等于 .【答案】15π【来源】18届徐汇二模8【难度】立体几何、中档题10.若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为【答案】16π【来源】18届松江二模8【难度】立体几何、中档题11.若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形, 则该圆锥的体积是 .【来源】18届杨浦二模7【难度】立体几何、中档题12.记球1O 和2O 的半径、体积分别为1r 、1V 和2r 、2V ,若12827V V =,则12r r = 【答案】23【来源】18届金山二模6【难度】立体几何、中档题11. 排列组合、概率统计、二项式定理1.某次体检,8位同学的身高(单位:米)分别为68.1,71.1,73.1,63.1,81.1,74.1,66.1,78.1,则这组数据的中位数是 (米).【答案】1.72【来源】18届宝山二模3【难度】统计、基础题2.若B A 、满足()()()525421===AB P B P A P ,,,则()()P AB P AB -= . 【答案】310【来源】18届宝山二模9【难度】概率、中档题3.在报名的8名男生和5名女生中,选取6人参加志愿者活动,要求男、女都有,则不同的选取方式的种数为 (结果用数值表示)【答案】1688【来源】18届宝山二模7【难度】排列组合、中档题4.从集合{1,1,2,3}-随机取一个为m ,从集合{2,1,1,2}--随机取一个为n ,则方程221x y m n+=表示双曲线的概率为 【答案】12【来源】18届虹口二模6【难度】概率、中档题5.若将函数6()f x x =表示成23601236()(1)(1)(1)(1)f x a a x a x a x a x =+-+-+-+⋅⋅⋅+-,则3a 的值等于【答案】20【来源】18届虹口二模8【难度】二项式、中档题6.已知某市A社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是人.【答案】140【来源】18届黄浦二模9【难度】概率统计、中档题7.将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是.(结果用数值表示) 10.【答案】5 16【来源】18届黄浦二模10 【难度】概率统计、中档题8.nxx⎪⎭⎫⎝⎛+1的展开式中的第3项为常数项,则正整数=n___________.【答案】4【来源】18届长嘉二模2【难度】二项式、基础题9.某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0、1、2、3的四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球编号相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.则顾客抽奖中三等奖的概率为____________.9.【答案】167【难度】概率统计、中档题10.代数式2521(2)(1)x x+-的展开式的常数项是 .(用数字作答) 【答案】3【来源】18届奉贤二模10【难度】二项式、中档题11.书架上有上、中、下三册的《白话史记》和上、下两册的《古诗文鉴赏辞典》,现将这五本书从左到右摆放在一起,则中间位置摆放中册《白话史记》的不同摆放种数为_______(结果用数值表示).【答案】24【来源】18届普陀二模4【难度】二项式、基础题12.若321()n x x-的展开式中含有非零常数项,则正整数n 的最小值为_________.5 【答案】5【来源】18届普陀二模6【难度】二项式、基础题13.某单位年初有两辆车参加某种事故保险,对在当年内发生此种事故的每辆车,单位均可获赔(假设每辆车最多只获一次赔偿).设这两辆车在一年内发生此种事故的概率分别为120和121,且各车是否发生事故相互独立,则一年内该单位在此种保险中获赔的概率为_________(结果用最简分数表示).【答案】221【难度】概率统计、中档题14.设1234,,,{1,0,2}x x x x ∈-,那么满足12342||||||||4x x x x ≤+++≤的所有有序数对 1234(,,,)x x x x 的组数为【答案】45【来源】18届松江二模11【难度】排列组合、压轴题15.设*n N ∈,n a 为(4)(1)n n x x +-+的展开式的各项系数之和,324c t =-,t ∈R1222[][][]555n n n na a a b =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t b c -++的最小值为 【答案】25【来源】18届松江二模12【难度】二项式、压轴题16.在61x x ⎛⎫+ ⎪⎝⎭的二项展开式中,常数项是 .【答案】20【来源】18届徐汇二模2【难度】二项式、基础题17.621(1)(1)x x++展开式中2x 的系数为______________.8、30【答案】30【来源】18届青浦二模8【难度】二项式、中档题18.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A +的概率分别为78、34、512,这三门科目考试成绩的结果互不影响,则这位考生至少得2个A +的概率是 . 【答案】151192【来源】18届青浦二模9【难度】概率统计、中档题19.将两颗质地均匀的骰子抛掷一次,记第一颗骰子出现的点数是m ,记第二颗骰子出现的点数是n ,向量()2,2a m n =--r ,向量()1,1b =r ,则向量a b ⊥r r 的概率..是 . 【答案】16【来源】18届徐汇二模9【难度】概率统计、中档题20.若的二项展开式中项的系数是,则n = .【答案】4【来源】18届杨浦二模3【难度】概率统计、基础题21.掷一颗均匀的骰子,出现奇数点的概率为 . ()13nx +2x 542【来源】18届杨浦二模4【难度】概率统计、基础题22.若一个布袋中有大小、质地相同的三个黑球和两个白球,从中任取两个球,则取出的两球中恰是一个白球和一个黑球的概率是 【答案】11322535C C C ⋅= 【来源】18届金山二模8【难度】概率统计、中档题23.(12)n x +的二项展开式中,含3x 项的系数等于含x 项的系数的8倍,则正整数n =【答案】5【来源】18届金山二模9【难度】二项式、中档题24.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 石(精确到小数点后一位数字)【答案】169.1【来源】18届崇明二模5【难度】统计、基础题25. 若二项式7(2)a x x+的展开式中一次项的系数是70-,则23lim()n n a a a a →∞+++⋅⋅⋅+=3【来源】18届崇明二模7【难度】二项式、基础题26.某办公楼前有7个连成一排的车位,现有三辆不同型号的车辆停放,恰有两辆车停放在 相邻车位的概率是 【答案】47【来源】18届崇明二模10【难度】概率、中档题12. 行列式、矩阵、程序框图1.若某线性方程组对应的增广矩阵是421m m m ⎛⎫⎪⎝⎭,且此方程组有唯一一组解,则实数m 的取值范围是【答案】0D ≠,即2m ≠±【来源】18届金山二模7【难度】矩阵、中档题2.三阶行列式130124765x-中元素5-的代数余子式为()x f ,则方程()0f x =的解为____. 【答案】2log 3x =【来源】18届奉贤二模6【难度】矩阵、中档题3.若二元一次方程组的增广矩阵是121234c c ⎛⎫ ⎪⎝⎭,其解为100x y =⎧⎨=⎩,则12c c += 【答案】 40【来源】18届松江二模2【难度】矩阵、基础题4.函数()2sin cos 1()11x x f x +-=的最小正周期是___________.【答案】π【来源】18届徐汇二模7【难度】矩阵、基础题5.若线性方程组的增广矩阵为⎪⎪⎭⎫ ⎝⎛210221c c 的解为⎩⎨⎧==31y x ,则=+21c c . 【答案】9【来源】18届宝山二模6【难度】矩阵、基础题6.已知函数2sin cos 2()1cos x x f x x -=,则函数()f x 的单调递增区间 是 . 【答案】3[,],Z 88k k k ππππ-+∈【来源】18届黄浦二模7【难度】矩阵、基础题7.已知一个关于x 、y 的二元一次方程组的增广矩阵是111012-⎛⎫⎪⎝⎭,则x y += 【答案】5【来源】18届崇明二模2【难度】矩阵、基础题8.若2log 1042x -=-,则x =【答案】4【来源】18届崇明二模4 【难度】行列式、基础题13. 数学归纳法、极限1.已知数列{}n a ,其通项公式为31n a n =+,*n N ∈,{}n a 的前n 项和为n S ,则limnn nS n a →∞=⋅【答案】12【来源】18届松江二模6 【难度】极限、基础题2.计算:=+∞→142limn nn .【答案】12【来源】18届杨浦二模2 【难度】极限、基础题14. 参数方程、线性规划1.已知实数,x y 满足20102x y x y -≤⎧⎪-≤⎨⎪+≥⎩,则目标函数2u x y =+的最大值是 .【答案】4 【来源】18届奉贤二模4 【难度】线性规划、中档题2.设变量x 、y 满足条件⎪⎩⎪⎨⎧≤+-≤-+≥,043,04,1y x y x x 则目标函数y x z -=3的最大值为_________.【答案】4 【来源】18届长嘉二模6 【难度】线性规划、基础题3.在平面直角坐标系xOy 中,直线l的参数方程为24x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C的参数方程为cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩(θ为参数),则直线l 与椭圆C 的公共点坐标为__________.【答案】(24-【来源】18届普陀二模8 【难度】参数方程、中档题4.设变量x 、y 满足条件0220x y x y y x y m-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,若该条件表示的平面区域是三角形,则实数m 的取值范围是__________. 【答案】4(0,1][,)3+∞U 【来源】18届普陀二模10 【难度】参数方程、中档题5.若,x y 满足2,10,20,x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩则2z x y =-的最小值为____________.【答案】12-【来源】18届青浦二模6 【难度】参数方程、中档题6.已知实数x y ,满足001x y x y ≥⎧⎪≥⎨⎪+≤⎩,,. 则目标函数z x y =-的最小值为___________.【答案】-1【来源】18届徐汇二模6 【难度】线性规划、基础题7.若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为 .【答案】3【来源】18届杨浦二模5 【难度】线性规划、基础题8.直线l 的参数方程为112x ty t =+⎧⎨=-+⎩(t 为参数),则l 的一个法向量为【答案】()2,1- 【来源】18届松江二模5 【难度】线性规划、基础题9.若平面区域的点(,)x y 满足不等式||||14x y k +≤(0k >),且z x y =+的最小值为5-,则常数k = 【答案】5k =【来源】18届松江二模9 【难度】线性规划、中档题10.已知,x y ∈R,且满足00y y y +≤-≥≥⎪⎩,若存在θ∈R 使得cos sin 10x y θθ++=成立,则点(,)P x y 构成的区域面积为【答案】6π【来源】18届崇明二模11 【难度】线性规划、中档题15.其它1.函数()sin f x x =,对于123n x x x x <<<⋅⋅⋅<且12,,,[0,8]n x x x π⋅⋅⋅∈(10n ≥),记1223341|()()||()()||()()||()()|n n M f x f x f x f x f x f x f x f x -=-+-+-+⋅⋅⋅+-,则M的最大值等于 【答案】16【来源】18届虹口二模12 【难度】其它、压轴题 二、选择题1.命题、不等式)(C 充要条件. )(D 既不充分也不必要条件.【答案】 B 【来源】18届宝山二模13 【难度】命题与条件、基础题2.在给出的下列命题中,是ggg假命题的是 答( ).(A )设O A B C 、、、是同一平面上的四个不同的点,若(1)(R)OA m OB m OC m =⋅+-⋅∈u u u r u u u r u u u r,则点A B C 、、必共线(B )若向量a b r r 和是平面α上的两个不平行的向量,则平面α上的任一向量c r都可以表示为(R)c a b λμμλ=+∈r r r、,且表示方法是唯一的(C )已知平面向量OA OB OC u u u r u u u r u u u r、、满足||||(0)OA OB OC r r ==>u u u r u u u r u u u r |=|,且0OA OB OC ++=u u u r u u u r u u u r r , 则ABC ∆是等边三角形(D )在平面α上的所有向量中,不存在这样的四个互不相等的非零向量a b c d r r r u r、、、,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直【答案】D【来源】18届黄浦二模16 【难度】命题与条件、压轴题3.唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。

(完整版)2018上海市黄浦区2018届中考二模数学试题含答案,推荐文档

(完整版)2018上海市黄浦区2018届中考二模数学试题含答案,推荐文档
y k ,那么该一次函数可能的解析式是( ) x
(A) y kx k ;
(B) y kx k ;
(C) y kx k ;
(D) y kx k .
4.一个民营企业 10 名员工的月平均工资如下表,则能较好反映这些员工月平均工资水平的是( )
人次
1
1
1
2
1
1
3
工资
30
3
2
1.5
1.2
2
24.(本题满 12 分)
已知抛物线 y x2 bx c 经过点 A(1,0)和 B(0,3),其顶点为 D.
(1)求此抛物线的表达式; (2)求△ABD 的面积; (3)设 P 为该抛物线上一点,且位于抛物线对称轴 右侧,作 PH⊥对称轴,垂足为 H,若△DPH 与△AOB 相 似,求点 P 的坐标.
P,则该反比例函数的解析式为

12.如果一次函数的图像经过第一、二、四象限,那么其函数值 y 随自变量 x 的值的增大而

(填“增大”或“减小”)
13.女生小琳所在班级共有 40 名学生,其中女生占 60%.现学校组织部分女生去市三女中参观,需要
从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率是
那么 AD∶AB=

三、解答题:(本大题共 7 题,满分 78 分)
19.(本题满分 10 分)
1
计算: 22 23 2
0
2018 2018 3 2 3 .
20.(本题满分 10 分)
第3页
x2 2xy y2 9
解方程组:
x
2
y2
5
.
21.(本题满分 10 分)
2
如图,AH 是△ABC 的高,D 是边 AB 上一点,CD 与 AH 交于点 E.已知 AB=AC=6,cosB= ,

(完整word版)2018年黄浦区高三二模数学Word版(附解析)

(完整word版)2018年黄浦区高三二模数学Word版(附解析)

C.充要条件D.既非充分也非必要上海市黄浦区2018届高三二模数学试卷.填空题(本大题共 12题,1-6每题4分,7-12每题5分,共54 分)1. 已知集合A 1,2,3,B 1,m ,若3mA ,则非零实数m 的数值是 ________________________2. 不等式|1 x| 1的解集是 _____________3. 若函数f(x) ,8 ax 2x 2是偶函数,则该函数的定义域是 ___________________2 2 24. 已知 ABC 的三内角A B 、C 所对的边长分别为 a 、b 、c ,若a b c 2bcsi nA , 则内角A 的大小是 _________5. 已知向量a 在向量b 方向上的投影为 2,且|b| 3,则a b= ___________(结果用数值表示)6. 方程 log 3(3 2x 5) log 3(4x 1) 0 的解 x ______________2sinxcos2x 7. 已知函数f (x) ,则函数f(x)的单调递增区间是 _____________1cosx8.已知 是实系数一元二次方程 x 2 (2m 1)x m 2 1 0的一个虚数根,且| | 2,则实数m 的取值范围是 __________9. 已知某市A 社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至 65岁的居民有900人•为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用 分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了 50人,试问这次抽样调查抽取的人数是 _________ 人(结果用数值表示)a 1 24, a 251, a k也一的最小值是 _____________ f(0) f( 1)二.选择题(本大题共 4题,每题5分,共20分)13.空间中,“直线m 平面 ”是“直线m 与平面 内无穷多条直线都垂直”的()A.充分非必要条件B.必要非充分条件 2018.0410.将一枚质地均匀的硬币连续抛掷 5次,则恰好有3次出现正面向上的概率是 ____________11.已知数列a n 是共有k 个项的有限数列,且满足a n 1 — (na n2,L ,k 1),若212.已知函数 f (x) ax bx c(0 2ab)对任意x R 恒有f(x) 0成立,则代数式114.二项式C.X 3_严的展开式中,其中是有理项的项数共有( ) A. 4项B. 7项C. 5项D. 6项x y 315.实数x 、y 满足约束条件x 0,y 0,则目标函数x y 1w 2xy 3取大值疋()A. 0B. 1C. 2D. 316.在给出的下列命题中,是假命题的是()A.设O 、A 、B 、C 是冋平面上四个不冋的若OA m OB(1 m) OC(m R),则点A B C 必共线B.若向量a 和b 是平面上的两个不平行的向量,则平面上的任一向量c 都可以表示UL UUL UULuurr LLLC . 已知平面向量 OA 、 OB 、 OC 满足| OA | |OB||OC | r (r 0),uuu LULT r且OB OC 0,则 AB 是等边三角形D.在平面 上的所有向量中,不存在这样的四个互不相等的非零向量a 、b 、c 、d ,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直三.解答题(本大题共 5题,共14+14+14+16+18=76分)17. 在四棱锥 P-ABCD 中,PA 平面 ABCD , AB 丄 AD , BC // AD , BC 1 , CD .2 ,CDA 45 .(1)画出四棱锥 P-ABCD 的主视图; (2 )若PA BC ,求直线PB 与平面PCD 所成角的大小•(结果用反三角函数值表示)r br ar cR ),且表示方法是唯一的18. 某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD挖去扇形OBC后构成的).已知OA 10米,OB x米,0 x 10,线段BA、线段CD与弧BC、弧AD的长度之和为30米,圆心角为弧度.(1 )求关于x的函数解析式;(2)记铭牌的截面面积为y,试问x取何值时,y的值最大?并求出最大值19.已知动点M(x, y)到点F(2,0)的距离为d1,动点M(x, y)到直线x 3的距离为d?,且鱼_6d2 3 .(1)求动点M (x, y)的轨迹C的方程;(2)过点F作直线I : y k(x 2) (k 0)交曲线C于P、Q两点,若△ OPQ的面积S OPQ 3 (O是坐标系原点),求直线l的方程•2x, 1 x 0,20.已知函数f(x) 2 x 1, 0 x 1.(1)求函数f (x)的反函数f 1(x);(2)试问:函数f (x)的图像上是否存在关于坐标原点对称的点,若存在,求出这些点的坐标;若不存在,说明理由;(3)若方程f(x) 2.1 x2 | f(x) 2 .1 X2 I 2ax 4 0的三个实数根x n X2、X3满足论X2 X3,且X3 X2 2(X2 xj,求实数a的值.6列d n 是数列C n 的“伴随数列” •已知数列 b n 是a .的伴随数列,解答下列问题: (1 )若b n a n (n N *),b i2,求数列 a .的通项公式a .;(2) 若b n 1 1 出(n N *),0为常数,求证:数列{(鸟)2}是等差数列;a na 1a nb *(3)若b n 1.2 n (n N ),数列a n 是等比数列,求 ⑦、d 的数值•21.定义:若数列 C n 和d n 满足c n 0 , d n 0 ,且C n 1n N ,则称数c nd n参考答案.填空题1. 2 2.( ,0) U (2, )3. [2,2]4.45. 6 6. 2 7. [k8,k8],k Z8.(j, 3] 49. 140105 11. 50 12.316(2 )根据题意,可算得 AB 1,AD 2.令z 2,可得y 1,x 1,故平面PCD 的一个法向量为n (1,1,2).r mu一设直线PB 与平面PCD 所成角的大小为 ,则sin甲農1 —.二.选择题 13. A 14. B15. D16. DUlID UULT于是,有 PB (1,0, 1),CDTHIH (1,1,0),PD (0,2,T UULTn CD 1).0,x y 设平面PCD 的法向量为n(x,y,z),则T即Jn PD0,2y z0, 0.三.解答题又PA BC 1,按如图所示建立空间直角坐标系, 可得,A(0,0,0), B(1,0,0),C(1,1,0),D(0,2,0), P(0,0,1).|n ||PB| 6arcs点所以直线PB与平面PCD所成角的大小为618.解:(1)根据题意,可算得弧 BC X (m ), 弧 AD 10(m ).又 BA CD 弧BC 弧CD 30,于是, 10x 10 x x10302x 10所以,(0 x 10).x 10(2 )依据题意,可知y S 扇OADS扇OBC12 21 2 10X2化简,得 yx 2 5x 50 (x 5)2 225245225 2于是,当x (满足条件0 X 10 )时,y max (m ).45225答所以当x米时铭牌的面积最大,且最大面积为 平方米.24点O 到直线丨的距离d 」2k 1 .由 S OPQ . 3 ,5/1 k 212k 23k 2 得2」Fk 227k 3k 26 3,化简得k 4 2k 2 1 0 ,解得k 1,且满足 0,即1都符合题意•因此,所求直线的方程为0或x y 2 0.19.解:(1)结合题意,可得d 1, (x 2)2 y 2a |x3|.又 dL_6 3 d 2因此,所求动点(2) 设点 曰是,(X 2)y—,化简得—32M (x, y)的轨迹C 的方程是 —6曰是,联立方程组2X6 y专1,k(x 2),得(13k 2)x 2 Pg, yj 、Q(X 2, y 2),则 xX212k 2 1 3k 2 弦 |PQ| ..(X 1 X 2)2 (y 1 y 2)2.1 k 22乞1.6 22y- 1.212k 2x x^212k 2 6 12k 2 6 2,1 3k 212k 21 3k2 0.12k 2 6 1 3k 2 ,2x, 1 x 0,20.解:(1) Q f (x)= 2x2 1, 0 x 1.当1x0 时,f(x) 2x,且0 f(x) 2.由y 2x,得x y,互换x与y,可得f 1(x) x(0 x 2).2 2当0 x 1 时,f(x) x2 1,且-1 f (x) 0.由y x2 1,得x 1+y,互换x与y,可得f ^x) ^.i+x( 1 x 0).11x, 0<x 2,f 1(x) 2_.1 x, 1 x 0.(2)函数图像上存在两点关于原点对称.设点A(x°,y°)(0 x。

(最新整理)2018上海高三数学二模---函数汇编

2018上海高三数学二模---函数汇编编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018上海高三数学二模---函数汇编)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018上海高三数学二模---函数汇编的全部内容。

2018上海高三数学二模—-函数汇编(2018宝山二模)10. 设奇函数定义为,且当时,(这里为正()f x R 0x >2()1m f x x x=+-m 常数).若对一切成立,则的取值范围是 。

()2f x m ≤-0x ≤m 答案:[)2,+∞(2018宝山二模)15.若函数满足、均为奇函数,则下列四个结论()()f x x R ∈()1f x -+()1f x +正确的是( )为奇函数 为偶函数)(A ()f x -)(B ()f x -为奇函数 为偶函数)(C ()3f x +)(D ()3f x +答案:C(2018宝山二模)19。

(本题满分14分,第1小题满分6分,第2小题满分8分)某渔业公司最近开发的一种新型淡水养虾技术具有方法简便且经济效益好的特点,研究表明:用该技术进行淡水养虾时,在一定的条件下,每尾虾的平均生长速度为(单位:千克/年)()g x 养殖密度为(单位:尾/立方分米).当不超过时,的值恒为;当,,0x x >x 4()g x 2420x ≤≤是的一次函数,且当达到20时,因养殖空间受限等原因,的值为0.()g x x x ()g x (1)当时,求函数的表达式。

020x <≤()g x (2)在(1)的条件下,求函数的最大值。

()()f x x g x =⋅答案:(1);(2)千克/立方分米()(][]()2,0,4,15,4,2082x g x x N x x *⎧∈⎪=∈⎨-+∈⎪⎩12.5(2018虹口二模5) 已知函数,则 20()210x x x f x x -⎧-≥=⎨-<⎩11[(9)]f f ---=【解析】,,120()log (1),0x f x x x -≤=-+>⎪⎩1(9)3f --=111[(9)](3)2f f f ----==-(2018虹口二模11) 是不超过的最大整数,则方程满足的所有实[]x x 271(2)[2]044x x -⋅-=1x <数解是【解析】当,,∴;当,,,01x ≤<[2]1x =21(2)22x x =⇒=0x <[2]0x =21(2)4x =∴,∴满足条件的所有实数解为或1x =-0.5x =1x =-(2018虹口二模21)已知函数(R ,R ),(R )。

黄浦区2018年高考模拟考

黄浦区2018年高考模拟考数学试卷(完卷时间:120分钟满分:150分)一、填空(本大题共54分,1-6每题4分,7-12每题5分)1.关于x,y的二元一次方程的增广矩阵为.若Dx=5,则实数m= .2.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来1524石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为石.3.已知复数z1=1+i,|z2|=3,z1z2是正实数,则复数z2= .4.在的二项式展开式中,x3的系数是,则实数a= .5.在Rt△ABC中,A=90°,AB=1,AC=2,D是斜边BC上一点,且BD=2DC,则•(+)= .6.已知集合A={x|},集合B={x|(x﹣a)(x﹣b)<0},若“a=﹣3”是“A∩B≠∅”的充分条件,则实数b的取值范围是.7.已知M是球O半径OP的中点,过M做垂直于OP的平面,截球面得圆O1,则以圆O1为大圆的球与球O的体积比是.8.从集合{,,2,3}中任取一个数记做a,从集合{﹣2,﹣1,1,2}中任取一个数记做b,则函数y=a x+b的图象经过第三象限的概率是.9.已知m>0,n>0,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是.10.如图,在地上有同样大小的5块积木,一堆2个,一堆3个,要把积木一块一块的全部放到某个盒子里,每次只能取出其中一堆最上面的一块,则不同的取法有种(用数字作答).11.定义Hn =为数列{an}的均值,已知数列{bn}的均值,记数列{b n ﹣kn}的前n 项和是S n ,若S n ≤S 3对于任意的正整数n 恒成立,则实数k 的取值范围是 .12.已知函数f (x )=|x ﹣a|+m|x+a|(0<m <1,m ,a ∈R ),若对于任意的实数x 不等式f (x )≥2恒成立时,实数a 的取值范围是{a|a ≤﹣5或a ≥5},则所有满足条件的m 的组成的集合是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.设a b 、分别是两条异面直线12l l 、的方向向量,向量a b 、夹角的取值范围为A ,12l l 、所成角的取值范围为B ,则“A α∈”是“B α∈”的 (A) 充要条件 (B) 充分不必要条件 (C) 必要不充分条件 (D) 既不充分也不必要条件14. 将函数sin 12y x π⎛⎫=- ⎪⎝⎭图像上的点,4P t π⎛⎫⎪⎝⎭向左平移(0)s s >个单位,得到点P ',若P '位于函数的图像上,则 (A) 12t =,s 的最小值为6π(B) 2t =,s 的最小值为6π(C) 12t =,s 的最小值为12π(D) t =,s 的最小值为12π15.某条公共汽车线路收支差额y 与乘客量x 的函数关系如图所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则sin 2y x =(A) ①反映了建议(Ⅱ),③反映了建议(Ⅰ) (B) ①反映了建议(Ⅰ),③反映了建议(Ⅱ) (C) ②反映了建议(Ⅰ),④反映了建议(Ⅱ) (D) ④反映了建议(Ⅰ),②反映了建议(Ⅱ) 16.设函数()y f x =的定义域是R ,对于以下四个命题:(1) 若()y f x =是奇函数,则(())y f f x =也是奇函数; (2) 若()y f x =是周期函数,则(())y f f x =也是周期函数;(3) 若()y f x =是单调递减函数,则(())y f f x =也是单调递减函数; (4) 若函数()y f x =存在反函数1()y f x -=,且函数1()()y f x f x -=-有零点,则函数()y f x x =-也有零点.其中正确的命题共有 (A) 1个 (B) 2个 (C) 3个 (D) 4个三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,在直棱柱111ABC A B C -中,12AA AB AC ===,AB AC ⊥,D E F ,,分别是111,,A B CC BC 的中点. (1)求证:AE D F ⊥;(2)求AE 与平面DEF 所成角的大小及点A 到平面DEF 的距离.18.(本题满分14分)本题共有2小题,第小题满分6分,第小题满分8分.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且cos ,cos ,cos b C a A c B 成等差数列.(1)求角A 的大小;(2)若a =6b c +=,求AB AC +的值.19、(本题满分14分.第(1)小题6分,第(2)小题8分.)已知数列{}n a 是首项等于116且公比不为1的等比数列,n S 是它的前n 项和,满足325416S S =-. (1)求数列{}n a 的通项公式;(2)设log n a n b a =(0a >且1)a ≠,求数列{}n b 的前n 项和n T 的最值.20、(本题满分16分.第(1)小题3分,第(2)小题5分,第(3)小题8分.)已知椭圆:C 22221(0)x y a b a b+=>>,定义椭圆C 上的点00(,)M x y 的“伴随点”为00(,)x y N a b. (1)求椭圆C 上的点M 的“伴随点”N 的轨迹方程;(2)如果椭圆C 上的点3(1,)2的“伴随点”为13(,)22b ,对于椭圆C 上的任意点M 及它的“伴随点”N ,求OM ON的取值范围;(3)当2a =,b =l 交椭圆C 于A ,B 两点,若点A ,B 的“伴随点”分别是P ,Q ,且以PQ 为直径的圆经过坐标原点O ,求OAB ∆的面积.21、(本题满分18分.第(1)小题3分,第(2)小题6分,第(3)小题9分.)对于定义域为R 的函数()y f x =,部分x 与y 的对应关系如下表:(1)求{[(0)]}f f f ;(2)数列{}n x 满足12x =,且对任意n N *∈,点1(,)n n x x +都在函数()y f x =的图像上,求124n x x x +++ ;(3)若()s i n ()y f x A x b ωϕ==++,其中0A >,0ωπ<<,0ϕπ<<,03b <<,求此函数的解析式,并求(1)(2)(3)f f f n +++ (n N *∈).高三数学参考答案与评分标准一、填空(本大题共54分,1-6每题4分,7-12每题5分)1.关于x,y的二元一次方程的增广矩阵为.若Dx=5,则实数m= ﹣2 .【考点】矩阵变换的性质.【分析】由题意,Dx==5,即可求出m的值.【解答】解:由题意,Dx==5,∴m=﹣2,故答案为﹣2.2.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来1524石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为168 石.【考点】简单随机抽样.【分析】根据254粒内夹谷28粒,可得比例,即可得出结论.【解答】解:由题意,这批米内夹谷约为1524×≈168石,故答案为:168.3.已知复数z1=1+i,|z2|=3,z1z2是正实数,则复数z2= z2=.【考点】复数代数形式的乘除运算.【分析】设复数z2=a+bi(a,b∈R),求出z1z2,再根据已知条件列出方程组,求解即可得答案.【解答】解:设复数z2=a+bi(a,b∈R),z 1z2=,∵|z2|=3,z1z2是正实数,∴,解得:.则复数z2=.故答案为:z2=.4.在的二项式展开式中,x3的系数是,则实数a= 4 .【考点】二项式系数的性质.【分析】利用二项式展开式的通项公式即可得出.=【解答】解:在的二项式展开式中,通项公式Tr+1=,令﹣9=3,解得r=8.∴=,解得a=4.故答案为:4.5.在Rt△ABC中,A=90°,AB=1,AC=2,D是斜边BC上一点,且BD=2DC,则•(+)= 3 .【考点】平面向量数量积的运算.【分析】由题意画出图形,把转化为含有的式子求解.【解答】解:如图,∵BD=2DC,∴=.∴•(+)===.故答案为:3.6.已知集合A={x|},集合B={x|(x﹣a)(x﹣b)<0},若“a=﹣3”是“A∩B≠∅”的充分条件,则实数b的取值范围是b>﹣1 .【考点】必要条件、充分条件与充要条件的判断.【分析】分别求出关于A、B的不等式,通过A∩B≠∅”,求出b的范围即可.【解答】解:A={x|}={x|x>﹣1},B={x|(x﹣a)(x﹣b)<0}=(﹣3,b)或(b,﹣3),由“A∩B≠∅”,得b>﹣1,故答案为:b>﹣1.,则7.已知M是球O半径OP的中点,过M做垂直于OP的平面,截球面得圆O1以圆O为大圆的球与球O的体积比是.1【考点】球的体积和表面积.【分析】由题意,设出圆M的半径,球的半径,二者与OM构成直角三角形,求为大圆的球与球O的体积比.出半径关系,然后可求以圆O1【解答】解:由题意,设出圆M的半径r,球的半径R,由勾股定理得R2=r2+()2,r=R.为大圆的球与球O的体积比是.∴以圆O1故答案为:.8.从集合{,,2,3}中任取一个数记做a,从集合{﹣2,﹣1,1,2}中任取一个数记做b,则函数y=a x+b的图象经过第三象限的概率是.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件(a,b)的个数n=4×4=16,再利用列举法求出函数y=a x+b 的图象经过第三象限的情况,由此能求出函数y=a x+b的图象经过第三象限的概率.【解答】解:从集合{,,2,3}中任取一个数记做a,从集合{﹣2,﹣1,1,2}中任取一个数记做b,基本事件(a,b)的个数n=4×4=16,∵函数y=a x+b的图象经过第三象限有:①当a=3、b=﹣1时,②当a=3、b=﹣2时,③当a=4、b=﹣1时,④当a=4、b=﹣2时,⑤当a=,b=﹣2 时,⑥当a=,b=﹣2 时,共6种情况,∴函数y=a x+b的图象经过第三象限的概率是p=.故答案为:.9.已知m>0,n>0,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是[2+2,+∞).【考点】直线与圆的位置关系.【分析】由圆的标准方程找出圆心坐标和半径r,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形,设m+n=x,得到关于x的不等式,求出不等式的解集得到x的范围,即为m+n的范围.【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d==1,整理得:m+n+1=mn≤()2,设m+n=x(x>0),则有x+1≤,即x2﹣4x﹣4≥0,解得:x≥2+2,则m+n的取值范围为[2+2,+∞).故答案为[2+2,+∞).10.如图,在地上有同样大小的5块积木,一堆2个,一堆3个,要把积木一块一块的全部放到某个盒子里,每次只能取出其中一堆最上面的一块,则不同的取法有10 种(用数字作答).【考点】排列、组合的实际应用.【分析】根据题意,假设左边的积木从上至下依次为1、2、3,右边的积木从上至下依次为4、5,分析可得必须先取1或4,据此分2种情况讨论,分别列举2种情况下的取法数目,由分类计数原理计算可得答案.【解答】解:根据题意,假设左边的积木从上至下依次为1、2、3,右边的积木从上至下依次为4、5,分2种情况讨论:若先取1,有12345、12453、12435、14235、14253、14523,共6种取法;若先取4,有45123、41523、41253、41235,共4种取法;则一共有6+4=10中不同的取法;故答案为:10.11.定义Hn =为数列{an}的均值,已知数列{bn}的均值,记数列{bn ﹣kn}的前n项和是Sn,若Sn≤S3对于任意的正整数n恒成立,则实数k的取值范围是[,] .【考点】数列的求和.【分析】由题意,b1+2b2+…+2n﹣1bn=n•2n+1,b1+2b2+…+2n﹣2bn﹣1=(n﹣1)•2n,从而求出bn =2(n+1),可得数列{bn﹣kn}为等差数列,从而将Sn≤S5对任意的n(n∈N*)恒成立化为b5≥0,b6≤0;从而求解.【解答】解:由题意,Hn==2n+1,则b1+2b2+…+2n﹣1bn=n•2n+1,b 1+2b2+…+2n﹣2bn﹣1=(n﹣1)•2n,则2n﹣1bn=n•2n+1﹣(n﹣1)•2n=(n+1)•2n,则bn=2(n+1),对b1也成立,故bn=2(n+1),则bn﹣kn=(2﹣k)n+2,则数列{bn﹣kn}为等差数列,故Sn ≤S5对任意的n(n∈N*)恒成立可化为:b 5≥0,b6≤0;即,解得,≤k≤,故答案为:[,].12.已知函数f(x)=|x﹣a|+m|x+a|(0<m<1,m,a∈R),若对于任意的实数x不等式f(x)≥2恒成立时,实数a的取值范围是{a|a≤﹣5或a≥5},则所有满足条件的m的组成的集合是{} .【考点】绝对值三角不等式.【分析】根据绝对值的性质得到2m|a|≥2,解出a,得到关于m的方程,解出即可.【解答】解:f(x)=|x﹣a|+m|x+a|=m(|x﹣a|+|x+a|)+(1﹣m)|x﹣a|≥2m|a|+(1﹣m)|x﹣a|≥2m|a|≥2,解得:a≤﹣或a≥,∵数a的取值范围是{a|a≤﹣5或a≥5},故=5,解得:m=,∴实数m的集合是{}.故答案为{}.二、选择题(每小题5分,共20分)13. C 14.A 15. B 16.B三、解答题:(共76分)17.解:(1)以A 为坐标原点、AB 为x 轴、AC 为y 轴、1AA 为z 轴建立如图的空间直角坐标系.由题意可知(0,0,0),(0,1,2),(2,0,1),(1,1,0)A D E F --, 故(2,0,1),(1,0,2)AE DF =-=--,…………………4分由2(1)1(2)0AE DF ⋅=-⨯-+⨯-=,可知AE DF ⊥,即AE D F ⊥. …………………6分(2)设(,,1)n x y =是平面DEF 的一个法向量, 又(1,0,2) (1,1,1)DF EF =--=- ,, 故由20,10,n DF x n EF x y ⎧⋅=--=⎪⎨⋅=+-=⎪⎩解得2,3,x y =-⎧⎨=⎩ 故(2,3,1)n =- . …………9分设AE 与平面DEF 所成角为θ,则||sin ||||n AE n AE θ⋅==⋅,…………12分所以AE 与平面DEF所成角为 点A 到平面DEF的距离为sin AE θ⋅ …………………14分18.解:(1)由cos ,cos ,cos b C a A c B 成等差数列,可得cos cos 2cos b C c B a A =+, …………………2分故sin cos sin cos 2sin cos B C C B A A =+,所以sin()2sin cos B C A A =+, ………4分 又A B C π++=,所以sin()sin B C A +=,故sin 2sin cos A A A =, 又由(0,π)A ∈,可知sin 0A ≠,故1cos 2A =,所以π3A =. …………………6分(另法:利用cos cos b C c B a =+求解) (2)在△ABC中,由余弦定理得2222cos 3b c bc π+-=, (8)分即2218b c bc +-=,故2()318b c bc +-=,又6b c +=,故6bc =,………………10分所以2222()2AB AC AB AC AB AC AB AC ==++⋅++xyzO22||||2||||cos AB AC AB AC A =++⋅ (12)分22c b bc =++2()30b c bc =+-=,故AB AC =+…………………14分19、(14分)解:(1)325416S S =- , 1q ≠,3211(1)(1)541116a q a q q q --∴=⨯---.……2分整理得2320q q -+=,解得2q =或1q =(舍去).………………4分1512n n n a a q --∴=⨯=.………………6分(2)log (5)log 2n a n a b a n ==-.………………8分1)当1a >时,有log 20,a > 数列{}n b 是以log 2a 为公差的等差数列,此数列是首项为负的递增的等差数列.由0n b ≤,得5n ≤.所以min 45()10log 2n a T T T ===-.n T 的没有最大值.………11分2)当01a <<时,有log 20a <,数列{}n b 是以log 2a 为公差的等差数列,此数列是首项为正的递减的等差数列.0n b ≥,得5n ≤,max 45()10log 2n a T T T ===-.n T 的没有最小值.…………14分20、(16分)解:(1)解.设N (,x y )由题意 00x x ay y b⎧=⎪⎪⎨⎪=⎪⎩则00x ax y by =⎧⎨=⎩,又2200221(0)x y a b a b +=>> ∴2222()()1(0)ax by a b a b+=>>,从而得221x y +=……………………3分(2)由112a =,得2a =.又221914a b+=,得b =…………5分点00(,)M x y 在椭圆上,2200143x y +=,2200334y x =-,且2004x ≤≤,∴222000002(,)(,224xx OM ON x y x -=⋅=+=0>,OM ON的取值范围是2⎤⎦……8分 (3) 设1122(,),(,)A x y B x y ,则12,22x x P Q ⎛⎛ ⎝⎝;1)当直线l 的斜率存在时,设方程为y kx m =+, 由22143y kx m x y =+⎧⎪⎨+=⎪⎩得222(34)84(3)0k x kmx m +++-=; 有22122212248(34)08344(3)34k m km x x k m x x k ⎧⎪∆=+->⎪-⎪+=⎨+⎪⎪-=⎪+⎩① ……10分由以PQ 为直径的圆经过坐标原点O 可得: 1212340x x y y +=; 整理得:221212(34)4()40k x x mk x x m ++++= ②将①式代入②式得: 22342k m +=,………………………… 12分又点O 到直线y kx m =+的距离d =所以12OAB S AB d ∆==……………………14分2) 当直线l 的斜率不存在时,设方程为(22)x m m =-<<048,0,043222>=∆>∴>+m m k 2222222221223414334143433411m m kk m kk m k k x x k AB ⋅+=+⋅+=+-++=-+=联立椭圆方程得223(4)4m y -=;代入1212340x x y y +=得223(4)3404m m --⋅=,解得22m =,从而232y =, 综上:OAB ∆的面积是定值16分21、(18分)解:(1) {[(0)]}((3))(1)2f f f f f f ==-= ……………………3分 (2) 11212,()()(2)0,n n x x f x x f x f +==∴===32()3,x f x ==43()1,x f x ==-54()2x f x ==51x x ∴=,周期为 4 , 所以124n x x x +++ =4n .……………………9分 (3)由题意得(1)2(1)(1)2(2)(0)3(3)(2)0(4)f f f f -=⎧⎪=⎪⎨=⎪⎪=⎩ 由(1)(2)sin()sin()sin cos 0ωϕωϕωϕ-∴+=-+∴=又 0ωπ<<sin 0cos 0ωϕ∴≠∴= 而0ϕπ<<2πϕ∴=…………11分从而有23cos 32cos 23(2cos 1)30cos20A b A A A b b A A A A b ωωωω+=⎧+-=⎧⎪+=⇒=-⇒⎨⎨-+-=⎩⎪+=⎩ 22242230 2.1A A A A A b ∴-+-+=∴==1cos 2ω= 0ωπ<<3πω∴=()2cos13f x x π∴=+…………………………13分此函数的最小正周期为6, (6)(0)3f f ==(1)(2)(3)4)+(5)(6)6f f f f f f ++++= (…………14分1)当2n k =()k N *∈时.(1)(2)(3)(1)(2)(6)f f f n f f f k +++=+++[(1)(2)(6)]63k f f f k n =+++== .……………………16分2)当21n k =-()k N *∈时.3212121=-==∆y y m d AB S OAB(1)(2)(3)(1)(2)(6)(62)(61)(6)f f f n f f f k f k f k f k +++=+++-----[(1)(2)(6)]56532k f f f k n =+++-=-=- .………………18分。

2018届黄浦区高考数学二模答案


an bn
2 2 an bn
,n N* .
an (n N* ) , b1 2 ,得
an an a a
2 n 2 n
an 1
2, a1 b1 2 , n N* .
所以 an 证明 (2)
2 , n N* .
bn1 1
1 bn an
2 x 10 (0 x 10) . x 10
(2) 依据题意,可知 y S扇OAD S扇OBC 化简,得 y
1 1 102 x 2 2 2
x 2 5x 50
5 225 . ( x ) 2 2 4
225 2 5 (满足条件 0 x 10 )时, ymax ( m ). 2 4 225 5 答 所以当 x 米时铭牌的面积最大,且最大面积为 平方米. 4 2
于是,当 x 19. (本题满分 14 分)本题共有 2 个小题,第 1 小题满分 6 分,第 2 小题满分 8 分. 解 (1)结合题意,可得 d1 ( x 2)2 y 2 , d 2 | x 3 | . 又
( x 2)2 y 2 6 d1 6 ,于是, ,化简得 | x 3| 3 d2 3
于是, x1 由
4a 2 4a (当 0 a 2 2 2 时, 2 0 ). 2 a +4 2 a 4
2 4a , x2 2 , x3 0 . a2 a 4
,得
x3 x2 2( x2 x1 )
4a 4a 2 3 17 =2( 2 + ) ,解得 a . 2 a +4 a 4 a2 2
因此,函数图像上存在点 A( 2 1, 2 2 2)和B(1 2, 2 2 2) 关于原点对称.

2018届上海市高三(二模模拟)检测理科数学试题及答案

2018届上海市高三年级检测试卷(二模模拟)数学(理)一、填空题(本题满分56分)本大题共有14题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若2sin 2cos 2θθ+=-,则cos θ=2.若bi ia-=-11,其中b a ,都是实数,i 是虚数单位,则bi a += 3.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为4.抛物线22y x =的焦点为F ,点00(,)M x y 在此抛物线上,且52MF =,则0x =______5.某市连续5天测得空气中PM2.5(直径小于或等于2.5微米的颗粒物)的数据(单位:3/g m m )分别为115,125,132,128,125,则该组数据的方差为6.平行四边形ABCD 中,AB =(1,0),AC =(2,2),则AD BD ⋅ 等于7.已知关于x 的二项式n xa x )(3+展开式的二项式系数之和为32,常数项为80,则a 的值为8.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2a =,3c =,60B =︒,则b =9.用半径为210cm ,面积为π2100cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是10.已知椭圆12222=+by a x (0>>b a1-,短轴长为椭圆方程为 11.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++若“对于任意[)+∞∈,0x ,()1f x a <+”是假ss ,则a 的取值范围为12.已知,66⎛⎫∈- ⎪⎝⎭p p q ,等比数列{}n a 中,11a =,343a =q ,数列{}n a 的前2018项的和为0,则q 的值为 13.][x 表示不超过x 的最大整数,若函数a xx x f -=][)(,当0>x 时,)(x f 有且仅有3个零点,则a 的取值范围为 .14.在平面直角坐标系xOy 中,已知圆O :2216x y +=,点(1,2)P ,M ,N 为圆O 上不同的两点,且满足0PM PN ⋅= .若PQ PM PN =+ ,则PQ的最小值为二. 选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得 5分,否则一律得零分.15.如图,在复平面内,点A 表示复数z ,则图中表示z 点是A .A B.BC .C 16.“lim,lim n n n n a A b B →∞→∞==”是“lim nn na b →∞存在”的A.充分不必要条件B.必要不充分条件.C.充分条件.D.既不充分也不必要条件. 17.已知函数()sin 2x f x x =∈R ,,将函数()y f x =图象上所有点的横坐标缩短为原来的12倍(纵坐不变),得到函数()g x 的图象,则关于()()f x g x ⋅有下列ss ,其中真ss 的个数是 ①函数()()y f x g x =⋅是奇函数; ②函数()()y f x g x =⋅不是周期函数;③函数()()y f x g x =⋅的图像关于点(π,0)中心对称; ④函数()()y f x g x =⋅A.1B.2C.3D.418.如图,E 、F 分别为棱长为1的正方体的棱11A B 、11B C 的中点,点G 、H 分别为面对角线AC 和棱1DD 上的动点(包括端点),则下列关于四面体E FGH -的体积正确的是A 此四面体体积既存在最大值,也存在最小值;B 此四面体的体积为定值;C 此四面体体积只存在最小值;D 此四面体体积只存在最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市黄浦区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 已知集合{}{}1,2,31,A B m ==,,若3m A -∈,则非零实数m 的数值是2. 不等式|1|1x ->的解集是3.若函数()f x 是偶函数,则该函数的定义域是4. 已知ABC ∆的三内角A B C 、、所对的边长分别为a b c 、、,若2222sin a b c bc A =+-,则内角A 的大小是5. 已知向量a r 在向量b r 方向上的投影为2-,且||3b =r,则a b ⋅r r =(结果用数值表示)6. 方程33log (325)log (41)0x x⋅+-+=的解x =7. 已知函数2sin cos 2()1cos x x f x x-=,则函数()f x 的单调递增区间是8. 已知α是实系数一元二次方程22(21)10x m x m --++=的一个虚数根,且||2α≤,则实数m 的取值范围是9. 已知某市A 社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至 65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用 分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试 问这次抽样调查抽取的人数是 人10. 将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是 (结果用数值表示)11. 已知数列{}n a 是共有k 个项的有限数列,且满足11(2,,1)n n nna a n k a +-=-=-L ,若 124a =,251a =,0k a =,则k =12. 已知函数2()(02)f x ax bx c a b =++<<对任意R x ∈恒有()0f x ≥成立,则代数式(1)(0)(1)f f f --的最小值是二. 选择题(本大题共4题,每题5分,共20分)13. 空间中,“直线m ⊥平面α”是“直线m 与平面α内无穷多条直线都垂直”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分也非必要14. 二项式403()x x+的展开式中,其中是有理项的项数共有( ) A. 4项 B. 7项 C. 5项 D. 6项15. 实数x y 、满足约束条件30,010x y x y x y +≤⎧⎪≥≥⎨⎪-+≥⎩,则目标函数23w x y =+-最大值是( )A. 0B. 1C. 2-D. 316. 在给出的下列命题中,是假命题的是( )A. 设O A B C 、、、是同一平面上四个不同的点,若(1)(R)OA m OB m OC m =⋅+-⋅∈u u u r u u u r u u u r,则点A B C 、、必共线B. 若向量a b r r 和是平面α上的两个不平行的向量,则平面α上的任一向量c r都可以表示为(R)c a b λμμλ=+∈r r r、,且表示方法是唯一的C. 已知平面向量OA u u u r 、OB u u u r 、OC uuu r 满足|||||(0)OA OB OC r r ===>|u u u r u u u r u u u r, 且0OA OB OC ++=u u u r u u u r u u u r r,则ABC ∆是等边三角形D. 在平面α上的所有向量中,不存在这样的四个互不相等的非零向量a r 、b r 、c r 、d u r,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在四棱锥P -ABCD 中,PA ABCD ⊥平面,AB ⊥AD ,BC ∥AD ,1BC =,2CD =,45CDA ︒∠=.(1)画出四棱锥P -ABCD 的主视图; (2)若PA BC =,求直线PB 与平面PCD 所成角的大小. (结果用反三角函数值表示)18. 某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的). 已知10OA =米,OB x =米,010x <<,线段BA 、线段CD 与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度. (1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值19. 已知动点(,)M x y 到点(2,0)F 的距离为1d ,动点(,)M x y 到直线3x =的距离为2d ,且126d d =. (1)求动点(,)M x y 的轨迹C 的方程;(2)过点F 作直线:(2)(0)l y k x k =-≠交曲线C 于P 、Q 两点,若△OPQ 的面积3OPQ S ∆=(O 是坐标系原点),求直线l 的方程.20. 已知函数22, 10,()1, 0 1.x x f x x x --≤<⎧=⎨-≤≤⎩(1)求函数()f x 的反函数1()f x -;(2)试问:函数()f x 的图像上是否存在关于坐标原点对称的点,若存在,求出这些点的坐标;若不存在,说明理由;(3)若方程()|()240f x f x ax +---=的三个实数根123x x x 、、满足123x x x <<,且32212()x x x x -=-,求实数a 的值.21. 定义:若数列{}n c 和{}n d 满足0n c >,0n d >,且1n c +=,n ∈*N ,则称数列{}n d 是数列{}n c 的“伴随数列”.已知数列{}n b 是{}n a 的伴随数列,解答下列问题: (1)若()n n b a n =∈*N,1b ={}n a 的通项公式n a ;(2)若11()n n n b b n a +=+∈*N ,11b a 为常数,求证:数列2{()}n n ba 是等差数列; (3)若1()n nb n +=∈*N ,数列{}n a 是等比数列,求1a 、1b 的数值.参考答案一. 填空题1.2 2.(,0)(2,)-∞+∞U 3.[2,2]- 4.4π5.6-6.2 7.3[,],Z 88k k k ππππ-+∈ 8.3(3]4- 9.14010.51611.50 12.3二. 选择题13. A 14. B 15. D 16. D三. 解答题17. 解:视图如下:(2)根据题意,可算得1,2AB AD ==.又1PA BC ==,按如图所示建立空间直角坐标系, 可得,(0,0,0),(1,0,0),(1,1,0),(0,2,0),(0,0,1)A B C D P .于是,有(1,0,1),(1,1,0),(0,2,1)PB CD PD =-=-=-u u u r u u u r u u u r.设平面PCD 的法向量为(,,)n x y z =r ,则0,0,n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r即0,20.x y y z -+=⎧⎨-=⎩ 令2z =,可得1,1y x ==,故平面PCD 的一个法向量为(1,1,2)n =r . 设直线PB 与平面PCD 所成角的大小为θ,则||3sin ||||n PB n PB θ⋅==r u u u r r u u u r .所以直线PB 与平面PCD 所成角的大小为3.18.解:(1)根据题意,可算得弧BC x θ=⋅(m ),弧10AD θ=(m ). 又30BA CD BC CD +++=弧弧,于是,10101030x x x θθ-+-+⋅+=, 所以,210(010)10x x x θ+=<<+. (2)依据题意,可知22111022OAD OBC y S S x θθ=-=⨯-扇扇 化简,得225225550()24y x x x =-++=--+于是,当52x =(满足条件010x <<)时,max 2254y = (2m ).答 所以当52x =米时铭牌的面积最大,且最大面积为2254平方米.19.解:(1)结合题意,可得12|3|d d x ==-.又12d d =3=,化简得22162x y +=. 因此,所求动点(,)M x y 的轨迹C 的方程是22162x y +=.(2)联立方程组221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=. 设点1122(,)(,)P x y Q x y 、,则21221213k x x k +=+,212212613k x x k-=+,0∆>于是,弦||PQ ==, 点O 到直线l的距离d =由OPQ S ∆=,=42210k k -+=, 解得1k =±,且满足0∆>,即1k =±都符合题意.因此,所求直线的方程为2020x y x y --=+-=或.20. 解:(1) 22, 10,()=1, 0 1.x x f x x x --≤<⎧⎨-≤≤⎩Q ∴当10x -≤<时,()2,0()2f x x f x =-<≤且.由2y x =-,得12x y =-,互换x y 与,可得11()(02)2f x x x -=-<≤. 当01x ≤≤时,2()1,()0f x x f x =-≤≤且-1.由21y x =-,得x =x y 与,可得1()10)f x x -=-≤≤.11, 0<2,2() 10.x x f x x -⎧-≤⎪∴=-≤≤(2)函数图像上存在两点关于原点对称.设点00000(,)(01)(,)A x y x B x y <≤--、是函数图像上关于原点对称的点,则00()()0f x f x +-=,即200120x x -+=,解得001(1,)x x ==舍去,且满足01x <≤ .因此,函数图像上存在点1,2(12)A B -和关于原点对称. (3)考察函数()y f x =与函数y =当12x -≤≤-时,有()f x ≥4240x ax ---=, 解得2+2x a =-,且由21+22a -≤-≤-,得02a ≤≤.当1x <≤时,有()f x <240ax -=, 化简得22(4)40a x ax ++=, 解得24=0+4a x x a =-,或(当02a ≤≤时,24024aa -<-<+). 于是,123224,,024a x x x a a =-=-=++. 由32212()x x x x -=-,得22442=2(+)+442a a a a a -++,解得32a -±=.因为1a =<-,故a =不符合题意,舍去;02a <=<,满足条件.因此,所求实数a =21.解:(1)根据题意,有*10,0,N n n n a b a n +>>=∈且.由*(N )nn b a n =∈,1b =111n a a b +====*N n ∈.所以n a ,*N n ∈. (2)Q *11(N )nn n b b n a +=+∈,*10,0,N n n n a b a n +>>=∈且,∴11n n b a ++==11n n b a ++=*N n ∈.∴22111n n n n b b a a ++⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,*N n ∈.∴数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为211b a ⎛⎫ ⎪⎝⎭、公差为1的等差数列.(3)Q *1N )n n b n +=∈,*10,0,N n n n a b a n +>>=∈且,*N n n a b n <+≤∈,得11n a +<≤.Q {}n a 是等比数列,且0n a >,设公比为(0)r r >,则1*1(N )n n a a r n -=∈.∴当1r >,即lim n n a →∞→+∞,与11n a +<≤1r >不成立.当01r <<,即lim 0n n a →∞→,与11n a +<≤01r <<不成立.∴1r =,即数列{}n a 是常数列,于是,1n a a =(11a <).*11(N )n n b n +∴=∈. 100n b b >∴>Q ,,数列{}n b 也是等比数列,设公比为(0)q q >,有11n n b b q +=.2n a +∴=可化为222221111111(1)2(1)0(1n n b a q a b q a a a --+-=<≤,*N n ∈.Q 2222422111111111(1)0,20,(1)0,4(2)0b a a b a a a b a ->≠->∆=-≥,∴关于x 的一元二次方程22222111111(1)2(1)0b a x a b x a a --+-=有且仅有两个非负实数根.一方面,n q (*N n ∈)是方程22222111111(1)2(1)0b a x a b x a a --+-=的根;另一方面,若1(0)q q ≠>,则无穷多个互不相等的234,,,,,,nq q q q q L L 都是该二次方程的根.这与该二次方程有且仅有两个非负实数根矛盾!1q ∴=,即数列{}n b 也是常数列,于是,1n b b =,*N n ∈.∴由*1N )n nb n +=∈,得1a =把1a1n a +=解得1b =11a b ⎧=⎪∴⎨=⎪⎩。

相关文档
最新文档