2018年浦东新区高考数学二模含答案
2018上海市浦东新区高考数学二模试题有答案

20. 已知函数 定义域为R,对于任意 R恒有 . (1)若 ,求 的值; (2)若 时, ,求函数 , 的解析式及值域; (3)若 时, ,求 在区间 , 上的最大值与最小值.
上海市浦东新区2018届高三二模数学试卷 2018.04
一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 2. 不等式 的解集为 3. 已知 是等比数列,它的前 项和为 ,且 , ,则 4. 已知 是函数 的反函数,则 5. 二项展开式中的常数项为 6. 椭圆 ( 为参数)的右焦点坐标为 7. 满足约束条件 的目标函数 的最大值为 8. 函数 , R的单调递增区间为 9. 已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水 面的宽为 米 10. 一个四面体的顶点在空间直角坐标系 中的坐标分别是 、 、 、 ,则该四面体的体积为 11. 已知 是定义在R上的偶函数,且 在 上是增函数,如果对于任意 , 恒成立,则实数 的取值范围是 12. 已知函数 ,若对于任意的正整数 ,在区间 上存在 个 实数 、 、 、 、 ,使得 成立,则 的最大 值为
上海市浦东新区2018届高三二模数学试卷 2018.04
一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 【解析】2 2. 不等式 的解集为 【解析】 3. 已知 是等比数列,它的前 项和为 ,且 , ,则 【解析】 4. 已知 是函数 的反函数,则 【解析】 5. 二项展开式中的常数项为 【解析】 6. 椭圆 ( 为参数)的右焦点坐标为 【解析】 ,右焦点为 7. 满足约束条件 的目标函数 的最大值为 【解析】交点 代入最大, 8. 函数 , R的单调递增区间为 【解析】 ,∴单调递增区间为 , 9. 已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水 面的宽为 米 【解析】设 ,代入 ,∴ ,∴ ,所以宽为 10. 一个四面体的顶点在空间直角坐标系 中的坐标分别是 、 、 、 ,则该四面体的体积为 【解析】是一个边长为 的正四面体,体积为 11. 已知 是定义在R上的偶函数,且 在上是增函数,如果对于任意, 恒成立,则实数 的取值范围是 【解析】 在 恒成立, 且 ,解得 12. 已知函数 ,若对于任意的正整数 ,在区间 上存在 个 实数 、 、 、 、 ,使得 成立,则 的最大 值为 【解析】 ,∴在区间 上最大值为 ,最小值为 , ,即m的最大值为6
2018年杨浦区高三二模数学Word版(附解析)

2018年杨浦区高三二模数学W o r d版(附解析)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN上海市杨浦区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 函数lg 1y x =-的零点是 2. 计算:2lim41n nn →∞=+3. 若(13)n x +的二项展开式中2x 项的系数是54,则n =4. 掷一颗均匀的骰子,出现奇数点的概率为5. 若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为6. 若复数z 满足1z =,则z i -的最大值是7. 若一个圆锥的主视图(如图所示)是边长为3、3、2则该圆锥的体积是8. 若双曲线2221613x y p-=(0)p >的左焦点在抛物线22y px =的准线上,则p =9. 若3sin()cos cos()sin 5x y x x y x ---=,则tan 2y 的值为10. 若{}n a 为等比数列,0n a >,且20182a =,则2017201912a a +的最小值为 11. 在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,2a =,2sin sin A C =.若B 为钝角,1cos24C =-,则ABC ∆的面积为12. 已知非零向量OP 、OQ 不共线,设111mOM OP OQ m m =+++,定义点集{|}||||FP FM FQ FMA F FP FQ ⋅⋅==. 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ上时,不等式12||||F F k PQ ≤恒成立,则实数k 的最小值为二. 选择题(本大题共4题,每题5分,共20分)13. 已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为( )A. 4πB. 2πC. 2π- D. 3π-14. 设A 、B 是非空集合,定义:{|A B x x A B ⨯=∈且x 已知{|A x y ==,{|1}B x x =>,则A B ⨯等于( ) A.[0,1](2,)+∞ B. [0,1)(2,)+∞ C.[0,1] D. [0,2]15. 已知22110a b +≠,22220a b +≠,则“11220a b a b =”是“直线1111:0l a x b y c ++=与 2222:0l a x b y c ++=平行”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要 16. 已知长方体的表面积为452,棱长的总和为24. 则长方体的体对角线与棱所成角的最大 值为( )A. 1arccos 3B. arccos 3C.D.三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用,据市场分析,每辆单车的营运累计利润y (单位:元)与营运天数x ()x ∈*N 满足函数关系式21608002y x x =-+-.(1)要使营运累计利润高于800元,求营运天数的取值范围; (2)每辆单车营运多少天时,才能使每天的平均营运利润yx的值最大?18. 如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱AB 上的动点.(1)求证:11DA ED ⊥;(2)若直线1DA 与平面1CED 所成的角是45,请你确定点E 的位置,并证明你的结论.19. 已知数列{}n a ,其前n 项和为n S ,满足12a =,1n n n S na a λμ-=+,其中2n ≥,n ∈*N ,λ,μ∈R .(1)若0λ=,4μ=,12n n n b a a +=-(n ∈*N ),求数列{}n b 的前n 项和; (2)若23a =,且32λμ+=,求证:数列{}n a 是等差数列.20. 已知椭圆222:9x y m Ω+=(0)m >,直线l 不过原点O 且不平行于坐标轴,l 与Ω有两个交点A 、B ,线段AB 的中点为M .(1)若3m =,点K 在椭圆Ω上,1F 、2F 分别为椭圆的两个焦点,求12KF KF ⋅的范围;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值;(3)若l 过点(,)3mm ,射线OM 与Ω交于点P ,四边形OAPB 能否为平行四边形若能,求此时l 的斜率;若不能,说明理由.21. 记函数()f x 的定义域为D . 如果存在实数a 、b 使得()()f a x f a x b -++=对任意满足a x D -∈且a x D +∈的x 恒成立,则称()f x 为ψ函数.(1)设函数1()1f x x =-,试判断()f x 是否为ψ函数,并说明理由; (2)设函数1()2x g x t=+,其中常数0t ≠,证明:()g x 是ψ函数;(3)若()h x 是定义在R 上的ψ函数,且函数()h x 的图象关于直线x m =(m 为常数)对称,试判断()h x 是否为周期函数?并证明你的结论.上海市杨浦区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 函数lg 1y x =-的零点是 【解析】lg 1010x x -=⇒=2. 计算:2lim41n nn →∞=+【解析】123. 若(13)n x +的二项展开式中2x 项的系数是54,则n =【解析】223544nC n =⇒=4. 掷一颗均匀的骰子,出现奇数点的概率为【解析】125. 若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为【解析】三个交点为(1,1)、(0,0)、(2,0),所以最大值为3 6. 若复数z 满足1z =,则z i -的最大值是【解析】结合几何意义,单位圆上的点到(0,1)7. 若一个圆锥的主视图(如图所示)是边长为3、3、2则该圆锥的体积是【解析】13V π=⋅⋅=8. 若双曲线2221613x y p-=(0)p >的左焦点在抛物线22y px =的准线上,则p =【解析】2234164p p p +=⇒=9. 若3sin()cos cos()sin 5x y x x y x ---=,则tan 2y 的值为【解析】3sin 5y =-,3tan 4y =±,24tan 27y =±10. 若{}n a 为等比数列,0n a >,且2018a =2017201912a a +的最小值为 【解析】20192017220172019201820182124a a a a a ++=≥= 11. 在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,2a =,2sin sin A C =.若B 为钝角,1cos24C =-,则ABC ∆的面积为【解析】2a =,4c =,21cos212sin sin C C C =-=-⇒=cos C =,sin A =cos A =sin sin()B A C =+=,1242S =⨯⨯=12. 已知非零向量OP 、OQ 不共线,设111m OM OP OQ m m =+++,定义点集 {|}||||FP FM FQ FMA F FP FQ ⋅⋅==. 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ上时,不等式12||||F F k PQ ≤恒成立,则实数k 的最小值为【解析】建系,不妨设(1,0)P -,(1,0)Q ,∴1(,0)1m M m -+,3m ≥,11[,1)12m m -∈+, ∴3FP MP FQ MQ =≥,设(,)F x y ,∴2222(1)9(1)x y x y ++≥-+,即2259()416x y -+≤,点F 在此圆内,∴12max 33||242F F =⨯=,33224k k ≤⇒≥二. 选择题(本大题共4题,每题5分,共20分)13. 已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为( )A. 4πB. 2π C. 2π- D. 3π-【解析】T π=,2ω=,()122f ππϕ=⇒=-,选C 14. 设A 、B 是非空集合,定义:{|A B x x A B ⨯=∈且}x A B ∉.已知{|A x y =,{|1}B x x =>,则A B ⨯等于( ) A.[0,1](2,)+∞ B. [0,1)(2,)+∞ C.[0,1] D. [0,2]【解析】[0,2]A =,[0,)A B =+∞,(1,2]A B =,选A 15. 已知22110a b +≠,22220a b +≠,则“11220a b a b =”是“直线1111:0l a x b y c ++=与 2222:0l a x b y c ++=平行”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要 【解析】11220a b a b =推出直线平行或重合,选B 16. 已知长方体的表面积为452,棱长的总和为24. 则长方体的体对角线与棱所成角的最大 值为( )A. 1arccos 3B. arccos 3C.D.【解析】设三条棱a b c ≤≤,∴454ab ac bc ++=,6a b c ++=,222272a b c ++=, 222224522[(6)]4a b c a bc a a a ++≥+=+--,整理得2430a a -+≤,∴12a ≤≤,∴最短棱长为1,cos 9θ==,选D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用,据市场分析,每辆单车的营运累计利润y (单位:元)与营运天数x ()x ∈*N 满足函数关系式21608002y x x =-+-.(1)要使营运累计利润高于800元,求营运天数的取值范围; (2)每辆单车营运多少天时,才能使每天的平均营运利润yx的值最大?【解析】(1)要使营运累计收入高于800元,令80080060212>-+-x x , ……2分 解得8040<<x . ………………………………………5分 所以营运天数的取值范围为40到80天之间 .………………………………7分(2)6080021+--=x x x y 6020≤-= …………………………………9分 当且仅当18002x x=时等号成立,解得400x = (12)分所以每辆单车营运400天时,才能使每天的平均营运利润最大,最大为20元每天 .…14分18. 如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱AB 上的动点. (1)求证:11DA ED ⊥;(2)若直线1DA 与平面1CED 所成的角是45,请你确定点E 的位置,并证明你的结论.【解析】以D 为坐标原点,建立如图所示的坐标系,则(0,0,0)D ,(1,0,0)A ,(1,1,0)B ,C (0,1,0) ,D 1(0,1,2) ,A 1(1,0,1),设(1,,0)E m (01)m ≤≤ (1)证明:1(1,0,1)DA =,1(1,,1)ED m =--………2分 111(1)0()110DA ED m ⋅=⨯-+⨯-+⨯=………4分 所以DA 1⊥ED 1. ……………6分另解:1ADA AE 平面⊥,所以D A AE 1⊥. ……………2分 又11AD D A ⊥,所以AE D D A 11平面⊥. ……………………………4分 所以11DA ED ⊥……………………………6分(2)以A 为原点,AB 为x 轴、AD 为y 轴、AA 1为z 轴建立空间直角坐标系…………7分所以)1,0,0(1A 、)0,1,0(D 、)0,1,1(C 、)1,1,0(1D ,设t AE =,则)0,0,(t E ………8分 设平面CED 1的法向量为),,(z y x n =,由⎪⎩⎪⎨⎧=⋅=⋅01CD 可得⎩⎨⎧=--=+-0)1(0y x t z x ,所以⎩⎨⎧-==xt y xz )1(,因此平面CED 1的一个法向量为)1,1,1(-t ………10分由直线1DA 与平面1CED 所成的角是45,可得||||45sin 11n DA =︒……11分 可得1)1(12|11|222+-+⋅+-=t t ,解得21=t ………13分 由于AB =1,所以直线1DA 与平面1CED 所成的角是45时,点E 在线段AB 中点处. …14分19. 已知数列{}n a ,其前n 项和为n S ,满足12a =,1n n n S na a λμ-=+,其中2n ≥,n ∈*N ,λ,μ∈R .(1)若0λ=,4μ=,12n n n b a a +=-(n ∈*N ),求数列{}n b 的前n 项和; (2)若23a =,且32λμ+=,求证:数列{}n a 是等差数列.【解析】(1)14-=n n a S ,所以n n a S 41=+.两式相减得1144-+-=-n n n n a a S S . 即1144-+-=n n n a a a………2分所以)2(2211-+-=-n n n n a a a a ,即12-=n n b b ,………3分又8412==a S ,所以6122=-=a S a ,得22121=-=a a b ………4分 因此数列{}n b 为以2为首项,2为公比的等比数列.n n b 2=,前n 项和为221-+n …7分(2)当n = 2时,1222a a S μλ+=,所以μλ2623+=+. 又32λμ+=,可以解得12λ=,1μ=………9分所以12-+=n n n a a n S ,n n n a a n S ++=++1121,两式相减得111221-++-+-+=n n n n n a a a na n a 即112221-++-=-n n n a a n a n . 猜想1+=n a n ,下面用数学归纳法证明: (10)分① 当n = 1或2时,1121+==a ,1232+==a ,猜想成立; ② 假设当k n ≤(2,*≥∈k N k )时,1k a k =+ 成立 则当1+=k n 时,2))1(22(12)22(1211+=++--=+--=-+k k k k k a a k k a k k k 猜想成立. 由①、②可知,对任意正整数n ,1+=n a n .………13分所以11=-+n n a a 为常数,所以数列{}n a 是等差数列.………14分另解:若23a =,由12212a a a a +=+λμ,得562=+λμ,又32+=λμ,解得112==,λμ. ………9分 由12a =,23a =,12λ= ,1μ=,代入1n n n S na a λμ-=+得34a =,所以1a ,2a ,3a 成等差数列,由12n n n n S a a -=+,得1112n n n n S a a +++=+, 两式相减得:111122n n n n n n n a a a a a ++-+=-+-,即11(1)(2)20n n n n a n a a +-----= 所以 21(1)20n n n na n a a ++---= ………11分相减得:2112(1)(2)220n n n n n na n a n a a a ++---+--+=所以2111(2)2(2)0n n n n n n n a a a a a a +++--++-+= 所以221111-222(2)(2)(2)(1)n n n n n n n n n a a a a a a a a a n n n +++---+=--+=-+- 1321(2)(2)(1)2n a a a n n --==-+-, 因为12320a a a -+=,所以2120n n n a a a ++-+=,即数列{}n a 是等差数列.………14分20. 已知椭圆222:9x y m Ω+=(0)m >,直线l 不过原点O 且不平行于坐标轴,l 与Ω有两个交点A 、B ,线段AB 的中点为M . (1)若3m =,点K 在椭圆Ω上,1F 、2F 分别为椭圆的两个焦点,求12KF KF ⋅的范围;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值;(3)若l 过点(,)3m m ,射线OM 与Ω交于点P ,四边形OAPB 能否为平行四边形若能,求此时l 的斜率;若不能,说明理由.【解析】(1)椭圆99:22=+Ωy x ,两个焦点)22,0(1F 、)22,0(2-F ,设),(y x K 所以8)22,()22,(2221-+=---⋅--=⋅y x y x y x KF KF由于9922=+y x ,所以2299x y -=,188)99(22221+-=--+=⋅x x x KF …3分由椭圆性质可知11≤≤-x ,所以]1,7[21-∈⋅KF KF……………5分 (2)设直线b kx y l +=:(0,0≠≠k b ),),(11y x A ,),(22y x B ,),(00y x M ,所以21x x 、为方程222)(9m b kx x =++的两根,化简得02)9(2222=-+++m b kbx x k , 所以922210+-=+=k kb x x x ,99922200+=++-=+=k b b k b k b kx y . ……………8分 kx y k OM 900-==,所以直线OM 的斜率与l 的斜率的乘积等于9-为定值. …………10分(3)∵直线l 过点(,)3m m ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠.设),(p p y x P 设直线m m x k y l +-=)3(:(0,0≠≠k m ),即m mk kx y +-=3. 由(2)的结论可知x ky OM 9:-=,代入椭圆方程2229m y x =+得8192222+=k k m x p …12分 由(2)的过程得中点)9)3(9,9)3((22+-+--k km m k k mk m M , ……………14分 若四边形OAPB 为平行四边形,那么M 也是OP 的中点,所以p x x =02, 得819)93(4222222+=+-k k m k mk mk ,解得74±=k 所以当l的斜率为44OAPB 为平行四边形. ……………16分21. 记函数()f x 的定义域为D . 如果存在实数a 、b 使得()()f a x f a x b -++=对任意满足a x D -∈且a x D +∈的x 恒成立,则称()f x 为ψ函数.(1)设函数1()1f x x=-,试判断()f x 是否为ψ函数,并说明理由; (2)设函数1()2x g x t =+,其中常数0t ≠,证明:()g x 是ψ函数; (3)若()h x 是定义在R 上的ψ函数,且函数()h x 的图象关于直线x m =(m 为常数)对称,试判断()h x 是否为周期函数?并证明你的结论.【解析】(1)1()1f x x=-是ψ函数 . ……1分理由如下:1()1f x x=-的定义域为{|0}x x ≠, 只需证明存在实数a ,b 使得()()f a x f a x b -++=对任意x a ≠±恒成立. 由()()f a x f a x b -++=,得112b a x a x +-=-+,即2()()a x a x b a x a x ++-+=-+. 所以22(2)()2b a x a +-=对任意x a ≠±恒成立. 即2,0.b a =-= 从而存在0,2a b ==-,使()()f a x f a x b -++=对任意x a ≠±恒成立. 所以1()1f x x=-是ψ函数. …………4分 (2)记()g x 的定义域为D ,只需证明存在实数a ,b 使得当a x D -∈且a x D +∈时,()()g a x g a x b -++=恒成立,即1122a x a x b t t -++=++恒成立.所以22(2)(2)a x a x a x a x t t b t t +-+-+++=++, ……5分 化简得,22(1)(22)(2)2a x a x a bt b t t +--+=+-.所以10bt -=,22(2)20a b t t +-=. 因为0t ≠,可得1b t=,2log ||a t =, 即存在实数a ,b 满足条件,从而1()2x g x t=+是ψ函数. …………10分 (3)函数)(x h 的图象关于直线x m =(m 为常数)对称, 所以)()(x m h x m h +=- (1), ……………12分 又因为b x a h x a h =++-)()( (2),所以当a m ≠时,)]2([)22(a m x m h a m x h -++=-+由(1) )]([)2()]2([x a a h x a h a m x m h -+=-=-+-=由(2) )()]([x h b x a a h b -=---= (3)所以)22(]22)22[()44(a m x h b a m a m x h a m x h -+-=-+-+=-+ (取a m x t 22-+=由(3)得)再利用(3)式,)()]([)44(x h x h b b a m x h =--=-+.所以()f x 为周期函数,其一个周期为a m 44-. ……………15分 当a m =时,即)()(x a h x a h +=-,又)()(x a h b x a h +-=-, 所以2)(b x a h =+为常数. 所以函数)(x h 为常数函数, 2)()1(b x h x h ==+,)(x h 是一个周期函数. ……………17分 综上,函数)(x h 为周期函数 ……………18分(其他解法参考评分标准,酌情给分)。
上海市杨浦区2018届高考二模数学试题含答案

已知 A {x | y 2 x x 2 } , B {x | x 1} ,则 A B 等于( A. [0,1] U (2, )
B.
)
D.
[0,1) U (2, )源自C. [0,1][0, 2]
15. 已知 a12 b12 0 , a2 2 b2 2 0 ,则“
上海市杨浦区 2018 届高三二模数学试卷
2018.04
一. 填空题(本大题共 12 题,1-6 每题 4 分,7-12 每题 5 分,共 54 分) 1. 函数 y lg x 1 的零点是 2. 计算: lim
2n n 4n 1
3. 若 (1 3 x) n 的二项展开式中 x 2 项的系数是 54 ,则 n 4. 掷一颗均匀的骰子,出现奇数点的概率为
2
8. 若双曲线
x 2 16 y 2 2 1 ( p 0) 的左焦点在抛物线 y 2 2 px 的准线上,则 p 3 p
3 ,则 tan 2 y 的值为 5
9. 若 sin( x y )cos x cos( x y )sin x
10. 若 {an } 为等比数列, an 0 ,且 a2018
m , m) ,射线 OM 与 交于点 P,四边形 OAPB 能否为平行四边形? 3
若能,求此时 l 的斜率;若不能,说明理由.
21. 记函数 f ( x) 的定义域为 D. 如果存在实数 a 、 b 使得 f ( a x) f ( a x) b 对任意满 足 a x D 且 a x D 的 x 恒成立,则称 f ( x) 为 函数. (1)设函数 f ( x)
1 1 ,试判断 f ( x) 是否为 函数,并说明理由; x 1 ,其中常数 t 0 ,证明: g ( x) 是 函数; 2 t
【高三数学试题精选】2018高三理科二模数学试卷(杨浦等区附答案)

2018高三理科二模数学试卷(杨浦等区附答案)
5 c 高三年级静安、杨浦、青浦、宝区高考模拟考试
数学试卷(理科) 201804
一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.
1.已知全集,集合,则
2.若复数满足(是虚数单位),则
3.已知直线的倾斜角大小是,则
4.若关于的二元一次方程组有唯一一组解,则实数的取值范围是
5.已知函数和函数的图像关于直线对称,
则函数的解析式为
6.已知双曲线的方程为,则此双曲线的焦点到渐近线的距离为7.函数的最小正周期
8.若展开式中含项的系数等于含项系数的8倍,则正整数9.执行如图所示的程序框图,若输入的值是,则输出的值是10.已知圆锥底面半径与球的半径都是,如果圆锥的体积恰好也与球的体积相等,
那么这个圆锥的母线长为.
11.某中学在高一年级开设了门选修,每名学生必须参加这门选修中的一门,对于该年级的
甲、乙、丙名学生,这名学生选择的选修互不相同的概率是 (结果用最简分数表示).
12.各项为正数的无穷等比数列的前项和为,若,则其比的取值范围是
13.已知两个不相等的平面向量, ( )满足| |=2,且与-的夹角为120°,。
2018年浦东区高三二模数学word版

上海市浦东新区2018届高三二模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 21lim1n n n →+∞+=-2. 不等式01xx <-的解集为3. 已知{}n a 是等比数列,它的前n 项和为n S ,且34a =,48a =-,则5S =4. 已知1()f x -是函数2()log (1)f x x =+的反函数,则1(2)f -=5. 91)x二项展开式中的常数项为6.椭圆2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数)的右焦点坐标为7. 满足约束条件242300x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数32f x y =+的最大值为8.函数2()cos 2f x x x =+,x ∈R 的单调递增区间为 9. 已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水 面的宽为 米10. 一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(0,0,0)、(1,0,1)、(0,1,1)、(1,1,0),则该四面体的体积为11. 已知()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上是增函数,如果对于任意[1,2]x ∈,(1)(3)f ax f x +≤-恒成立,则实数a 的取值范围是12. 已知函数2()57f x x x =-+,若对于任意的正整数n ,在区间5[1,]n n+上存在1m +个 实数0a 、1a 、2a 、⋅⋅⋅、m a ,使得012()()()()m f a f a f a f a >++⋅⋅⋅+成立,则m 的最大 值为二. 选择题(本大题共4题,每题5分,共20分)13. 已知方程210x px -+=的两虚根为1x 、2x ,若12||1x x -=,则实数p 的值为( )A.B.C.D.14. 在复数运算中下列三个式子是正确的:(1)1212||||||z z z z +≤+;(2)1212||||||z z z z ⋅=⋅;(3)123123()()z z z z z z ⋅⋅=⋅⋅,相应的在向量运算中,下列式子:(1)||||||a b a b +≤+r r r r;(2)||||||a b a b ⋅=⋅r r r r ;(3)()()a b c a b c ⋅⋅=⋅⋅r r r r r r,正确的个数是( ) A. 0 B. 1 C. 2 D. 315. 唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。
2018届上海市高三(二模模拟)检测理科数学试题及答案

2018届上海市高三年级检测试卷(二模模拟)数学(理)一、填空题(本题满分56分)本大题共有14题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若2sin 2cos 2θθ+=-,则cos θ=2.若bi ia-=-11,其中b a ,都是实数,i 是虚数单位,则bi a += 3.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为4.抛物线22y x =的焦点为F ,点00(,)M x y 在此抛物线上,且52MF =,则0x =______5.某市连续5天测得空气中PM2.5(直径小于或等于2.5微米的颗粒物)的数据(单位:3/g m m )分别为115,125,132,128,125,则该组数据的方差为6.平行四边形ABCD 中,AB =(1,0),AC =(2,2),则AD BD ⋅ 等于7.已知关于x 的二项式n xa x )(3+展开式的二项式系数之和为32,常数项为80,则a 的值为8.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2a =,3c =,60B =︒,则b =9.用半径为210cm ,面积为π2100cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是10.已知椭圆12222=+by a x (0>>b a1-,短轴长为椭圆方程为 11.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++若“对于任意[)+∞∈,0x ,()1f x a <+”是假ss ,则a 的取值范围为12.已知,66⎛⎫∈- ⎪⎝⎭p p q ,等比数列{}n a 中,11a =,343a =q ,数列{}n a 的前2018项的和为0,则q 的值为 13.][x 表示不超过x 的最大整数,若函数a xx x f -=][)(,当0>x 时,)(x f 有且仅有3个零点,则a 的取值范围为 .14.在平面直角坐标系xOy 中,已知圆O :2216x y +=,点(1,2)P ,M ,N 为圆O 上不同的两点,且满足0PM PN ⋅= .若PQ PM PN =+ ,则PQ的最小值为二. 选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得 5分,否则一律得零分.15.如图,在复平面内,点A 表示复数z ,则图中表示z 点是A .A B.BC .C 16.“lim,lim n n n n a A b B →∞→∞==”是“lim nn na b →∞存在”的A.充分不必要条件B.必要不充分条件.C.充分条件.D.既不充分也不必要条件. 17.已知函数()sin 2x f x x =∈R ,,将函数()y f x =图象上所有点的横坐标缩短为原来的12倍(纵坐不变),得到函数()g x 的图象,则关于()()f x g x ⋅有下列ss ,其中真ss 的个数是 ①函数()()y f x g x =⋅是奇函数; ②函数()()y f x g x =⋅不是周期函数;③函数()()y f x g x =⋅的图像关于点(π,0)中心对称; ④函数()()y f x g x =⋅A.1B.2C.3D.418.如图,E 、F 分别为棱长为1的正方体的棱11A B 、11B C 的中点,点G 、H 分别为面对角线AC 和棱1DD 上的动点(包括端点),则下列关于四面体E FGH -的体积正确的是A 此四面体体积既存在最大值,也存在最小值;B 此四面体的体积为定值;C 此四面体体积只存在最小值;D 此四面体体积只存在最大值。
上海市浦东新区2018届高三下学期质量调研(二模)数学试(含详细解答)

上海市浦东新区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 21lim1n n n →+∞+=-2. 不等式01xx <-的解集为3. 已知{}n a 是等比数列,它的前n 项和为n S ,且34a =,48a =-,则5S =4. 已知1()f x -是函数2()log (1)f x x =+的反函数,则1(2)f -=5. 91()x x+二项展开式中的常数项为6. 椭圆2cos 3sin x y θθ=⎧⎪⎨=⎪⎩(θ为参数)的右焦点坐标为7. 满足约束条件242300x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数32f x y =+的最大值为8. 函数23()cos sin 22f x x x =+,x ∈R 的单调递增区间为 9. 已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水 面的宽为 米10. 一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(0,0,0)、(1,0,1)、(0,1,1)、(1,1,0),则该四面体的体积为11. 已知()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上是增函数,如果对于任意[1,2]x ∈,(1)(3)f ax f x +≤-恒成立,则实数a 的取值范围是12. 已知函数2()57f x x x =-+,若对于任意的正整数n ,在区间5[1,]n n+上存在1m +个 实数0a 、1a 、2a 、⋅⋅⋅、m a ,使得012()()()()m f a f a f a f a >++⋅⋅⋅+成立,则m 的最大 值为二. 选择题(本大题共4题,每题5分,共20分)13. 已知方程210x px -+=的两虚根为1x 、2x ,若12||1x x -=,则实数p 的值为( ) A. 3± B. 5± C. 3,5 D. 3±,5±14. 在复数运算中下列三个式子是正确的:(1)1212||||||z z z z +≤+;(2)1212||||||z z z z ⋅=⋅;(3)123123()()z z z z z z ⋅⋅=⋅⋅,相应的在向量运算中,下列式子:(1)||||||a b a b +≤+;(2)||||||a b a b ⋅=⋅;(3)()()a b c a b c ⋅⋅=⋅⋅,正确的个数是( )A. 0B. 1C. 2D. 315. 唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。
2018届中考数学二模-浦东答案(带参考答案)

浦东新区2017学年度第二学期初三教学质量检测数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分)1.B ; 2.C ; 3.A ; 4.C ; 5.D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.22ab ;8.()()y x y x 22-+; 9.5=x ;10.21;11.2;12.136060=+-x x ; 13.24; 14.a 32; 15.3800;16.9;17.0;18.2或4.三、解答题:(本大题共7题,满分78分)19.解:原式23-1-222++=.…………………………………………………(8分)2-23=.………………………………………………………………(2分)20. 解:3611.26x x x x >-⎧⎪-+⎨≤⎪⎩, 由①得:62->x .…………………………………………………………(2分)解得3->x .…………………………………………………………(1分)由②得:11-3+≤x x )(.……………………………………………………(1分)133+≤-x x .……………………………………………………(1分)42≤x .解得2≤x .……………………………………………………………(1分)∴原不等式组的解集为23-≤<x .…………………………………(2分) -44321-1-2-3x O …………………………………(2分)21. 解:OD M CD OM O ,联结于点作过点⊥.……………………………………(1分)∵,︒=∠30CEA ∴︒=∠=∠30CEA OEM .…………………………………(1分)在Rt △OEM 中,∵OE =4,∴221==OE OM ,3223430cos =⨯=⋅=︒OE EM .(2分) ∵35=DE ,∴33=-=EM DE DM .…………(1分)∵CD OM OM ⊥过圆心,,∴DM CD 2=.…………(2分)∴36=CD .……………………………………………(1分)∵,,332==DM OM∴在Rt △DOM 中,()313322222=+=+=DM OM OD .……(1分)∴ 弦CD 的长为36,⊙O 的半径长为31.……………………………(1分)22.解:(1)设)0(≠=k kx y .…………………………………………………………(1分)∵)0(≠=k kx y 的图像过点(310,930),……………………………(1分)∴,k 310930=∴3=k .…………………………………………………(2分)∴ x y 3=.…………………………………………………………… (1分) ① ②(2)设)0(≠+=k b kx y .………………………………………………………(1分)∵ )0(≠+=k b kx y 的图像过点(310,930)和(320,963),∴ ⎩⎨⎧=+=+63.9320930310b k b k , ∴ ⎩⎨⎧-== 3.93.3b k ,……………………………………………………………(1分) ∴933.3-=x y .…………………………………………………………(1分)当3401029933.31029==-=x x y ,解得时,.……………………(1分)答:小明家2017年使用天然气量为340立方米.……………………(1分)23.证明:(1)∵是正方形四边形ABCD ,∴︒=∠90ADC .………(1分)∵FG ⊥FC , ∴∠GFC = 90°. …………………………(1分)∵,CD CF = ∴∠CDF =∠CFD .………………………(1分)∴∠GFC -∠CFD =∠ADC -∠CDE ,即∠GFD =∠GDF .(1分)∴GF =GD .………………………………………………(1分)(2)联结CG .∵,,GD GF CD CF == ∴的中垂线上在线段、点FD C G .……(1分)∴GC ⊥DE ,∴∠CDF +∠DCG = 90°,∵∠CDF +∠ADE = 90°,∴∠DCG =∠ADE .∵是正方形四边形ABCD ,∴AD =DC ,∠DAE =∠CDG = 90°,∴△DAE ≌△CDG .……………………………………………………(1分)∴DG AE =.………………………………………………………… (1分)∵的中点,是边点AB E ∴的中点,是边点AD G∴GF GD AG ==.……………………………………………………(1分)∴,,GFD GDF AFG DAF ∠=∠∠=∠………………………………(1分)∵,︒=∠+∠+∠+∠180GDF GFD AFG DAF ……………………(1分)∴,︒=∠+∠18022GFD AFG∴∠AFD = 90°,即AF ⊥DE .…………………………………………(1分) 证法2:(1)联结CG 交ED 于点H .∵是正方形四边形ABCD ,∴︒=∠90ADC .…………………………(1分)∵FG ⊥FC ,∴∠GFC = 90°.……………………………………………(1分)在Rt △C FG 与Rt △CDG 中,⎩⎨⎧==.CG CG CD CF ,…………………………………………………………… (1分) ∴Rt △CFG ≌Rt △CDG .………………………………………………(1分)∴GD GF =.…………………………………………………………(1分)(2)∵,,GD GF CD CF ==∴的中垂线上在线段、点FD C G . ……………………………… (1分)∴FH=HD ,GC ⊥DE ,∴∠EDC +∠DCH = 90°,∵∠ADE +∠EDC= 90°,∴∠ADE =∠DCH .……………………………………………………(1分)∵是正方形四边形ABCD ,∴AD=DC =AB ,∠DAE =∠CDG= 90°,∵GDC EAD DC AD DCH ADE ∠=∠=∠=∠,,.∴△ADE ≌△DCG .……………………………………………………(1分)∴DG AE =.…………………………………………………………(1分)∵的中点,是边点AB E ∴的中点,是边点AD G∵的中点,是边点FD H ∴GH 是△AFD 的中位线.………………(1分)∴,AF GH //∴,GHD AFD ∠=∠∵GH ⊥FD ,∴∠GHD = 90°,………………………………………(1分)∴∠AFD = 90°,即AF ⊥DE .………………………………………(1分)24.解:(1)∵ 抛物线42++=bx ax y 与x 轴交于点A (-2,0),B (4,0),∴ ⎩⎨⎧=++=+.04416042-4b a b a ;…………………………………………………(1分) 解得⎪⎩⎪⎨⎧==.121-b a ;…………………………………………………………(2分)∴ 抛物线的解析式为421-2++=x x y .……………………………(1分) (2)H BC EH E 于点作过点⊥.在Rt △ACO 中, ∵A (-2,0),∴ OA 4421-02=++==x x y x 时,当,∴OC= 在Rt △C OB 中,∵∠COB=90°,∴2445==∠︒BC OCB ,.∵BC EH ⊥,∴CH=EH .∴在Rt △ACO 中,21tan ==∠CO AO ACO …………………………(1分) ∵∠CBE=∠ACO ,∴在Rt △EBH 中,1tan 2EH EBH BH ∠==. 设k BH k k EH 2)0(=>=,则,CH=k,CE =. ∴243==+=k HB CH CB . ∴,324=k ……………………………………………………………(1分) ∴,38=CE ………………………………………………………………(1分) ∴,34=EO ∴),(340E .………………………………………………(1分)(3)∵ A (-2,0),B (4,0),∴抛物线的对称轴为直线x =1.………………………………………(1分)①的边时,为菱形当MCNP MC∴,PN CM //∴∠PNC =∠NCO =45°.∵点P 在二次函数的对称轴上,∴,的横坐标为点1P 1的横坐标为点N . ∴245sin 1==︒CN . ∵是菱形,四边形MCNP ∴,2==CN CM ∴,24+=+=CM OC OM ∴)240(+,M .……………………………………………………(1分) ②的边时,不存在为菱形当MCPN MC .……………………(1分)③的对角线时,为菱形当MNCP MC,于点交设Q CM NP ∴、NP CM ∴1==QP NQ .,QC MQ =∵上,在直线点BC N ∠NCM =∠OCB=45°.在Rt △CQN 中,∴∠NCQ =∠CNQ=45°,∴,1==CQ QN ∴1MQ CQ ==, ∴,2=CM ∴,624=+=+=CM OC OM∴ M (0,6).………………………………………………………(1分)∴综上所述)240(+,M 或 M (0,6). 25.证明:(1)∵,AC AB =∴∠B =∠ACB .∵,EC EF =∴∠EFC =∠ECF .…………………………………(1分)∵,BEF B EFC ∠+∠=∠又∵,ACE ACB ECF ∠+∠=∠∴∠BEF =∠ACE .………………………………………………(1分)∵是公共角,EAC ∠∴△AEP ∽△ACE .……………………………………………(1分) ∴,AEAP AC AE =∴AC AP AE ⋅=2.……………………………(1分) (2)∵∠B =∠ACB ,∠ECF =∠EFC ,∴△ECB ∽△PFC . ∴2⎪⎭⎫ ⎝⎛=∆∆CB FC S S ECB PFC .………………………………………………(1分) E EH CF H ⊥过点做于点,∵,经过圆心,CF EH EH ⊥P M C E H F B A AB FEC P ∴x FC CH 2121==.∴x BH 214-=.…………………………(1分) 在Rt △BEH 中,∵,21tan ==∠BH EH B ∴x EH 41-2=. ∴x x EH BC S ECB 214)412(42121-=-⨯⨯=⋅=∆.…………(1分) ∴24214⎪⎭⎫ ⎝⎛=-x x y . ∴)40(32832<<-=x x x y .………………………………………(2分)(3) ①上时,在线段当点BC F∵,21=EF FP ∴,21==EC PE EF PE ∵△AEP ∽△ACE .∴,EC PE AC AE = ∴12AE AC =.……………………………………………………(1分)M BC AM A ,垂足为点作过点⊥.∵,AC AB =,4=BC ∴,221==BC BM在Rt △ABM 中,∵,21tan =∠B∴1AM AB AC ===,.…(1分)∴,25=AE ∴253=BE .………………………………………(1分)②F BC 当点在线段延长线上时,∵∠EFC =∠ECF ,EFC FCP P ∠=∠+∠, ECF B BEC ∠=∠+∠. 又∵B ACB ACB FCP ∠=∠∠=∠,,∴∠B =∠FCP . ∴∠P =∠BEC . ∵是公共角,EAC ∠∴△AEP ∽△ACE ,∴,EC PEAC AE= ∵,21=EF FP ∴32PE PE EF EC ==,∴32AE AC ==………(1分) ∴255=BE .………………(1分)综上所述,253=BE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年浦东新区高考数学二模含答案 2018.4注意:1. 答卷前,考生务必在试卷上指定位置将学校、班级、姓名、考号填写清楚.2. 本试卷共有21道试题,满分150分,考试时间120分钟.一、填空题(本大题共有12小题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分. 1.21lim 1n n n →+∞+=-________ .2 2.不等式01xx <-的解集为________.(0,1)3.已知{}n a 是等比数列,它的前n 项和为n S ,且34,a =48a =-,则5S = ________.114.已知1()f x -是函数2()log (1)f x x =+的反函数,则1(2)f -=________.35.91)x二项展开式中的常数项为________.846.椭圆2cos ,x y θθ=⎧⎪⎨⎪⎩(θ为参数)的右焦点为________.(1,0)7.满足约束条件2423x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数32f x y =+的最大值为________.1638.函数2()cos 2,R f x x x x =+∈的单调递增区间为____________.,,36Z k k k ππππ⎡⎤-+∈⎢⎥⎣⎦ 9.已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米。
当水面下降1米后,水面的宽为_____米。
10.—个四面体的顶点在空间直角坐标系xyz O -中的坐标分别是(0,0,0),(1,0,1),(0,1,1),(1,1,0),则该四面体的体积为________.1311.已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是增函数,如果对于任意[1,2]x ∈,(1)(3)f ax f x +≤-恒成立,则实数a 的取值范围是________.[1,0]-12.已知函数2()57f x x x =-+.若对于任意的正整数n ,在区间51,n n⎡⎤+⎢⎥⎣⎦上存在1m +个实数012,,,,m a a a a L 使得012()()()()m f a f a f a f a >+++L 成立,则m 的最大值为________.6二、选择题(本大题共有4小题,满分20分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5分,否则一律得零分.13.已知方程210x px -+=的两虚根为12,x x ,若121x x -=,则实数p 的值为( )AA .B . C.D . 14.在复数运算中下列三个式子是正确的:(1)1212z z z z +≤+,(2)1212z z z z ⋅=⋅,(3)123123()()z z z z z z ⋅⋅=⋅⋅;相应的在向量运算中,下列式子:(1)a b a b +≤+r r r r ,(2)a b a b ⋅=⋅r r r r,(3)()()a b c a b c ⋅⋅=⋅⋅r r r r r r;正确的个数是( )BA . 0B .1 C. 2 D .315.唐代诗人杜牧的七绝唐诗中两句诗为“今来海上升高望,不到蓬莱不成仙。
”其中后一句中“成仙”是“到蓬莱”的( )AA .充分条件B .必要条件C.充分必要条件 D .既非充分又非必要条件16.设,P Q 是R 上的两个非空子集,如果存在一个从P 到Q 的函数()y f x =满足: (1){}()|Q f x x P =∈;(2)对任意12,x x P ∈,当12x x <时,恒有12()()f x f x <;那么称这两个集合构成“P Q →恒等态射”。
以下集合可以构成“P Q →恒等态射”的是( )D A .→R ZB . →Z QC. []1,2(0,1)→ D . (1,2)→R三、解答题(本大题共有5小题,满分76分)解答下列各题必须写出必要的步骤. 17.(本题满分14分,本题共有2个小题,第(1)小题满分7分,第(2)小题满分7分)已知圆锥AO 的底面半径为2,母线长为,点C 为圆锥底面圆周上的一点,O 为圆心,D 是AB 的中点,且2BOC π∠=;(1)求圆锥的全面积;(2)求直线CD 与平面AOB 所成角的大小.(结果用反三角函数值表示) 解:(1)圆锥的底面积214S r ππ== ……………3分圆锥的侧面积2S rl π==……………3分圆锥的全面积124(1S S S π=+=……………1分 (2)2BOC π∠=Q OC OB ∴⊥ 且OC OA ⊥,OC ⊥平面AOB ……………2分CDO ∴∠是直线CD 与平面AOB 所成角 ……………1分在Rt CDO V 中,2OC =,OD =, ……………1分tan CDO ∠=,CDO ∴∠=……………2分 所以,直线CD 与平面AOB所成角的为。
……………1分18.(本题满分14分,本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分) 在ABC △中,边,,a b c 分别为角,,A B C 所对应的边。
(1)若()()()22sin 02sin 1sin 2sin ca b Ab a B Ca b A-=-+-,求角C 的大小;(2)若4sin 5A =,23C π=,c =ABC △的面积。
解:(1)由()()()()()22sin 02sin 2sin 2sin 2sin 1sin 2sin c a b Ac C a b A b a B b a BCa b A-=⇒=-+--+-;……………2分由正弦定理得()()2222c a b a b a b =-+-,∴222c a b ab =+-,……………2分∴2221cos 22a b c C ab +-==,∴3C π=;……………2分 (2)由4sin 5A =,c =sin sin a c A C =,∴85a =;…………2分由23a c A C π<⇒<=,∴3cos 5A =,…………2分∴()4sin sin sin cos cos sin 10B AC A C A C =+=+=;…………2分∴118sin 225ABC S ca B ∆-==。
…………2分 19.(本题满分14分,本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分) 已知双曲线22:1C x y -=;(1)求以右焦点为圆心,与双曲线C 的渐近线相切的圆的方程;(2)若经过点(0,1)P -的直线与双曲线C 的右支交于不同两点,M N ,求线段MN 的中垂线l 在y 轴上截距t 的取值范围.解:(1)2F …………1分 渐近线 0x y ±=………1分1R =…………2分22(1x y +=;………………2分(2)设经过点B 的直线方程为1y kx =-,交点为1122(,),(,)M x y N x y ………………1分由22221(1)2201x y k x kx y kx ⎧-=⇒-+-=⎨=-⎩,…………………1分则2121210100k k x x x x ⎧≠⎪∆>⎪⇒<<⎨+>⎪⎪>⎩2分 MN 的中点为221(,)11k k k ----,…………1分得中垂线2211:()11kl y x k k k +=-+--………1分 令0x =得截距2222211t k k -==>--………………2分 即线段MN 的中垂线l 在y 轴上截距t 的取值范围是(2,)+∞.20. (本题满分16分,本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分)已知函数()y f x =定义域为R ,对于任意R x ∈恒有(2)2()f x f x =-; (1)若(1)3f =-,求(16)f 的值;(2)若(1,2]x ∈时,2()22f x x x =-+,求函数(),(1,8]y f x x =∈的解析式及值域; (3)若(1,2]x ∈时,3()2f x x =--,求()y f x =在区间*(1,2],n n N ∈上的最大值与最小值. 解:1)(1)3f =-Q 且(2)2()f x f x =-(2)3(2)f ∴=-⋅-……………1分 22(2)3(2)f ∴=-⋅-……………1分33(2)3(2)f ∴=-⋅-……………1分44(16)(2)3(2)48f f ∴==-⋅-=-……………1分2)(2)2()()2()2x f x f x f x f =-⇒=-(1,2]x ∈时,22()22(1)1f x x x x =-+=-+,()(1,2]f x ∈……………1分(2,4]x ∈时,221()2()2[(1)1](2)2222x x f x f x =-=--+=---,……………1分()[4,2)f x ∈--……………1分(4,8]x ∈时,2211()2()2[(2)2](4)42224x x f x f x =-=----=-+,……………1分()(4,8]f x ∈……………1分得:222(1)1,(1,2]1()(2)2,(2,4]21(4)4,(4,8]4x x f x x x x x ⎧⎪-+∈⎪⎪=---∈⎨⎪⎪-+∈⎪⎩,值域为[4,2)12](4,8]--(,……………1分 3)(2)2()()2()2xf x f x f x f =-⇒=-当(1,2]x ∈时,3()2f x x =--得:当2(2,2]x ∈时,()2()32x f x f x =-=-……………1分当1(2,2]n n x -∈时,1(1,2]2n x -∈,21122113()2()(2)()(2)()(2)(1)3222222n n n n n n x x x x f x f f f x -----=-=-=-=---=--⋅L ……………2分当1(2,2]n n x -∈,n 为奇数时,22()32[,0]4nn f x x -=--⋅∈-当1(2,2]n n x -∈,n 为偶数时,22()32[0,]4nn f x x -=-⋅∈综上:1n =时,()f x 在(1,2]上最大值为0,最小值为12-……………1分 2n ≥,n 为偶数时,()f x 在(1,2]n上最大值为24n ,最小值为28n-……………1分3n ≥,n 为奇数时,()f x 在(1,2]n上最大值为28n ,最小值为24n-……………1分21.(本题满分18分,本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分)已知数列{}n a 中11a =,前n 项和为n S ,若对任意的N*n ∈,均有n n k S a k +=-(k 是常数,且N*k ∈)成立,则称数列{}n a 为“()H k 数列”;(1)若数列{}n a 为“()1H 数列”,求数列{}n a 的前n 项和n S ;(2)若数列{}n a 为“()2H 数列”,且2a 为整数,试问:是否存在数列{}n a ,使得21140n n n a a a -+-≤对一切*2,n n N ≥∈恒成立?如果存在,求出2a 的所有可能值;如果不存在,请说明理由;(3)若数列{}n a 为“()H k 数列”,且121k a a a ====L ,证明:当21n k ≥+时,1112n k n k a --⎛⎫≥+ ⎪⎝⎭.解:(1)数列{}n a 为“()1H 数列”,则11n n S a +=-,故121n n S a ++=-, 两式相减得:212n n a a ++=, …………………1分又1n =时,121a a =-,所以2122a a ==,………………1分 故12n n a a +=对任意的N*n ∈恒成立,即12n na a +=(常数), 故数列{}n a 为等比数列,其通项公式为12,*n n a n N -=∈;………………1分21,*n n S n N =-∈………………1分(2)2132321132()2N*n n n n n n n n n n S a a a a a a a n S a +++++++++=-⎧⇒=-⇒=+∈⎨=-⎩21(2,)N*n n n a a a n n ++⇒=+≥∈………………1分当*2,n n N ≥∈时,()222121111()n n n n n n n n n n n a a a a a a a a a a a ++++++-=-+=--因为*11,(3,)n n n a a a n n N +--=≥∈成立,则22*1211,(3,)n n n n n n a a a a a a n n N ++-+-=-≥∈成立;则22*1211,(3,)n n n n n n a a a a a a n n N ++-+-=-≥∈………………2分则22*11324(3,)n n n a a a a a a n n N -+-=-≥∈因为432a a a =+则222*113232(3,)n n n a a a a a a a n n N -+-=--≥∈………………1分因为13132,13S a a a =-=⇒=,则2229340a a --≤且2n =时,22340a -≤,解得:20,1,2,3,4,5,6a =±±±±±-。