2018年普陀区高考数学二模含答案

合集下载

高考专题--极限-2018年高考数学(理)母题---精校解析 Word版

高考专题--极限-2018年高考数学(理)母题---精校解析 Word版

高考专题11 等差数列与等比数列【母题原题1】【2018上海卷,10】设等比数列{a n 错误!未找到引用源。

}的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。

若1Sn 1lim 2n n a →∞+=,则q=____________【答案】3【母题原题2】【2017上海卷,2】在数列中,,,则( )A. 等于B. 等于0C. 等于D. 不存在【答案】B 【解析】 数列中,,则,故选B.【母题原题3】【2016上海卷,4】已知无穷等比数列的公比为,前n 项和为,且.下列条件中,使得()*2n S S n N <∈恒成立的是( ).A. B.C. D.【答案】B【解析】试题分析:由题意得: 111n n q S a q-=⋅-,所以1l i m =(01)1n n a S S q q →∞=<<-,所以对一切正整数恒成立,当10a >时, 12nq >不恒成立,舍去;当10a <时, 21122nq q <⇒<,因此选B. 【考点】数列的极限、等比数列求和【名师点睛】本题解答时确定不等关系是基础,准确分类讨论是关键,易错点是在建立不等关系之后,不知所措或不能恰当地分类讨论.本题能较好地考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.【命题意图】1.熟练极限,数列的简单极限以及极限的运算法则.【命题规律】从近三年高考情况来看,本讲一直是高考的热点,尤其是数列的极限考查的重点,常与函数列进行联系,常以选择、填空考查为主. 【方法总结】1.三个最基本的极限(1)常数数列的极限就是其本身,即:C=C 。

(2)=0。

(3)当|q|<1时,q n=0。

这三个最基本的极限是求复杂数列极限的基础和化归方向。

2.数列极限四则运算法则:如果a n =A,b n =B, 那么:(a n ±b n )=a n ±b n =A±B。

2018年上海市普陀区中考数学二模试卷

2018年上海市普陀区中考数学二模试卷
G 的坐标; (3)在抛物线上是否存在点 E:它关于直线 AB 的对称点 F 恰好在 y 轴上.如果
存在,直接写出点 E 的坐标,如果不存在,试说明理由.
25.(14 分)已知 P 是⊙O 的直径 BA 延长线上的一个动点,∠P 的另一边交⊙O 于点 C、D,两点位于 AB 的上方,AB=6,OP=m,sinP= ,如图所示.另一个 半 径 为 6 的 ⊙ O1 经 过 点 C 、 D , 圆 心 距 OO1=n .

10.(4 分)用换元法解方程 ﹣ =3 时,如果设 =y,那么原方程化成以
y 为“元”的方程是

11.(4 分)已知正比例函数的图象经过点 M(﹣2,1)、A(x1,y1)、B(x2,y2),
如果 x1<x2,那么 y1
y2.(填“>”、“=”、“<”)
12.(4 分)已知二次函数的图象开口向上,且经过原点,试写出一个符合上述
1
1.2
1.4
2
2.5
家庭数
4
6
5
3
2
这组数据的中位数和众数分别是( )
A.1.2,1.2
B.1.4,1.2
C.1.3,1.4
D.1.3,1.2
6.(4 分)如图,已知两个全等的直角三角形纸片的直角边分别为 a、b(a≠b),
将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对
第 1页(共 27页)
22.(10 分)小张同学尝试运用课堂上学到的方法,自主研究函数 y= 的图象
与性质.下面是小张同学在研究过程中遇到的几个问题,现由你来完成:
(1)函数 y= 的定义域是

(2)下表列出了 y 与 x 的几组对应值: x … ﹣2 ﹣ m ﹣ ﹣

2020届上海市普陀区高考数学二模试卷(文科)(有答案)(已审阅)

2020届上海市普陀区高考数学二模试卷(文科)(有答案)(已审阅)

上海市普陀区高考数学二模试卷(文科)一、填空题(本大题共有14题,满分56分)考生应在答题及纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若集合A={x|y=,x∈R},B={x||x|≤1,x∈R},则A∩B=.2.若函数f(x)=1+(x>0)的反函数为f﹣1(x),则不等式f﹣1(x)>2的解集为.3.若sinα=且α是第二象限角,则tan(α﹣)=.4.若函数f(x)是定义在R上的奇函数,且满足f(x+2)=﹣f(x),则f在(x3﹣)8的展开式中,其常数项的值为.6.若函数f(x)=sin2x,g(x)=f(x+),则函数g(x)的单调递增区间为.7.设P是曲线2x2﹣y2=1上的一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程为.8.不等式组所表示的区域的面积为.9.袋中装有5只大小相同的球,编号分别为1,2,3,4,5,若从该袋中随机地取出3只,则被取出的球的编号之和为奇数的概率是(结果用最简分数表示).10.若函数f(x)=log5x(x>0),则方程f(x+1)+f(x﹣3)=1的解x=.11.某同学用球形模具自制棒棒糖.现熬制的糖浆恰好装满一圆柱形容器(底面半径为3cm,高为10cm),共做了20颗完全相同的棒棒糖,则每个棒棒糖的表面积为cm2(损耗忽略不计).12.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B3C3上有10个不同的点P1,P2, (10)记m i=•(i=1,2,3,…,10),则m1+m2+…+m10的值为.13.设函数f(x)=,记g(x)=f(x)﹣x,若函数g(x)有且仅有两个零点,则实数a的取值范围是.14.已知n∈N*,从集合{1,2,3,…,n}中选出k(k∈N,k≥2)个数j1,j2,…,j k,使之同时满足下面两个条件:①1≤j1<j2<…j k≤n;②j i+1﹣j i≥m(i=1,2,…,k﹣1),则称数组(j1,j2,…j k)为从n个元素中选出k个元素且限距为m的组合,其组合数记为.例如根据集合{1,2,3}可得.给定集合{1,2,3,4,5,6,7},可得=.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.若a、b表示两条直线,α表示平面,下列命题中的真命题为()A.若a⊥α,a⊥b,则b∥αB.若a∥α,a⊥b,则b⊥αC.若a⊥α,b⊆α,则a⊥b D.若a∥α,b∥α,则a∥b16.过抛物线y2=8x的焦点作一条直线与抛物线相交于A、B两点,且这两点的横坐标之和为9,则满足条件的直线()A.有且只有一条 B.有两条C.有无穷多条D.必不存在17.若z∈C,则“|Rez|≤1,|Imz|≤1”是“|z|≤1”成立的条件.()A.充分非必要B.必要非充分C.充要 D.既非充分又非必要18.对于正实数α,记Mα是满足下列条件的函数f(x)构成的集合:对于任意的实数x1,x2∈R且x1<x2,都有﹣α(x2﹣x1)<f(x2)﹣f(x1)<α(x2﹣x1)成立.下列结论中正确的是()A.若f(x)∈Mα1,g(x)∈Mα2,则f(x)•g(x)∈B.若f(x)∈Mα1,g(x)∈Mα2且g(x)≠0,则∈C.若f(x)∈Mα1,g(x)∈Mα2,则f(x)+g(x)∈D.若f(x)∈Mα1,g(x)∈Mα2且α1>α2,则f(x)﹣g(x)∈三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.在正四棱柱ABCD﹣A1B1C1D1中,底面边长为1,体积为2,E为AB的中点,证明:A1E与C1B是异面直线,并求出它们所成的角的大小(结果用反三角函数值表示)20.已知函数f(x)=sinxcosx+x(1)若0≤x≤,求函数f(x)的值域;(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)=,b=2,c=3,求cos(A﹣B)的值.21.某企业参加A项目生产的工人为1000人,平均每人每年创造利润10万元.根据现实的需要,从A项目中调出x人参与B项目的售后服务工作,每人每年可以创造利润10(a﹣)万元(a>0),A项目余下的工人每年创造利润需要提高0.2x%.(1)若要保证A项目余下的工人创造的年总利润不低于原来1000名工人创造的年总利润,则最多调出多少人参加B项目从事售后服务工作?(2)在(1)的条件下,当从A项目调出的人数不能超过总人数的40%时,才能使得A项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数a的取值范围.22.已知椭圆Γ: +=1的中心为O,一个方向向量为=(1,k)的直线l与Γ只有一个公共点M.(1)若k=1且点M在第二象限,求点M的坐标;(2)若经过O的直线l1与l垂直,求证:点M到直线l1的距离d≤﹣2;(3)若点N、P在椭圆上,记直线ON的斜率为k1,且为直线OP的一个法向量,且=,求|ON|2+|OP|2的值.23.已知各项不为零的数列{a n}的前n项和为S n,且a1=1,S n=a n•a n+1(n∈N*)(1)求证:数列{a n}是等差数列;(2)设数列{b n}满足:b n=,且(b k b k+1+b k+1b k+2+…+b n b n+1)=,求正整数k的值;(3)若m、k均为正整数,且m≥2,k<m.在数列{c k}中,c1=1,=,求c1+c2+…+c m.上海市普陀区高考数学二模试卷(文科)参考答案与试题解析一、填空题(本大题共有14题,满分56分)考生应在答题及纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若集合A={x|y=,x∈R},B={x||x|≤1,x∈R},则A∩B={1} .【考点】交集及其运算.【分析】求出A中x的范围确定出A,求出B中不等式的解集确定出B,找出两集合的交集即可.【解答】解:由A中y=,得到x﹣1≥0,解得:x≥1,即A={x|x≥1},由B中不等式变形得:﹣1≤x≤1,即B={x|﹣1≤x≤1},则A∩B={1},故答案为:{1}.2.若函数f(x)=1+(x>0)的反函数为f﹣1(x),则不等式f﹣1(x)>2的解集为.【考点】反函数.【分析】由,可得,因此,解出即可.【解答】解:∵,∴有,则,必有x﹣1>0,∴2(x﹣1)<1,解得1<x.故答案为:.3.若sinα=且α是第二象限角,则tan(α﹣)=﹣7.【考点】三角函数中的恒等变换应用.【分析】由已知求得cosα,进一步得到tanα,再由两角差的正切求得tan(α﹣)的值.【解答】解:∵α是第二象限角,sinα=,∴,∴,则=,故答案为﹣7.4.若函数f(x)是定义在R上的奇函数,且满足f(x+2)=﹣f(x),则f是定义在R上的奇函数,所以有f(0)=0,又因为f(x+2)=﹣f(x),所以有f(x+4)=﹣f(x+2)=f(x),所以函数f(x)的周期为4,根据周期性可得出f=f(0)=0.【解答】解:∵f(x)是定义在R上的奇函数,∴f(0)=0,∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),∴f(x)的周期为4,∴f=f(0)=0,故答案为0.5.在(x3﹣)8的展开式中,其常数项的值为28.【考点】二项式定理的应用.【分析】利用二项展开式的通项公式求出展开式的通项,令x的指数为0求出r,将r的值代入通项求出展开式的常数项【解答】解:由二项式定理得,令(x3)8﹣r•(x﹣1)r=1,即24﹣4r=0,r=6,所以常数项为,故答案为:28.6.若函数f(x)=sin2x,g(x)=f(x+),则函数g(x)的单调递增区间为..【考点】正弦函数的图象.【分析】先求的g(x)的解析式,再利用正弦函数的单调增区间求得g(x)的单调递增区间.【解答】解:对于函数,当时,函数g(x)单调递增,求得,故答案为:.7.设P是曲线2x2﹣y2=1上的一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程为8x2﹣4y2=1.【考点】轨迹方程.【分析】设P(x,y),M(x0,y0),根据中点坐标公式,利用代入法进行化简即可.【解答】解:设P(x,y),M(x0,y0),因为M是线段OP的中点,则有,所以,即,故答案为8x2﹣4y2=1.8.不等式组所表示的区域的面积为16.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,求出交点坐标,【解答】解:由不等式组作出平面区域如图所示(阴影部分),则由,,得A(﹣1,1),B(3,5),C(3,﹣3),所以,故答案为:16.9.袋中装有5只大小相同的球,编号分别为1,2,3,4,5,若从该袋中随机地取出3只,则被取出的球的编号之和为奇数的概率是(结果用最简分数表示).【考点】古典概型及其概率计算公式.【分析】从5只球中随机取出3只,共种情况,而取出的3只球的编号之和为奇数,有2偶1奇和3只全为奇数两种情况,由此能求出取出的球的编号之和为奇数的概率.【解答】解:从5只球中随机取出3只,共种情况,而取出的3只球的编号之和为奇数,有2偶1奇和3只全为奇数两种情况,若取出3只球中有2只偶数1只是奇数,则有种情况,若取出的3只球中有3只是奇数则有种情况,所以取出的球的编号之和为奇数的概率为.故答案为:.10.若函数f(x)=log5x(x>0),则方程f(x+1)+f(x﹣3)=1的解x=4.【考点】二次函数的性质;对数函数的图象与性质.【分析】根据对数的运算性质,可得(x+1)(x﹣3)=5,解得答案.【解答】解:因为f(x)=log5x,所以f(x+1)+f(x﹣3)=log5x+1+log5x﹣3=log5(x+1)(x﹣3)=1,即(x+1)(x﹣3)=5,所以x=4或x=﹣2(舍去),故答案为:4.11.某同学用球形模具自制棒棒糖.现熬制的糖浆恰好装满一圆柱形容器(底面半径为3cm,高为10cm),共做了20颗完全相同的棒棒糖,则每个棒棒糖的表面积为9πcm2(损耗忽略不计).【考点】组合几何体的面积、体积问题.【分析】根据糖浆的体积不变性求出每个棒棒糖的半径,从而求出棒棒糖的面积.【解答】解:圆柱形容器的体积为,设棒棒糖的半径为r,则每个棒棒糖的体积为,解得,∴,故答案为:9π.12.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B3C3上有10个不同的点P1,P2, (10)记m i=•(i=1,2,3,…,10),则m1+m2+…+m10的值为180.【考点】平面向量数量积的运算.【分析】以A为坐标原点,AC1所在直线为x轴建立直角坐标系,可得B2(3,),B3(5,),C3(6,0),求出直线B3C3的方程,可设P i(x i,y i),可得x i+y i=6,运用向量的数量积的坐标表示,计算即可得到所求和.【解答】解:以A为坐标原点,AC1所在直线为x轴建立直角坐标系,可得B2(3,),B3(5,),C3(6,0),直线B3C3的方程为y=﹣(x﹣6),可设P i(x i,y i),可得x i+y i=6,即有m i=•=3x i+y i=(x i+y i)=18,则m1+m2+…+m10=18×10=180.故答案为:180.13.设函数f(x)=,记g(x)=f(x)﹣x,若函数g(x)有且仅有两个零点,则实数a的取值范围是(﹣2,+∞).【考点】根的存在性及根的个数判断;函数的零点与方程根的关系.【分析】由函数解析式知,当x>0时,f(x)是周期为1的函数,易求x<1,f(x)=21﹣x+a,依题意,得方程21﹣x=x﹣a有且仅有两解,在同一坐标系中作出y=21﹣x与y=x﹣a图象,数形结合即可求得实数a的取值范围.【解答】解:∵x>0时,f(x)=f(x﹣1)∴当x>0时,f(x)是周期为1的函数,设x<1,则x﹣1<0,f(x)=f(x﹣1)=21﹣x+a;即x<1,f(x)=21﹣x﹣a,∵f(x)=x有且仅有两个实数根,∴方程21﹣x=x﹣a有且仅有两解,在同一坐标系中作出y=21﹣x与y=x﹣a图象如右图:∴f(x)=x有且仅有两个实数根,只要直线y=x﹣a介于图中蓝色直线下方即可.依f(x)=21﹣x可求出A点坐标为(0,2),B点坐标为(1,2),∵A,B两点均为虚点,∴﹣2<a.故答案为:(﹣2,+∞).14.已知n∈N*,从集合{1,2,3,…,n}中选出k(k∈N,k≥2)个数j1,j2,…,j k,使之同时满足下面两个条件:①1≤j1<j2<…j k≤n;②j i+1﹣j i≥m(i=1,2,…,k﹣1),则称数组(j1,j2,…j k)为从n个元素中选出k个元素且限距为m的组合,其组合数记为.例如根据集合{1,2,3}可得.给定集合{1,2,3,4,5,6,7},可得=10.【考点】进行简单的合情推理.【分析】由题意得即从定集{1,2,3,4,5,6,7}中选出3个元素且限距为2的组合,即可得出结论.【解答】解:由题意得即从定集{1,2,3,4,5,6,7}中选出3个元素且限距为2的组合.于是若从{1,3,5,7}中任选3个均符合要求则有个,若选{2,4,6}页满足条件;另外还有{1,3,7},{1,3,6},{1,4,7},{1,5,7},{2,5,7}均满足条件,故=4+1+5=10,故答案为:10.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.若a、b表示两条直线,α表示平面,下列命题中的真命题为()A.若a⊥α,a⊥b,则b∥αB.若a∥α,a⊥b,则b⊥αC.若a⊥α,b⊆α,则a⊥b D.若a∥α,b∥α,则a∥b【考点】空间中直线与平面之间的位置关系.【分析】对4个选项分别进行判断,即可得出结论.【解答】解:选项A中,由a⊥α,a⊥b,则b可能在平面α内,故该命题为假命题;选项B中,由a∥α,a⊥b,则b⊥α或b∥α,故该命题为假命题;选项C中,由线面垂直的判定定理可知,该命题为真命题;选项D中,由a∥α,b∥α可得到a,b相交或平行,故该命题是假命题,故选:C.16.过抛物线y2=8x的焦点作一条直线与抛物线相交于A、B两点,且这两点的横坐标之和为9,则满足条件的直线()A.有且只有一条 B.有两条C.有无穷多条D.必不存在【考点】抛物线的简单性质.【分析】设出AB的方程,联立方程组消元,根据根与系数的关系列方程判断解得个数.【解答】解:抛物线的焦点坐标为(2,0),若l无斜率,则l方程为x=2,显然不符合题意.若l有斜率,设直线l的方程为:y=k(x﹣2),联立方程组,消元得:k2x2﹣(4k2+8)x+4k2=0,设A(x1,y1),B(x2,y2),∴,∴.故选B.17.若z∈C,则“|Rez|≤1,|Imz|≤1”是“|z|≤1”成立的条件.()A.充分非必要B.必要非充分C.充要 D.既非充分又非必要【考点】必要条件、充分条件与充要条件的判断.【分析】设z=x+yi,由|x|≤1,|y|≤1,可得|z|,充分性不成立;反之成立.【解答】解:设z=x+yi,由|x|≤1,|y|≤1,则|z|=,故充分性不成立;由,则x2+y2≤1,所以|x|≤1,|y|<1,即必要性成立.故答案为:B.18.对于正实数α,记Mα是满足下列条件的函数f(x)构成的集合:对于任意的实数x1,x2∈R且x1<x2,都有﹣α(x2﹣x1)<f(x2)﹣f(x1)<α(x2﹣x1)成立.下列结论中正确的是()A.若f(x)∈Mα1,g(x)∈Mα2,则f(x)•g(x)∈B.若f(x)∈Mα1,g(x)∈Mα2且g(x)≠0,则∈C.若f(x)∈Mα1,g(x)∈Mα2,则f(x)+g(x)∈D.若f(x)∈Mα1,g(x)∈Mα2且α1>α2,则f(x)﹣g(x)∈【考点】元素与集合关系的判断.【分析】由题意知,从而求得.【解答】解:对于﹣α1(x2﹣x1)<f(x2)﹣f(x1)<α1(x2﹣x1),即有,令,则﹣α<k<α,若,即有﹣α1<k f<α1,﹣α2<k g<α2,所以﹣α1﹣α2<k f+k g<α1+α2,则有,故选C.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.在正四棱柱ABCD﹣A1B1C1D1中,底面边长为1,体积为2,E为AB的中点,证明:A1E与C1B是异面直线,并求出它们所成的角的大小(结果用反三角函数值表示)【考点】二面角的平面角及求法.【分析】根据直线和平面所成角的定义求出C1C的值,结合二面角的定义进行求解即可.【解答】20.已知函数f(x)=sinxcosx+x(1)若0≤x≤,求函数f(x)的值域;(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)=,b=2,c=3,求cos(A﹣B)的值.【考点】余弦定理;三角函数中的恒等变换应用;余弦函数的图象.【分析】(1)使用二倍角公式化简f(x),根据x的范围和正弦函数的性质求出f(x)的最值;(2)由f(A)计算A,利用余弦定理计算a,根据正弦定理求出sinB,得出cosB,利用两角差的余弦公式计算.【解答】解:(1)f(x)==.∵,∴,∴当2x+=时,f(x)取得最大值1+,当2x+=时,f(x)取得最小值0.∴函数f(x)的值域为.(2)由,∴.∵,∴,∴,即.在△ABC中,由余弦定理得,a2=b2+c2﹣2bccosA=,∴.由正弦定理得,∴.由于b<a,∴,∴cos(A﹣B)=cosAcosB+sinAsinB=.21.某企业参加A项目生产的工人为1000人,平均每人每年创造利润10万元.根据现实的需要,从A项目中调出x人参与B项目的售后服务工作,每人每年可以创造利润10(a﹣)万元(a>0),A项目余下的工人每年创造利润需要提高0.2x%.(1)若要保证A项目余下的工人创造的年总利润不低于原来1000名工人创造的年总利润,则最多调出多少人参加B项目从事售后服务工作?(2)在(1)的条件下,当从A项目调出的人数不能超过总人数的40%时,才能使得A项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数a的取值范围.【考点】函数模型的选择与应用.【分析】(1)根据题意,列出不等式10(1+0.2x%)≥10×1000,求解即可;(2)求出x的范围,得出不等式10(a﹣)x≤10(1+0.2x%),整理可得a≤++1恒成立,根据x的范围,可知在定义域内函数为减函数,当x=400时,函数取得最小值.【解答】解:设调出x人参加B项目从事售后服务工作(1)由题意得:10(1+0.2x%)≥10×1000,即x2﹣500x≤0,又x>0,所以0<x≤500.即最多调整500名员工从事第三产业.(2)由题知,0<x≤400,从事第三产业的员工创造的年总利润为10(a﹣)x万元,从事原来产业的员工的年总利润为10(1+x)万元,则10(a﹣)x≤10(1+0.2x%)所以ax﹣≤1000+2x﹣x﹣x2,所以ax≤+1000+x,即a≤++1恒成立,因为0<x≤400,∴++1≥++1=5.1,所以a≤5.1,又a>0,所以0<a≤5.1,即a的取值范围为(0,5.1].22.已知椭圆Γ: +=1的中心为O,一个方向向量为=(1,k)的直线l与Γ只有一个公共点M.(1)若k=1且点M在第二象限,求点M的坐标;(2)若经过O的直线l1与l垂直,求证:点M到直线l1的距离d≤﹣2;(3)若点N、P在椭圆上,记直线ON的斜率为k1,且为直线OP的一个法向量,且=,求|ON|2+|OP|2的值.【考点】椭圆的简单性质.【分析】(1)设直线l的方程为y=kx+t,代入椭圆方程4x2+5y2=20,可得x的方程,运用直线和椭圆只有一个公共点M,可得△=0,化简整理,解方程可得M的坐标;(2)设直线l1:x+ky=0,运用(1)求得M到直线l1的距离公式,再由基本不等式可得最大值,即可得证;(3)直线ON的方程为y=kx,代入椭圆方程4x2+5y2=20,可得交点N,求得|ON|,同样将直线OP:x+ky=0代入椭圆方程求得P的坐标,可得|OP|,化简整理即可得到所求值.【解答】解:(1)设直线l的方程为y=kx+t,代入椭圆方程4x2+5y2=20,可得(4+5k2)x2+10ktx+5t2﹣20=0,直线l与Γ只有一个公共点M,可得△=0,即有100k2t2﹣4(4+5k2)(5t2﹣20)=0,化简可得t2=4+5k2,由k=1可得t=±3,由点M在第二象限,可得M(﹣,),即为(﹣,);(2)证明:设直线l1:x+ky=0,由(1)可得M(﹣,),t2=4+5k2,则点M到直线l1的距离d===≤==﹣2,当且仅当5k2=时,取得等号;(3)由题意可得直线ON的方程为y=kx,代入椭圆方程4x2+5y2=20,可得(20+16k2)x2=100,即有x2=,y2=,即有|ON|2=,将直线OP的方程x+ky=0,代入椭圆方程可得,y2=,x2=,即有|OP|2=,则|ON|2+|OP|2==9.23.已知各项不为零的数列{a n}的前n项和为S n,且a1=1,S n=a n•a n+1(n∈N*)(1)求证:数列{a n}是等差数列;(2)设数列{b n}满足:b n=,且(b k b k+1+b k+1b k+2+…+b n b n+1)=,求正整数k的值;(3)若m、k均为正整数,且m≥2,k<m.在数列{c k}中,c1=1,=,求c1+c2+…+c m.【考点】数列的求和;等差关系的确定.【分析】(1)通过S n=a n a n+1,利用a n+1=S n+1﹣S n整理得a n+2﹣a n=2,进而可知数列{a n}是首项、公差均为1的等差数列;(2)通过(1)可知b n=,进而可知b n b n+1=•,进而利用等比数列的求和公式计算、取极限即得结论;(3)通过=及a n=n分别计算出、、、的表达式,进而累乘化简即得结论.【解答】(1)证明:∵S n=a n a n+1,∴a n+1=S n+1﹣S n=a n+1a n+2﹣a n a n+1,整理得:a n+2﹣a n=2,又∵a1=1,a2==2,∴数列{a n}的通项公式a n=n,即数列{a n}是首项、公差均为1的等差数列;(2)解:由(1)可知b n==2n﹣2(n+1)=,∴b n b n+1=•=•,∴b k b k+1+b k+1b k+2+…+b n b n+1=(++…+)=••=•(1﹣),又∵(b k b k+1+b k+1b k+2+…+b n b n+1)=,即•=,解得:k=2;(3)解:∵c1=1,=,a n=n,∴=,∴=,=,=,…,=,∴当n≥2时,c m=••…••c1=••…•••1=(﹣1)m﹣1•=(﹣1)m﹣1•,显然当m=1时满足上式,即c m=(﹣1)m﹣1•,∴c1+c2+…+c m=.。

2018年上海市普陀区中考二模数学试题及答案

2018年上海市普陀区中考二模数学试题及答案

2018学年度第二学期普陀区初三质量调研数学试卷(时间:100分钟,满分:150分)考生注意:所有答案务必按照规定在答题纸上完成,写在试卷上不给分一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列各数中,能化为有限小数的分数是(▲).(A) 13; (B) 315; (C) 1228; (D) 19.2. 在平面直角坐标系中,将正比例函数y kx=(k>0)的图像向上平移一个单位,那么平移后的图像不经过(▲).(A) 第一象限; (B) 第二象限; (C) 第三象限; (D) 第四象限. 3.已知两圆的圆心距是3,它们的半径分别是方程27100x x-+=的两个根,那么这两个圆的位置关系是(▲).(A) 内切; (B) 外切; (C) 相交; (D) 外离. 4.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色不同外,没有任何区别,现从这个盒子中随机模出一个球,模到红球的概率是( ▲ ). (A) 13; (B)215; (C) 815; (D) 15.5.下列命题中,错误的是( ▲ ).(A )三角形重心是三条中线交点; (B )三角形外心到各顶点距离相等;(C )三角形内心到各边距离相等; (D )等腰三角形重心、内心、外心重合.6. 如图,Rt △ABC 中,∠C =90°,D 为BC上一点, ∠DAC=30°,BD=2,AB =AC 的长是( ▲ ).(A) 3; (B)二、填空题:(本大题共12题,每题4分,满分48分) [请将结果直接填入答题纸的相应位置] 7的平方根是 ▲ . 8.分解因式:328a a -= ▲ . 9.函数y =的定义域是 ▲ . 10.一次函数的图像过点(0,3)且与直线y x =-平行,那么函数解析式是 ▲ .11.已知△ABC ∽△DEF ,且相似比为3∶4,22ABC S cm ∆=,则DEF S ∆= ▲2cm .12. 解方程221413x x x x --=-,设21x y x =-,那么原方程化为关于y 的整式方程A CD是 ▲ . 13.在平行四边形ABCD中,对角线AC ,BD 交于点O ,设向量AB a = ,AD b =.用含a 、b 的式子表示向量AO =▲ .14. 1纳米等于0.000000001米,用科学记数法表示:2018纳米= ▲米.15.一山坡的坡度为i =1那么该山坡的坡角为 ▲ 度. 16. 直角坐标系中,第四象限内一点P 到x 轴的距离为2,到y 轴的距离为5,那么点P 的坐标是 ▲ .17.在△ABC 中,AB=AC=5,tan B =43. 若⊙O ,且⊙O 经过点B 、C ,那么线段OA 的长等于 ▲ .18.Rt △ABC 中,∠C=90°,AC =5,BC=12,如果以点C 为圆心,r 为半径,且⊙C 与斜边AB 仅有一个公共点,那么半径r 的取值范围是 ▲ .三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.计算:1102(1)27π-+-+.20. 先化简分式:23()111x x xx x x -÷-+-,再从不等式组3(2)2,4251x x x x --≥⎧⎨-<+⎩的解集中取一个合适的整数代入,求原分式的值.21. 某校为某地震灾区开展了“献出我们的爱”赈灾捐款活动,九年级(1)班50名同学积极参加了这次活动,下表是小华对全班捐款情况的统计表:因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元. (1) 根据以上信息请帮助小华计算出被污染处的数据,并写出解答过程;(6分)(2) 该班捐款金额众数、中位数分别是多少?(4分)22.如图,已知AD 既是△ABC 的中线,又是角平分线, 请判断(1)△ABC 的形状;(5分)(2)AD 是否过△ABC 外接圆的圆心O ,⊙O 是否是 △ABC 的外接圆,并证明你的结论. (5分)第22题D ABC O23. 抛物线2y ax bx =+经过点A (4,0)、B (2,2),联结OB 、AB . (1) 求此抛物线的解析式;(5分)(2) 求证:△ABO 是等腰直角三角形;(4分)(3)将△ABO 绕点O 按顺时针方向旋转135°得到△O 11A B ,写出边11A B 中点P 的坐标,并判断点P 是否在此抛物线上,说明理由. (3分)24.如图,港口B位于港口D正西方向120小岛C位于港口D北偏西60科学考察船从港口D出发,沿北偏西方向以每小时20海里的速度驶离港口一艘快艇从港口B出发沿北偏东30°的方向以每小时60海里的速度驶向小岛C. 在小岛C处用1小时装补给物质后,立即按原来的速度给考察船送去.(1)快艇从港口B到小岛C需要多少时间?(3分)(2)快艇从小岛C出发后最少需要多少时间才能和考察船相遇?(9分)25.如图,已知在等腰△ABC 中,AB=AC=5,BC=6,点D为BC 边上一动点(不与点B 重合),过点D 作射线DE 交AB 于点E ,∠BDE=∠A ,以点D 为圆心,DC 的长为半径作⊙D .(1) 设BD=x ,AE=y ,求y 关于x 的函数关系式,并写出 定义域;(3分)(2) 当⊙D 与边AB 相切时,求BD 的长;(2分)(3) 如果⊙E 是以E 为圆心,AE 的长为半径的圆,那么当BD为多少长时,⊙D 与⊙E 相切?(9分)2018学年度第二学期普陀区九年级质量调研数学试卷B第25题E ACD参考答案及评分说明一、单项选择题:(本大题共6题,每题4分,满分24分)1.(B) ; 2.(D) ; 3.(A) ; 4.(A) ; 5.(D); 6.(C).二、填空题:(本大题共12题,每题4分,满分48分)7. 8. 2(2)(2)a a a +-; 9. 3x <; 10. 3y x =-+; 11.329; 12.23430y y --=; 13.1122a b +; 14.62.01410-⨯; 15. 30;16. P (5,2-); 17. 5或3; 18.512r <≤或者6013r =.三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19.解:原式=1++………………………………………………………………6′(各2分)=11-++……………………2′=………………………………………………………………………………………2′20.解:23()111x x x x x x -÷-+-=3(1)(1)()11x x x x x x x+--⋅-+……………………………………1′=3(1)(1)x x +-- …………………………………………………2′=24x +. ……………………………………………………………1′3(2)2,(1)4251(2)x x x x --≥⎧⎨-<+⎩由(1)得2x ≤,…………………………………………………………………………………2′由(2)得3x >-,………………………………………………………………………………2′∴不等式的解集是 32x -<≤,符合不等式解集的整数是2-,1-,0,1,2. 当2x =时,原式=8. ………………………………………………………………………………2′(备注:代正确都得分)21. 解:(1)污染小组人数=50–(3+6+11+13+6)=11(人).…………………………………………2′ 污染小组每人捐款数=5038(10315630115013606)11⨯-⨯+⨯+⨯+⨯+⨯……………2′=40 .………………………………………………………………………2′(2)该班捐款金额的众数为50元;………………………………………………………………2′该班捐款金额的中位数为40元;……………………………………………………………2′22.(1)△ABC 是等腰三角形.……………………………………………………1′证明:过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F .………………………1′ ∵AD 是角平分线,∴DE=DF .………………………………………………………………1′又∵AD 是△ABC 的中线, ∴BD=CD ,∴△BDE ≌△O E F 第22题D ABCMCDF.………………………………………………………1′∴∠B=∠C,∴AB=AC,…………………………………………………………………1′即△ABC是等腰三角形.(2)AD过△ABC的外接圆圆心O,⊙O是△ABC的外接圆.…………………………………1′证明:∵AB=AC,AD是角平分线,∴AD⊥BC,…………………………………………………………………………………2′又∵BD=CD,∴AD过圆心O.………………………………………………………………………………1′作边AB的中垂线交AD于点O,交AB于点M,则点O就是△ABC的外接圆圆心,∴⊙O是△ABC的外接圆.……………………………………………………………………1′23. 解:(1)抛物线2=+经过点A(4,0)、B(2,2),y ax bx∴得1640,42 2.a b a b +=⎧⎨+=⎩,…………………………………………………………………………2′解得:1,22.a b ⎧=-⎪⎨⎪=⎩ …………………………………………………………………………2′∴抛物线解析式是212.2y x x =-+证明:(2)过点B 作BC ⊥OA 于点C ∴BC=OC=CA=2.………………………………………1′∠BOC=∠BAC=45°, ………………………………1′∴∠OBA=90°, ………………………………………1′ ∴△ABO 等腰直角三角形. 解:(3)点P 坐标(,-).………………………………………………………………1′ 当x=21(2(2y =-⨯+⨯=1--≠-,…………………………………………1′ ∴点P 不在此抛物线上.……………………………………………………………………………1′24.解:(1)由题意得:∠CBD=60°,∠BDC=30∴∠BCD=90∵BD=120海里,∴BC=12BD=60海里.∵快艇的速度为60海里/小时,∴快艇到达C处的时间:60160t==(2)作CF⊥DA于点F,∵DC=2BD=∴在Rt△CDF中,∠CDF=30°,∴CF=12CD=,DF=2CD=2(海里).∴t快艇(小时).而=20(40S⨯=+考察船(1+1<90,…………………………………………2′∴两船不可能在点F处相遇.………………………………………………………………1′假如两船在点O处(点O在DF之间)相遇,设快艇从小岛C出发后最少需x小时与考察船相遇,相遇时考察船共用了(x+2)小时,∴OD=20(x+2),CF=1′第24题∵OF=DF–OD,∴OF=90–20x–40=50–20x,CO=60 x.…………………………………………………1′在Rt△COF中,由勾股定理得222CF FO CO+=,∴2225020)(60)x x+-=((,………………………………………………………2′整理得285130x x+-=,解得11x=,2138x=-(不合题意舍去).………………………………………………1′∴快艇从小岛C出发后最少需要1小时才能和考察船相遇.……………………………1′25.解:(1)∵∠B=∠B,∠BDE=∠A,∴△BDE∽△BAC,………………………………………………1′∴BD BEAB BC=,即556x y-=,∴655y x=-.……………………………………………………1′定义域: 0<x256≤.……………………………………………1′(2) 当⊙D与边AB相切时,DC=6–x ,645xx-=,………………………………………………………………………xy5-y5B第25题EACD………………1′ 解得103x =.…………………………………………………………………………………1′(3) 由(1)知ED=BD=x ,Er =AE=655y x=-,Dr = DC=6–x .………………………………………………………2′要使⊙D 与⊙E 相切,只有E r +D r =x 或D r –E r =x 或E r –D r =x . ………………………3′①E r +D r =x 时, 655x-+6–x=x ,解得5516x =;……………………………………………………………1′ ②D r –E r =x 时, 6–x –(655x -)=x ,解得54x =;…………………………………………………………1′ ③E r –D r =x 时,655x -–(6–x )=x ,解得 16x =-(不合题意,舍去) 此时无解.………………………………………………………………………………………1′综上所述:∵5516x =<256,54x =<256, ∴当BD=5516或54时,⊙D 与⊙E 相切.……………………………………………1′。

【二模】数学高考试题及答案解析

【二模】数学高考试题及答案解析
数 学高 考 冲 刺测试卷
学校________班级________姓名________成绩________
(时间120分钟,满分150分)
一、选择题(每小题5分).
1.已知集合 , ,则 ()
A. B. C. D.
2.复数 ,若复数 , 在复平面内的对应点关于虚轴对称,则 ()
A. B. C. D.
3.图1是某学习小组学生数学考试成绩 茎叶图,1号到16号同学的成绩依次为 , , , ,图2是统计茎叶图中成绩在一定范围内的学生人数的程序框图,那么该程序框图输出的结果是()
A.6B.10C.91D.92
4.数学家华罗庚倡导的“0.618优选法”在各领域都应用广泛,0.618就是黄金分割比 的近似值,黄金分割比还可以表示成 ,则 .
线段 的中点到 轴的距离为: .
故选:B.
[点睛]本题考查了抛物线定义的应用,属于基础题.
10.某班举行了由甲、乙、丙、丁、戊5名学生参加的“弘扬中华文化”的演讲比赛,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说,“很遗憾,你和乙都没有得到冠军”;对乙说,“你当然不会是最差的”从这个回答分析,5人的名次排列情况可能有
11.已知数列{an}的前n项和 ,则下列结论正确的是()
A.数列{an}是等差数列
B.数列{an}是递增数列
C.a1,a5,a9成等差数列
D.S6﹣S3,S9﹣S6,S12﹣S9成等差数列
[答案]D
[解析]
[分析]
利用 与 的关系求出 的通项公式,从而判断A,由 判断B,由 结合等差数列的性质判断C,分别计算 的值,结合等差数列的性质判断D.
[点睛]本题考查复数的几何意义的应用,以及复数代数形式的乘法运算,属于基础题.

2017年上海市普陀区高考数学二模试卷含详解

2017年上海市普陀区高考数学二模试卷含详解

2017年上海市普陀区高考数学二模试卷一、填空题(共12小题,每小题4分,满分54分)1.(4分)计算:(1+)3=.2.(4分)函数f(x)=log2(1﹣)的定义域为.3.(4分)若<α<π,sinα=,则tan=.4.(4分)若复数z=(1+i)•i2(i表示虚数单位),则=.5.(4分)曲线C:(θ为参数)的两个顶点之间的距离为.6.(4分)若从一副52张的扑克牌中随机抽取2张,则在放回抽取的情形下,两张牌都是K的概率为(结果用最简分数表示).7.(5分)若关于x 的方程sinx+cosx﹣m=0在区间[0,]上有解,则实数m 的取值范围是.8.(5分)若一个圆锥的母线与底面所成的角为,体积为125π,则此圆锥的高为.9.(5分)若函数f(x)=log22x﹣log2x+1(x≥2)的反函数为f﹣1(x).则f﹣1(3)=.10.(5分)若三棱锥S﹣ABC的所有的顶点都在球O的球面上.SA⊥平面ABC.SA=AB=2,AC=4,∠BAC=,则球O的表面积为.11.(5分)设a<0,若不等式sin2x+(a﹣1)cosx+a2﹣1≥0对于任意的x∈R恒成立,则a的取值范围是.12.(5分)在△ABC中,D、E分别是AB,AC的中点,M是直线DE上的动点,若△ABC的面积为1,则•+2的最小值为.二、选择题(共4小题,每小题5分,满分20分)13.(5分)动点P在抛物线y=2x2+1上移动,若P与点Q(0,﹣1)连线的中点为M,则动点M的轨迹方程为()A.y=2x2B.y=4x2C.y=6x2D.y=8x2 14.(5分)若α、β∈R,则“α≠β”是“tanα≠tanβ”成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件15.(5分)设l、m是不同的直线,α、β是不同的平面,下列命题中的真命题为()A.若l∥α,m⊥β,l⊥m,则α⊥βB.若l∥α,m⊥β,l⊥m,则α∥βC.若l∥α,m⊥β,l∥m,则α⊥βD.若l∥α,m⊥β,l∥m,则α∥β16.(5分)关于函数y=sin2x的判断,正确的是()A.最小正周期为2π,值域为[﹣1,1],在区间[﹣,]上是单调减函数B.最小正周期为π,值域为[﹣1,1],在区间[0,]上是单调减函数C.最小正周期为π,值域为[0,1],在区间[0,]上是单调增函数D.最小正周期为2π,值域为[0,1],在区间[﹣,]上是单调增函数三、解答题(共5小题,满分76分)17.(14分)在正方体ABCD﹣A1B1C1D1中,E、F分别是BC、A1D1的中点.(1)求证:四边形B1EDF是菱形;(2)求异面直线A1C与DE所成的角(结果用反三角函数表示).18.(14分)已知函数f(x)=asinx+bcosx(a,b为常数且a≠0,x∈R).当x=时,f(x)取得最大值.(1)计算f()的值;(2)设g(x)=f(﹣x),判断函数g(x)的奇偶性,并说明理由.19.(14分)某人上午7时乘船出发,以匀速v海里/小时(4≤v≤20)从A港前往相距50海里的B地,然后乘汽车以匀速ω千米/小时(30≤ω≤100)自B港前往相距300千米的C市,计划当天下午4到9时到达C市.设乘船和汽车的所要的时间分别为x、y小时,如果所需要的经费P=100+3(5﹣x)+(8﹣y)(单位:元)(1)试用含有v、ω的代数式表示P;(2)要使得所需经费P最少,求x和y的值,并求出此时的费用.20.(16分)已知椭圆T:+=1,直线l经过点P(m,0)与T相交于A、B 两点.(1)若C(0,﹣)且|PC|=2,求证:P必为Γ的焦点;(2)设m>0,若点D在Γ上,且|PD|的最大值为3,求m的值;(3)设O为坐标原点,若m=,直线l的一个法向量为=(1,k),求△AOB 面积的最大值.21.(18分)已知数列{a n}(n∈N*),若{a n+a n+1}为等比数列,则称{a n}具有性质P.(1)若数列{a n}具有性质P,且a1=a2=1,a3=3,求a4、a5的值;(2)若b n=2n+(﹣1)n,求证:数列{b n}具有性质P;(3)设c1+c2+…+c n=n2+n,数列{d n}具有性质P,其中d1=1,d3﹣d2=c1,d2+d3=c2,若d n>102,求正整数n的取值范围.2017年上海市普陀区高考数学二模试卷参考答案与试题解析一、填空题(共12小题,每小题4分,满分54分)1.(4分)计算:(1+)3=1.【考点】6F:极限及其运算.【专题】11:计算题;52:导数的概念及应用.【分析】根据题意,对(1+)3变形可得(1+)3=(+++1),由极限的意义计算可得答案.【解答】解:根据题意,(1+)3==(+++1)=1,即(1+)3=1;故答案为:1.【点评】本题考查极限的计算,需要牢记常见的极限的化简方法.2.(4分)函数f(x)=log2(1﹣)的定义域为(﹣∞,0)∪(1,+∞).【考点】33:函数的定义域及其求法.【专题】51:函数的性质及应用.【分析】根据对数函数的性质得到关于x的不等式,解出即可.【解答】解:由题意得:1﹣>0,解得:x>1或x<0,故答案为:(﹣∞,0)∪(1,+∞).【点评】本题考查了函数的定义域问题,考查对数函数的性质,是一道基础题.3.(4分)若<α<π,sinα=,则tan=3.【考点】GW:半角的三角函数.【专题】35:转化思想;49:综合法;56:三角函数的求值.【分析】利用同角三角函数的基本关系求得cosx的值,再利用半角公式求得tan的值.【解答】解:若<α<π,sinα=,则cosα=﹣=﹣,∴tan==3,故答案为:3.【点评】本题主要考查同角三角函数的基本关系,半角公式的应用,属于基础题.4.(4分)若复数z=(1+i)•i2(i表示虚数单位),则=﹣1+i.【考点】A5:复数的运算.【专题】11:计算题;35:转化思想;4O:定义法;5N:数系的扩充和复数.【分析】先化简,再根据共轭复数的定义即可求出【解答】解:z=(1+i)•i2=﹣1﹣i,∴=﹣1+i,故答案为:﹣1+i.【点评】本题考查复数代数形式的乘除运算以及共轭复数,是基础的计算题.5.(4分)曲线C:(θ为参数)的两个顶点之间的距离为2.【考点】QH:参数方程化成普通方程.【专题】11:计算题;34:方程思想;5S:坐标系和参数方程.【分析】根据题意,将曲线的参数方程变形为普通方程,分析可得曲线C为双曲线,且两个顶点的坐标为(±1,0),由两点间距离公式计算可得答案.【解答】解:曲线C:,其普通方程为x2﹣y2=1,则曲线C为双曲线,且两个顶点的坐标为(±1,0),则则两个顶点之间的距离为2;故答案为:2.【点评】本题考查参数方程与普通方程的互化,涉及双曲线的几何性质,关键是将曲线的参数方程化为普通方程.6.(4分)若从一副52张的扑克牌中随机抽取2张,则在放回抽取的情形下,两张牌都是K的概率为(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11:计算题;34:方程思想;4O:定义法;5I:概率与统计.【分析】先求出基本事件总数n=52×52,再求出两张牌都是K包含的基本事件个数m=4×4,由此能求出两张牌都是K的概率.【解答】解:从一副52张的扑克牌中随机抽取2张,在放回抽取的情形下,基本事件总数n=52×52,两张牌都是K包含的基本事件个数m=4×4,∴两张牌都是K的概率为p===.故答案为:.【点评】本题考查概率的求法,考查古典概型及应用,考查推理论证能力、运算求解能力,考查函数与方程思想、化归转化思想,是基础题.7.(5分)若关于x 的方程sinx+cosx﹣m=0在区间[0,]上有解,则实数m 的取值范围是[1,] .【考点】GF:三角函数的恒等变换及化简求值.【专题】33:函数思想;4R:转化法.【分析】由题意,关于x 的方程sinx+cosx﹣m=0在区间[0,]上有解,转化为函数y=sin(x+)与函数y=m的图象有交点问题.【解答】解:由题意,sinx+cosx﹣m=0,转化为:sinx+cosx=m,设函数y=sin (x+)x∈[0,]上,则x+∈[,]∴sin(x+)∈[]∴函数y=sin(x+)的值域为[1,]关于x 的方程sinx+cosx﹣m=0在区间[0,]上有解,则函数y=m的值域为[1,],即m∈[1,]故答案为:[1,].【点评】本题考查了方程有解问题转化为两个函数的交点的问题.属于基础题.8.(5分)若一个圆锥的母线与底面所成的角为,体积为125π,则此圆锥的高为5.【考点】L5:旋转体(圆柱、圆锥、圆台).【专题】15:综合题;34:方程思想;4G:演绎法;5F:空间位置关系与距离.【分析】设圆锥的高为h,则底面圆的半径为h,利用体积为125π,建立方程,即可求出此圆锥的高.【解答】解:设圆锥的高为h,则底面圆的半径为h,∵体积为125π,∴=125π,∴h=5.故答案为:5.【点评】本题考查圆锥体积的计算,考查方程思想,比较基础.9.(5分)若函数f(x)=log22x﹣log2x+1(x≥2)的反函数为f﹣1(x).则f﹣1(3)=4.【考点】4R:反函数.【专题】15:综合题;35:转化思想;4G:演绎法;51:函数的性质及应用.【分析】由题意,log22x﹣log2x+1=3,根据x≥2,即可得出结论.【解答】解:由题意,log22x﹣log2x+1=3,∵x≥2,∴x=4,故答案为4.【点评】本题考查对数方程,考查反函数的概念,正确转化是关键.10.(5分)若三棱锥S﹣ABC的所有的顶点都在球O的球面上.SA⊥平面ABC.SA=AB=2,AC=4,∠BAC=,则球O的表面积为20π.【考点】LG:球的体积和表面积.【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.【分析】由余弦定理求出BC=2,利用正弦定理得∠ABC=90°.从而△ABC截球O所得的圆O′的半径r=AC=2,进而能求出球O的半径R,由此能求出球O 的表面积.【解答】解:如图,三棱锥S﹣ABC的所有顶点都在球O的球面上,∵SA⊥平面ABC.SA=AB=2,AC=4,∠BAC=,∴BC==2,∴AC2=BC2+AB2,∴∠ABC=90°.∴△ABC截球O所得的圆O′的半径r=AC=2,∴球O的半径R==,∴球O的表面积S=4πR2=20π.故答案为:20π.【点评】本题考查三棱锥、球、勾股定理等基础知识,考查抽象概括能力、数据处理能力、运算求解能力,考查应用意识、创新意识,考查化归与转化思想、分类与整合思想、数形结合思想,是中档题.11.(5分)设a<0,若不等式sin2x+(a﹣1)cosx+a2﹣1≥0对于任意的x∈R恒成立,则a的取值范围是a≤﹣2.【考点】3R:函数恒成立问题.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】不等式进行等价转化为关于cosx的一元二次不等式,利用二次函数的性质和图象列不等式组求得答案.【解答】解;不等式等价于1﹣cos2x+acosx+a2﹣1﹣cosx≥0,恒成立,整理得﹣cos2x+(a﹣1)cosx+a2≥0,设cosx=t,则﹣1≤t≤1,g(t)=﹣t2+(a﹣1)t+a2,要使不等式恒成立需:求得a≥1或a≤﹣2,而a<0故答案为:a ≤﹣2.【点评】本题主要考查了一元二次不等式的解法,二次函数的性质.注重了对数形结合思想的运用和问题的分析.12.(5分)在△ABC 中,D 、E 分别是AB ,AC 的中点,M 是直线DE 上的动点,若△ABC 的面积为1,则•+2的最小值为 .【考点】9O :平面向量数量积的性质及其运算.【专题】35:转化思想;41:向量法;5A :平面向量及应用.【分析】由三角形的面积公式,S △ABC =2S △MBC ,则S △MBC =,根据三角形的面积公式及向量的数量积,利用余弦定理,即可求得则•+2,利用导数求得函数的单调性,即可求得则•+2的最小值; 方法二:利用辅助角公式及正弦函数的性质,即可求得•+2的最小值.【解答】解:∵D 、E 是AB 、AC 的中点,∴A 到BC 的距离=点A 到BC 的距离的一半, ∴S △ABC =2S △MBC ,而△ABC 的面积1,则△MBC 的面积S △MBC =,S △MBC =丨MB 丨×丨MC 丨sin ∠BMC=,∴丨MB 丨×丨MC 丨=. ∴•=丨MB 丨×丨MC 丨cos ∠BMC=. 由余弦定理,丨BC 丨2=丨BM 丨2+丨CM 丨2﹣2丨BM 丨×丨CM 丨cos ∠BMC , 显然,BM 、CM 都是正数,∴丨BM 丨2+丨CM 丨2≥2丨BM 丨×丨CM 丨,∴丨BC 丨2=丨BM 丨2+丨CM 丨2﹣2丨BM 丨×丨CM 丨cos ∠BMC=2×﹣2×..∴•+2≥+2×﹣2×=,方法一:令y=,则y′=,令y′=0,则cos∠BMC=,此时函数在(0,)上单调减,在(,1)上单调增,∴cos∠BMC=时,取得最小值为,•+2的最小值是,方法二:令y=,则ysin∠BMC+cos∠BMC=2,则sin(∠BMC+α)=2,tanα=,则sin(∠BMC+α)=≤1,解得:y≥,•+2的最小值是,故答案为:.【点评】本题考查了向量的线性运算、数量积运算、辅助角公式,余弦定理,考查了推理能力与计算能力,属于中档题.二、选择题(共4小题,每小题5分,满分20分)13.(5分)动点P在抛物线y=2x2+1上移动,若P与点Q(0,﹣1)连线的中点为M,则动点M的轨迹方程为()A.y=2x2B.y=4x2C.y=6x2D.y=8x2【考点】J3:轨迹方程.【专题】15:综合题;35:转化思想;4G:演绎法;5D:圆锥曲线的定义、性质与方程.【分析】先设PQ中点为(x,y),进而根据中点的定义可求出M点的坐标,然后代入到曲线方程中得到轨迹方程.【解答】解:设PQ中点为M(x,y),则P(2x,2y+1)在抛物线y=2x2+1上,即2(2x)2=(2y+1)﹣1,∴y=4x2.故选:B.【点评】本题主要考查轨迹方程的求法,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.14.(5分)若α、β∈R,则“α≠β”是“tanα≠tanβ”成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】38:对应思想;4R:转化法;5L:简易逻辑.【分析】根据正切函数的性质以及充分必要条件的定义判断即可.【解答】解:若“α≠β”,则“tanα≠tanβ”不成立,不是充分条件,反之也不成立,比如α=,β=,故选:D.【点评】本题考查了充分必要条件,考查正切函数的性质,是一道基础题.15.(5分)设l、m是不同的直线,α、β是不同的平面,下列命题中的真命题为()A.若l∥α,m⊥β,l⊥m,则α⊥βB.若l∥α,m⊥β,l⊥m,则α∥βC.若l∥α,m⊥β,l∥m,则α⊥βD.若l∥α,m⊥β,l∥m,则α∥β【考点】LP:空间中直线与平面之间的位置关系.【专题】11:计算题;35:转化思想;4R:转化法;5F:空间位置关系与距离.【分析】在A中,α与β相交或平行;在B中,α与β相交或平行;在C中,由面面垂直的判定定理得α⊥β;在D中,由面面垂直的判定定理得α⊥β.【解答】解:由l、m是不同的直线,α、β是不同的平面,知:在A中,若l∥α,m⊥β,l⊥m,则α与β相交或平行,故A错误;在B中,若l∥α,m⊥β,l⊥m,则α与β相交或平行,故B错误;在C中,若l∥α,m⊥β,l∥m,则由面面垂直的判定定理得α⊥β,故C正确;在D中,若l∥α,m⊥β,l∥m,则由面面垂直的判定定理得α⊥β,故D错误.故选:C.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系的应用,考查推理论证能力、运算求解能力、空间思维能力,考查化归转化思想、数形结合思想,是中档题.16.(5分)关于函数y=sin2x的判断,正确的是()A.最小正周期为2π,值域为[﹣1,1],在区间[﹣,]上是单调减函数B.最小正周期为π,值域为[﹣1,1],在区间[0,]上是单调减函数C.最小正周期为π,值域为[0,1],在区间[0,]上是单调增函数D.最小正周期为2π,值域为[0,1],在区间[﹣,]上是单调增函数【考点】GS:二倍角的三角函数;H7:余弦函数的图象.【专题】15:综合题;35:转化思想;4O:定义法;57:三角函数的图像与性质.【分析】先化简函数,再利用余弦函数的图象与性质,即可得出结论.【解答】解:y=sin2x=(1﹣os2x)=﹣cos2x+∴函数的最小正周期为π,值域为[0,1],在区间[0,]上是单调增函数,故选:C.【点评】本题考查三角函数的化简,考查余弦函数的图象与性质,属于中档题.三、解答题(共5小题,满分76分)17.(14分)在正方体ABCD﹣A1B1C1D1中,E、F分别是BC、A1D1的中点.(1)求证:四边形B1EDF是菱形;(2)求异面直线A1C与DE所成的角(结果用反三角函数表示).【考点】LM:异面直线及其所成的角.【专题】15:综合题;35:转化思想;44:数形结合法;5G:空间角.【分析】(1)由题意画出图形,取AD中点G,连接FG,BG,可证四边形B1BGF 为平行四边形,得BG∥B1F,再由ABCD﹣A1B1C1D1为正方体,且E,G分别为BC,AD的中点,可得BEDG为平行四边形,得BG∥DE,BG=DE,从而得到B1F∥DE,且B1F=DE,进一步得到四边形B1EDF为平行四边形,再由△B1BE≌△B1A1F,可得B1E=B1F,得到四边形B1EDF是菱形;(2)以A为原点建立如图所示空间直角坐标系,然后利用空间向量求异面直线A1C与DE所成的角.【解答】(1)证明:取AD中点G,连接FG,BG,可得B1B∥FG,B1B=FG,∴四边形B1BGF为平行四边形,则BG∥B1F,由ABCD﹣A1B1C1D1为正方体,且E,G分别为BC,AD的中点,可得BEDG为平行四边形,∴BG∥DE,BG=DE,则B1F∥DE,且B1F=DE,∴四边形B1EDF为平行四边形,由△B1BE≌△B1A1F,可得B1E=B1F,∴四边形B1EDF是菱形;(2)解:以A为原点建立如图所示空间直角坐标系,设正方体的棱长为1,则A1(0,0,1),C(1,1,0),D(0,1,0),E(1,,0),∴,,∴cos<>==.∴异面直线A1C与DE所成的角为arccos.【点评】本题考查空间中直线与直线的位置关系,考查空间想象能力和思维能力,训练了利用空间向量求异面直线所成角,是中档题.18.(14分)已知函数f(x)=asinx+bcosx(a,b为常数且a≠0,x∈R).当x=时,f(x)取得最大值.(1)计算f()的值;(2)设g(x)=f(﹣x),判断函数g(x)的奇偶性,并说明理由.【考点】3K:函数奇偶性的性质与判断;GF:三角函数的恒等变换及化简求值.【专题】11:计算题;35:转化思想;49:综合法;56:三角函数的求值.【分析】首先,根据已知得到f(x)=sin(x+θ),然后根据最值建立等式,得到a=b,再化简函数f(x)=asin(x+),(1)将代入解析式求值;(2)求出g(x)解析式,利用奇偶函数定义判断奇偶性.【解答】解:由已知得到f(x)=sin(x+θ),又x=时,f(x)取得最大值.所以a=b,f(x)=asin(x+),所以(1)f()=asin(3π)=0;(2)g(x)为偶函数.理由:设g(x)=f(﹣x)=asin(﹣x)=acosx,所以函数g(﹣x)=g(x),为偶函数.【点评】本题考查了三角函数的性质以及奇偶性的判定;属于基础题.19.(14分)某人上午7时乘船出发,以匀速v海里/小时(4≤v≤20)从A港前往相距50海里的B地,然后乘汽车以匀速ω千米/小时(30≤ω≤100)自B港前往相距300千米的C市,计划当天下午4到9时到达C市.设乘船和汽车的所要的时间分别为x、y小时,如果所需要的经费P=100+3(5﹣x)+(8﹣y)(单位:元)(1)试用含有v、ω的代数式表示P;(2)要使得所需经费P最少,求x和y的值,并求出此时的费用.【考点】36:函数解析式的求解及常用方法;5C:根据实际问题选择函数类型.【专题】11:计算题;35:转化思想;44:数形结合法;59:不等式的解法及应用.【分析】(1)分析题意,找出相关量之间的不等关系,(2)求出x,y满足的约束条件,由约束条件画出可行域,要求走得最经济,即求可行域中的最优解,将目标函数看成是一条直线,分析目标函数p与直线截距的关系,进而求出最优.【解答】解:(1)由题意得:x=,4≤v≤20,y=,30≤ω≤100,∴P=100+3(5﹣)+(8﹣)=123﹣﹣,其中,4≤v≤20,30≤ω≤100,(2)由(1)可得2.5≤x≤12.5,3≤y≤10,①由于汽车、乘船所需的时间和应在9至14小时之间,∴9≤x+y≤14 ②因此满足①②的点(x,y)的存在范围是图中阴影部分目标函数p=100+3(5﹣x)+(8﹣y)=123﹣3x﹣y,当x=11,y=3时,p 最小,此时,p=123﹣33﹣3=87【点评】本题考查不等式关系的建立,考查线性规划知识,考查学生分析解决问题的能力,属于中档题.20.(16分)已知椭圆T:+=1,直线l经过点P(m,0)与T相交于A、B两点.(1)若C(0,﹣)且|PC|=2,求证:P必为Γ的焦点;(2)设m>0,若点D在Γ上,且|PD|的最大值为3,求m的值;(3)设O为坐标原点,若m=,直线l的一个法向量为=(1,k),求△AOB 面积的最大值.【考点】K4:椭圆的性质.【专题】35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】(1)利用两点之间距离公式,即可求得m的值,由椭圆的方程,即可求得焦点坐标,即可求证P必为Γ的焦点;(2)利用两点之间的距离公式,根据二次函数的单调性,当x0=﹣2时,取最大值,代入即可求得m的值;(3)求得直线AB的方程,代入方程,由韦达定理,弦长公式及点到直线的距离公式,利用基本不等式的性质,即可求得△AOB面积的最大值.【解答】解:(1)证明:由椭圆焦点F(±1,0),由|PC|==2,解得:m=±1,∴P点坐标为(±1,0),∴P必为Γ的焦点;(2)设D(x0,y0),y02=3(1﹣),|PD|2=(x0﹣m)2+y02=﹣2mx0+m2+3,﹣2≤x0≤2,有函数的对称轴x0=4m>0,则当x0=﹣2时,取最大值,则|PD|2=1+4m+m2+3=9,m2+4m﹣5=0,解得:m=1或m=﹣5(舍去),∴m的值1;(3)直线l的一个法向量为=(1,k),则直线l的斜率﹣,则直线l方程:y﹣0=﹣(x﹣),整理得:ky+x﹣=0,设A(x1,y1),B(x2,y2),,整理得:(3k2+4)y2﹣6ky﹣3=0,则y1+y2=,y1y2=﹣,丨AB丨=•=,则O到直线AB的距离d=,则△AOB面积S=×丨AB丨×d=××==≤=,当且仅当=,即k2=,取等号,∴△AOB面积的最大值.【点评】本题考查椭圆的简单几何性质,直线与椭圆的位置关系,考查韦达定理,弦长公式,基本不等式的性质,考查计算能力,属于中档题.21.(18分)已知数列{a n}(n∈N*),若{a n+a n+1}为等比数列,则称{a n}具有性质P.(1)若数列{a n}具有性质P,且a1=a2=1,a3=3,求a4、a5的值;(2)若b n=2n+(﹣1)n,求证:数列{b n}具有性质P;(3)设c1+c2+…+c n=n2+n,数列{d n}具有性质P,其中d1=1,d3﹣d2=c1,d2+d3=c2,若d n>102,求正整数n的取值范围.【考点】8B:数列的应用.【专题】15:综合题;35:转化思想;4G:演绎法;54:等差数列与等比数列.【分析】(1){a n+a n+1}为等比数列,由a1=a2=1,a3=3,可得{a n+a n+1}的公比为2,可得a n+a n+1=2n,进而得出a4、a5的值;(2)证明{b n+b n+1}是以公比为2的等比数列,即可得出结论;(3)求出d n+d n+1=2n,利用d n>102,求正整数n的取值范围.【解答】解:(1){a n+a n+1}为等比数列,∵a1=a2=1,a3=3,∴a1+a2=1+1=2,a2+a3=1+3=4,∴{a n+a n+1}的公比为2,∴a n+a n+1=2n,∴a3+a4=23=8,即a4=5,∴a4+a5=24=16,即a5=11;(2)∵b n=2n+(﹣1)n,∴b n+b n+1=2n+(﹣1)n+2n+1+(﹣1)n+1=3•2n,∴{b n+b n+1}是以公比为2的等比数列,∴数列{b n}具有性质P.(3)∵c1+c2+…+c n=n2+n,∴c1+c2+…+c n﹣1=(n﹣1)2+n﹣1,∴c n=2n,∵d1=1,d3﹣d2=c1=2,d2+d3=c2=4,∴d2=1,d3=3,∵数列{d n}具有性质P,由(1)可得,d n+d n+1=2n,∴d4=5,d5=11,d6=21,d7=43,d8=85,d9=171,∵d n>102,∴正整数n的取值范围是[9,+∞).【点评】本题考查新定义,考查等比数列的运用,考查学生分析解决问题的能力,属于中档题.。

2024届上海普陀区高考数学二模试卷及答案

2024届上海普陀区高考数学二模试卷及答案

普陀区2023 -2024学年第二学期高三数学质量调研2024.4考生注意:1.本试卷共4页,21道试题,满分150分.考试时间120分钟.2.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.务必用钢笔或圆珠笔在答题纸相应位置正面清楚地填写姓名、准考证号,并将核对后的条码贴在指定位置上.一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对前6题得4分、后6题得5分,否则一律得票分.1.已知复数1i z =+,其中i 为虚数单位,则z 在复平面内所对应的点的坐标为______.2.已知R a ∈,设集合{1,,4}A a =,集合{1,2}B a =+,若A B B =,则a =______.3.若3cos 35πθ⎛⎫−=⎪⎝⎭,则sin 6πθ⎛⎫+= ⎪⎝⎭______. 4.已知()2~4,2X N ,若(0)0.02P X <=,则(48)P X <<=______. 5.若实数a ,b 满足20a b −≥,则124ab+的最小值为______.6.设2012(1)(1,N)nn n x a a x a x a x n n +=++++≥∈,若54a a >,且56a a >,则1ni i a ==∑______.7.为了提高学生参加体育锻炼的积极性,某校本学期依据学生特点针对性的组建了五个特色运动社团,学校为了了解学生参与运动的情况,对每个特色运动社团的参与人数进行了统计,其中一个特色运动社团开学第1周至第5周参与运动的人数统计数据如表所示.若表中数据可用回归方程 2.3(118,N)y x b x x =+≤≤∈来预测,则本学期第11周参与该特色运动社团的人数约为______.(精确到整数)8.设等比数列{}n a 的公比为(1,N)q n n ≥∈,则“212a ,4a ,32a 成等差数列”的一个充分非必要条件是______.9.若向量a 在向量b 上的投影为13b ,且|3|||a b a b −=+,则cos ,a b 〈〉=______.10.已知抛物线2y =的焦点F 是双曲线Γ的右焦点,过点F 的直线l 的法向量(1,3)n =−,l 与y 轴以及Γ的左支分别相交A ,B 两点,若2BF BA =,则双曲线Γ的实轴长为______.11.设k ,m ,n 是正整数,n S 是数列{}n a 的前n 项和,12a =,11n n S a +=+,若()11ki ii m t S==−∑,且{0,1}i t ∈,记12()k f m t t t =+++,则(2024)f =______.12.已知R a ∈,若关于x 的不等式(2)e 0xa x x −−−>的解集中有且仅有一个负整数,则a 的取值范围是______.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,否则一律得零分.13.从放有两个红球、一个白球的袋子中一次任意取出两个球,两个红球分别标记为A 、B ,白球标记为C ,则它的一个样本空间可以是( )A .{,}AB BC B .{,,}AB AC BC C .{,,,}AB BA BC CBD .{,,,,}AB BA AC CA CB14.若一个圆锥的体积为3,用通过该圆锥的轴的平面截此圆锥,得到的截面三角形的顶角为2π,则该圆锥的侧面积为( )AB .2πC .D .15.直线l 经过定点(2,1)P ,且与x 轴正半轴、y 轴正半轴分别相交于A ,B 两点,O 为坐标原点,动圆M 在OAB △的外部,且与直线l 及两坐标轴的正半轴均相切,则OAB △周长的最小值是( )A .3B .5C .10D .1216.设n S 是数列{}n a 的前n 项和(1,N)n n ≥∈,若数列{}n a 满足:对任意的2n ≥,存在大于1的整数m ,使得()()10m n m n S a S a +−−<成立,则称数列{}n a 是“G 数列”.现给出如下两个结论:①存在等差数列{}n a 是“G 数列”;②任意等比数列{}n a 都不是“G 数列”.则()A .①成立②成立B .①成立②不成立C .①不成立②成立D .①不成立②不成立三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤S ABCD −ABCD 2SA SB ==E F SC 17.(本题满分14 分)本题共有 2 个小题,第1 小题满分 6 分,第2 小题满分8 分如图,在四棱锥 中,底面 是边长为1 的正方形, , 、 分别是、BD 的中点.(1)求证://EF 平面SAB ; (2)若二面角S AB D −−的大小为2π,求直线SD 与平面ABCD 所成角的大小. 18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 设函数()sin()f x x ωϕ=+,0ω>,0ϕπ<<,它的最小正周期为π.(1)若函数12y f x π⎛⎫=−⎪⎝⎭是偶函数,求ϕ的值;(2)在ABC △中,角A 、B 、C 的对边分别为a 、b 、c ,若2a =,6A π=,2B f ϕ−⎛⎫=⎪⎝⎭,求b 的值.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分张先生每周有5个工作日,工作日出行采用自驾方式,必经之路上有一个十字路口,直行车道有三条,直行车辆可以随机选择一条车道通行,记事件A 为“张先生驾车从左侧直行车道通行”.(1)某日张先生驾车上班接近路口时,看到自己车前是一辆大货车,遂选择不与大货车从同一车道通行.记事件B 为“大货车从中间直行车道通行”,求()P AB ;(2)用X 表示张先生每周工作日出行事件A 发生的次数,求X 的分布及期望[]E X .20.(本题满分18 分)本题共有 3 个小题,第1 小题满分 4 分,第2 小题满分6 分,第 3 小题满分8 分.设椭圆222:1(1)x y a aΓ+=>,Γ的离心率是短轴长的4倍,直线l 交Γ于A 、B 两点,C 是Γ上异于A 、B 的一点,O 是坐标原点.(1)求椭圆Γ的方程;(2)若直线l 过Γ的右焦点F ,且CO OB =,0CF AB ⋅=,求CBF S ∆的值;(3)设直线l 的方程为(,R)y kx m k m =+∈,且OA OB CO +=,求||AB 的取值范围.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 对于函数()y f x =,1x D ∈和()y g x =,2x D ∈,设12D D D =,若1x ,2x D ∈,且12x x ≠,皆有()()()()1212(0)f x f x t g x g x t −≤−>成立,则称函数()y f x =与()y g x =“具有性质()H t ”.(1)判断函数2()f x x =,[1,2]x ∈与()2g x x =是否“具有性质(2)H ”,并说明理由;(2)若函数2()2f x x =+,(0,1]x ∈与1()g x x=“具有性质()H t ”,求t 的取值范围; (3)若函数21()2ln 3f x x x=+−与()y g x =“具有性质(1)H ”,且函数()y g x =在区间(0,)+∞上存在两个零点1x ,2x ,求证22122x x +>.参考答案一、填空题 1.()1,1− 2. 2 3.354.0.485. 26. 10237. 578. q=39.310.2 11. 7 12.211,23e e ⎡⎫⎪⎢⎣⎭二、选择题13.B 14. C 15. C 16. D 三、解答题 17.(1)证明略(2)3π18.(1)23π(2)19.(1)16(2)分布列:01234532808040101243243243243243243⎛⎫ ⎪ ⎪ ⎪⎝⎭,期望5320.(1)2212x y +=(2)1(3)21.(1)具有,说明略 (2)[)2,+∞(3)证明略。

2019-2018届上海市普陀区高考文科数学模拟试卷及答案word版本 (6页)

2019-2018届上海市普陀区高考文科数学模拟试卷及答案word版本 (6页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==2018届上海市普陀区高考文科数学模拟试卷及答案数学是一门逻辑性较强的学科,但是每年高考的题型基本上是不变的,我们可以通过多做一些模拟试卷来熟悉里面的题型,以下是小编为你整理的2018届上海市普陀区高考文科数学模拟试卷,希望能帮到你。

2018届上海市普陀区高考文科数学二模拟试卷题目一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1、设集合A={x| },B={y|y=x2},则A∩B=( )A.[﹣2,2]B.[0,2]C.[2,+∞)D.{(﹣2,4),(2,4)}2、已知条件p:关于的不等式有解;条件q:指数函数为减函数,则p成立是q成立的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3、在△ 中,为边的中点,若,,则 ( )A. B. C. D.4、已知等差数列的公差为 ,若成等比数列, 则 ( )A. B. C. D.5、若函数,,,又,,且的最小值为,则的值为( )A. B. C. D.26、指数函数且在上是减函数,则函数在R上的单调性为( )A.单调递增B.单调递减C.在上递增,在上递减 D .在上递减,在上递增7、已知中,,,D为边BC的中点,则 ( )A.3B.4C.5D.68、数列是等差数列,若,且它的前n项和有最大值,那么当取得最小正值时,n等于( )A.17B.16C.15D.149、在△ABC中,若 (tanB+tanC)=tanBtanC﹣1,则cos2A=( )A.﹣B.C.﹣D.10、函数的单调增区间与值域相同,则实数的取值为( )A. B. C. D.11、已知函数,其中 .若对于任意的,都有,则的取值范围是( )A. B. C. D.12、,则O是三角形的( )A.垂心B.外心C.重心D.内心二、填空题:本大题共4小题,每小题5分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普陀区高考数学二模含答案考生注意:1. 本试卷共4页,21道试题,满分150分. 考试时间120分钟.2. 本考试分试卷和答题纸. 试卷包括试题与答题要求. 作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3. 答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对前6题得4分、后6题得5分,否则一律得零分.1. 抛物线212x y =的准线方程为_______.2. 若函数1()21f x x m =-+是奇函数,则实数m =________.3.若函数()f x =()g x ,则函数()g x 的零点为________.4. 书架上有上、中、下三册的《白话史记》和上、下两册的《古诗文鉴赏辞典》,现将这五本书从左到右摆放在一起,则中间位置摆放中册《白话史记》的不同摆放种数为_______(结果用数值表示).5. 在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若222()tan b c a A bc +-=,则角A 的大小为________.6. 若321()n x x-的展开式中含有非零常数项,则正整数n 的最小值为_________.7. 某单位年初有两辆车参加某种事故保险,对在当年内发生此种事故的每辆车,单位均可获赔(假设每辆车最多只获一次赔偿).设这两辆车在一年内发生此种事故的概率分别为120和121,且各车是否发生事故相互独立,则一年内该单位在此种保险中获赔的概率为_________(结果用最简分数表示).8. 在平面直角坐标系xOy 中,直线l的参数方程为24x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C 的参数方程为cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩(θ为参数),则直线l 与椭圆C 的公共点坐标为__________. 9. 设函数()log m f x x =(0m >且1m ≠),若m 是等比数列{}n a (*N n ∈)的公比,且 2462018()7f a a a a =L ,则22221232018()()()()f a f a f a f a ++++L 的值为_________.10. 设变量x 、y 满足条件0220x y x y y x y m-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,若该条件表示的平面区域是三角形,则实数m 的取值范围是__________.11. 设集合1|,2xM y y x R ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,()()()1|1112,121N y y x m x x m ⎧⎫⎛⎫==+-+--≤≤⎨⎬ ⎪-⎝⎭⎩⎭,若N M ⊆,则实数m 的取值范围是 .12. 点1F ,2F 分别是椭圆22:12x C y +=的左、右两焦点,点N 为椭圆C 的上顶点,若动点M 满足:2122MN MF MF =⋅u u u u r u u u u r u u u u r,则122MF MF +u u u u r u u u u r 的最大值为__________.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 已知i 为虚数单位,若复数2(i)i a +为正实数,则实数a 的值为……………………………( ))A (2 ()B 1 ()C 0 ()D 1-14.如图所示的几何体,其表面积为(5π+,下部圆柱的底面直径与该圆柱的高相等,…………………………( ))A (4 ()B 6 ()C 8 ()D 1015. 设n S 是无穷等差数列{}n a 的前n 项和(*N n ∈),则“lim n n S →∞存在”是“该数列公差0d =”的 ……………………………………………………………………………( ))A (充分非必要条件 ()B 必要非充分条件()C 充要条件 ()D 既非充分也非必要条件16. 已知*N k ∈,,,R x y z +∈,若222()5()k xy yz zx x y z ++>++,则对此不等式描叙正确的是 …………………………………………………………………………………………………( ))A (若5k =,则至少..存.在.一个以,,x y z 为边长的等边三角形 ()B 若6k =,则对任意满足不等式的,,x y z 都.存在..以,,x y z 为边长的三角形 ()C 若7k =,则对任意满足不等式的,,x y z 都.存在..以,,x y z 为边长的三角形 ()D 若8k =,则对满足不等式的,,x y z 不.存在..以,,x y z 为边长的直角三角形 三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分如图所示的正四棱柱1111ABCD A B C D -的底面边长为1,侧棱12AA =,点E 在棱1CC 上,且1=CE CC λu u u r u u u u r(0λ>).(1)当1=2λ时,求三棱锥1D EBC -的体积;(2)当异面直线BE 与1D C 所成角的大小为2arccos 3时,求λ的值.18.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分已知函数2(=sin cos sin f x x x x -),R x ∈. (1)若函数()f x 在区间[,]16a π上递增,求实数a 的取值范围;(2)若函数()f x 的图像关于点11(,)Q x y 对称,且1[,]44x ππ∈-,求点Q 的坐标.19.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分 某市为改善市民出行,大力发展轨道交通建设.规划中的轨道交通s 号线线路示意图如图所示.已知,M N 是东西方向主干道边两个景点,,P Q 是南北方向主干道边两个景点,四个景点距离城市中心O 均为52km ,线路AB 段上的任意一点到景点N 的距离比到景点M 的距离都多10km ,线路BC 段上的任意一点到O 的距离都相等,线路CD 段上的任意一点到景点Q 的距离比到景点P 的距离都多10km ,以O 为原点建立平面直角坐标系xOy . (1)求轨道交通s 号线线路示意图所在曲线的方程; (2)规划中的线路AB 段上需建一站点G 到景点Q 的距离最近,问如何设置站点G 的位置第19题图ADBCA 1B 1C 1D 1E第17题图20. (本题满分16分)本题共有3小题,第1小题4分,第2小题6分,第3小题6分. 定义在R 上的函数()f x 满足:对任意的实数x ,存在非零常数t ,都有()()f x t tf x +=-成立. (1)若函数()3f x kx =+,求实数k 和t 的值;(2)当2t =时,若[0,2]x ∈,()(2)f x x x =-,求函数()f x 在闭区间[2,6]-上的值域; (3)设函数()f x 的值域为[,]a a -,证明:函数()f x 为周期函数.21.(本题满分18分)本题共有3小题,第1小题4分,第2小题6分,第3小题8分.若数列{}n a 同时满足条件:①存在互异的*,N p q ∈使得p q a a c ==(c 为常数);②当n p ≠且n q ≠时,对任意*N n ∈都有n a c >,则称数列{}n a 为双底数列.(1)判断以下数列{}n a 是否为双底数列(只需写出结论不必证明); ①6n a n n=+; ②sin 2n n a π=; ③()()35n a n n =--(2)设501012,1502,50n n n n a m n --≤≤⎧=⎨+>⎩,若数列{}n a 是双底数列,求实数m 的值以及数列{}n a 的前n 项和n S ; (3)设()9310nn a kn ⎛⎫=+ ⎪⎝⎭,是否存在整数k ,使得数列{}n a 为双底数列若存在,求出所有的k 的值;若不存在,请说明理由.普陀区2017学年第二学期高三数学质量调研评分标准(参考)三、解答题17.(1)由11=2CE CC u u u r u u u u r,得1CE =, 又正四棱柱1111ABCD A B C D -,则11D C ⊥平面EBC ,则11113D EBC Rt ECB V S D C -∆=⋅ …………………………… 4分111326CE BC =⨯⋅=.………………………… 6分 (2)以D 为原点,射线DA 、DC 、1DD 作x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系(如图),……………… 2分 则(1,1,0)B ,(0,1,2)E λ,1(0,0,2)D ,(0,1,0)C ,即1(0,1,2)DC =-u u u ur,(1,0,2)BE λ=-u u u r ………………………………………………… 4分 又异面直线BE 与1D C 所成角的大小为2arccos3, 则1123D C BED C BE⋅===⋅u u u u r u u u ru u u u r u u u r ,……………………… 6分 化简整理得2165λ=,又0λ>,即λ=……………………………………… 8分 18.(1)21cos 21(=sin cos sin sin 222x f x x x x x --=+),…………………………2分 1)42x π=+-,…………………………4分 当16x π=时,则322416482x πππππ+=⨯+=<, 又函数()f x 在[,]16a π上递增,则242a ππ+≥-,即38a π≥-,………………………7分 则实数a 的取值范围为3[,)816a ππ∈-. …………………………………………………8分 (2)若函数()f x 的图像关于点11(,)Q x y 对称,则1sin(2)04x π+=, ………………2分即124x k ππ+=(Z k ∈),则128kx ππ=-[,]44ππ∈-,………………………………4分由Z k ∈得0k =,则点Q 的坐标为1(,)82π--. …………………………………………6分 y19.(1)因为线路AB 段上的任意一点到景点N 的距离比到景点M 的距离都多10km ,所以线路AB 段所在曲线是以定点M ,N 为左、右焦点的双曲线的左支,则其方程为2225(0,0)x y x y -=<≥, …………………………………………………3分因为线路BC 段上的任意一点到O 的距离都相等,所以线路BC 段所在曲线是以O 为圆心、以OB 长为半径的圆,由线路AB 段所在曲线方程可求得(5,0)B -,则其方程为2225(0,0)x y x y +=≤≤, …………………………………………………5分因为线路CD 段上的任意一点到景点Q 的距离比到景点P 的距离都多10km ,所以线路CD 段所在曲线是以定点Q 、P 为上、下焦点的双曲线下支,则其方程为2225(0,0)x y x y -=-≥<, …………………………………………………7分 故线路示意图所在曲线的方程为25x x y y +=-. ……………………………………8分 (2)设00(,)G x y,又Q,则GQ =由(1)得220025x y -=,即GQ =3分则GQ =0y =时,min GQ = 则站点G的坐标为⎛ ⎝,可使G 到景点Q 的距离最近.……………………6分 20.(1)由()()f x t tf x +=-得,()3(3)k x t t kx ++=-+对R x ∈恒成立,即()(3)30k kt x k t ++++=对R x ∈恒成立,则(1)0(3)300k t k t t +=⎧⎪++=⎨⎪≠⎩,……………………2分即01k t =⎧⎨=-⎩. ……………………………………………………………………………4分(2)当[0,2]x ∈时,2()(2)1(1)[0,1]f x x x x =-=--∈,……………………………2分 当[2,0]x ∈-时,即2[0,2]x +∈, 由(2)2()f x f x +=-得1()(2)2f x f x =-+,则1()[,0]2f x ∈-,……………………3分 当[2,4]x ∈时,即2[0,2]x -∈,由(2)2()f x f x +=-得()2(2)f x f x =--,则()[2,0]f x ∈-, ……………………4分 当[4,6]x ∈时,即2[2,4]x -∈,由()2(2)f x f x =--得()[0,4]f x ∈, …………………………………………………5分 综上得函数()f x 在闭区间[0,6]上的值域为[2,4]-. ……………………………………6分 (3)(证法一)由函数()f x 的值域为[,]a a -得,()f x t +的取值集合也为[,]a a -,当0t >时,()()[,]f x t tf x ta ta +=-∈-,则ta ata a-=-⎧⎨=⎩,即1t =.……………………2分由(1)()f x f x +=-得(2)(1)()f x f x f x +=-+=,则函数()f x 是以2为周期的函数. …………………………………………………………3分当0t <时,()()[,]f x t tf x ta ta +=-∈-,则ta ata a-=⎧⎨=-⎩,即1t =-.……………………5分即(1)()f x f x -=,则函数()f x 是以1为周期的函数.故满足条件的函数()f x 为周期函数. ………………………………………………………6分 (证法二)由函数()f x 的值域为[,]a a -得,必存在0R x ∈,使得0()f x a =, 当1t >时,对1t >,有00()()f x t tf x ta a +=-=-<-,对1t <-,有00()()f x t tf x ta a +=-=->,则1t >不可能;当01t <<时,即11t >,001()()f x f x t t=-+, 由()f x 的值域为[,]a a -得,必存在0R x ∈,使得0()f x t a +=, 仿上证法同样得01t <<也不可能,则必有1t = ,以下同证法一.21. (1)①③是双底数列,②不是双底数列;……………………………………………4分 (2)数列{}n a 当150n ≤≤时递减,当50n >时递增,由双底数列定义可知5051a a =,解得1m =-,……………………………………………2分 当150n ≤≤时,数列成等差,()29910121002n n n S n n +-==-,当50n >时,()()()22501005050212121n n S -=⨯-+-+-++-L 4922548n n -=-+, ………………………………………5分综上,249100,15022548,50n n n n n S n n -⎧-≤≤=⎨-+>⎩.……………………………………………………6分(3)()()1199331010n nn n a a kn k kn ++⎛⎫⎛⎫-=++-+ ⎪⎪⎝⎭⎝⎭,()()93931010nkn k kn ++⎛⎫⎛⎫=-+⎪ ⎪⎝⎭⎝⎭, ()19931010nk kn ⎛⎫=-- ⎪⎝⎭, ……………………………………2分 若数列{}n a 是双底数列,则93k kn -=有解(否则不是双底数列), 即 39n k-=,………………………………………………………………………3分 得16k n =⎧⎨=⎩或38k n =⎧⎨=⎩或112k n =-⎧⎨=⎩或310k n =-⎧⎨=⎩故当1k =时,()13961010nn n a a n +⎛⎫-=- ⎪⎝⎭,当15n ≤≤时,1n n a a +>;当6n =时,1n n a a +=;当7n ≥时,1n n a a +<; 从而 12345678a a a a a a a a <<<<<=>>L ,数列{}n a 不是双底数列; 同理可得:当3k =时,12891011a a a a a a <<<=>>>L L ,数列{}n a 不是双底数列; 当1k =-时,1212131415a a a a a a >>>=<<<L L ,数列{}n a 是双底数列; 当3k =-时,1210111213a a a a a a >>>=<<<L L ,数列{}n a 是双底数列; …………………………………………………………………………………………………7分 综上,存在整数1k =-或3k =-,使得数列{}n a 为双底数列.…………………………8分。

相关文档
最新文档