DEM数据获取方法

合集下载

测绘技术中的DEM数据处理技巧

测绘技术中的DEM数据处理技巧

测绘技术中的DEM数据处理技巧导言:数字高程模型(Digital Elevation Model,DEM)是测绘技术中非常重要的数据之一。

它可以反映地表的高程信息,并为地理信息系统(Geographic Information System,GIS)分析和应用提供基础。

本文将就测绘技术中的DEM数据处理技巧展开论述,包括DEM数据获取、去噪、插值和精度评定等方面。

一、DEM数据获取DEM数据的获取方式多种多样,常见的有激光雷达测高技术、航测影像解译以及地面测量等。

激光雷达测高技术是目前较为先进的获取DEM的方法之一,它通过激光束发射装置测量地面的高程信息,并将其转化为数字数据。

航测影像解译是基于影像分析的方法,通过解译卫星或航空影像来获取地表高程信息。

地面测量是一种传统的获取DEM数据的方法,通过在地面上设置测量点,使用测距仪等设备进行测量,获取地表的高程信息。

二、DEM数据去噪在DEM数据获取的过程中,由于测量设备或数据传输过程中的误差,可能会产生噪音数据。

为了提高DEM数据的质量,需要进行数据去噪的处理。

常用的DEM数据去噪方法有平滑滤波、统计滤波和小波滤波等。

平滑滤波方法通过对DEM数据进行平均运算,减少噪音的干扰,使地形表面更加平缓。

统计滤波方法则是基于统计学的原理,根据DEM数据的统计特征来判断噪音数据并进行去除。

小波滤波是一种将信号分解为不同尺度的波形来处理噪音的方法,它可以根据数据的特征进行自适应的滤波处理。

三、DEM数据插值DEM数据插值是在已有的离散高程数据点上,通过一种数学方法来推测其他位置的高程值。

常用的DEM数据插值方法有逆距离权重插值法、克里金插值法和样条插值法等。

逆距离权重插值法是最简单的插值方法之一,它根据待插值点与已知点之间的距离来赋予权重,然后通过加权平均的方式计算待插值点的高程值。

克里金插值法则是一种基于统计模型的插值方法,它通过对已知点的高程值进行加权平均来计算待插值点的高程值。

测绘技术中的DEM数据处理方法和技巧

测绘技术中的DEM数据处理方法和技巧

测绘技术中的DEM数据处理方法和技巧随着科技的发展,遥感技术在测绘领域中扮演着至关重要的角色。

其中,通过数字地形模型(DEM)数据进行地理信息系统(GIS)分析成为了测绘专家们的常用方法。

DEM数据可以提供高程和地形信息,进而为地质勘探、水资源管理、土地利用规划等领域提供支持。

然而,在处理DEM数据时,我们需要注意一些方法和技巧,以确保数据的准确性和可信度。

首先,数据获取是进行DEM数据处理的第一步。

目前,DEM数据的获取主要有两种方法:高空航拍与地面测量。

高空航拍通常利用卫星或航空器获取,获取到的数据一般分为分辨率较高的全球DEM和分辨率较低但更详细的局部DEM。

地面测量则需要使用专业的测绘仪器,如全站仪或GPS设备,在地面上进行精确测量。

在数据获取时,我们需要注意选择合适的方法,以获取高质量的DEM数据。

接下来是数据处理的步骤。

首先,我们需要对采集到的数据进行预处理。

这一步骤包括数据的去噪和纠正等工作。

由于采集的DEM数据可能存在噪声和误差,我们需要使用滤波算法进行去噪处理,以剔除异常值和噪声干扰。

同时,我们还需要进行数据的纠正,比如校正大气效应和几何变形等,以提高数据的质量和准确性。

在数据预处理完成后,接着是数据分析和建模。

在DEM数据处理中,常见的分析工具有可视化分析、坡度分析、等高线提取等。

可视化分析可以将DEM数据转化为可视化的三维地形模型,以便更好地观察地形特征和变化趋势;坡度分析可计算地表的坡度情况,为土地利用规划和自然灾害预测提供数据支持;等高线提取则可以将DEM数据转化为等高线图,以呈现地形高程变化的分布情况。

通过这些分析工具,我们可以更好地理解和利用DEM数据。

此外,在DEM数据处理中,还有一些常用的技巧和方法。

例如,局部放大和缩小是一种常用的方法,可以用来更详细地观察特定区域的地形特征和变化。

同时,数据插值方法也是必不可少的技巧之一。

由于DEM数据的采样间隔可能不均匀,我们需要使用插值方法来填补数据空缺,以得到连续和平滑的DEM数据。

DEM数据获取方法

DEM数据获取方法

DEM数据获取方法Digital Elevation Model(DEM)是用于描述地球表面高程的数字模型。

它是地理信息系统(GIS)和遥感技术中常用的数据类型之一、DEM数据通常由遥感影像获取,主要有以下三种方法。

1.激光雷达(LiDAR)激光雷达是一种主动遥感技术,通过发射激光脉冲并测量其返回时间以计算地表高程。

激光雷达设备可安装在航空飞机、直升机或地面车辆上。

它能够快速、高效地获取大面积的DEM数据。

使用激光雷达获取DEM数据的过程包括以下几个步骤:a)激光雷达设备通过发射激光脉冲测量地表的反射时间,以计算出地表的高程值。

b)激光雷达采集的原始数据经过处理和校正,生成原始的点云数据集。

c)点云数据经过滤波和分类处理,提取地面点和非地面点。

d)利用地面点生成DEM数据,通过插值算法填充缺失的点,生成完整的DEM数据。

2.光学影像解算光学影像解算是一种 passsive 遥感技术,它通过从卫星或无人机获取的影像数据来推断地表高程。

这些影像数据通常包括航空摄影影像或卫星遥感影像。

利用光学影像解算获取DEM数据的过程大致如下:a)获取高分辨率的遥感影像数据。

b)对影像数据进行预处理,包括去除辐射校正、去除大气校正等步骤。

c)提取影像中的地物特征,如建筑物、道路、水体等。

d)利用地物特征进行图像匹配,通过计算图像特征之间的几何关系,计算地物的地面高程。

3.SAR干涉测量SAR干涉测量是一种基于合成孔径雷达(SAR)数据的遥感测量方法。

它通过测量不同时间的SAR数据之间的相位差来推断地表的高程变化。

SAR干涉测量的过程包括以下几个步骤:a)获取不同时间、不同视角的SAR影像数据。

b)对影像数据进行预处理,包括校正、几何校正等步骤。

c)对两幅SAR影像进行干涉处理,计算相位差。

d)根据相位差计算地表的高程变化。

除了以上三种方法,还有一些其他方法可以获取DEM数据,如GPS控制点测量、地形测量仪、卫星测高仪等。

dem提取高程

dem提取高程

dem提取高程
DEM(数字高程模型)是一种用于表示地球表面高程的数学
模型。

提取DEM可以通过测量地面高程数据,例如地形测量仪、卫星遥感或激光雷达扫描,然后进行数据处理和分析来生成高程模型。

以下是通常使用的一些方法:
1. 数字化测图:使用测量仪器,如全站仪或GPS,测量地面
高程数据,并将其转换成数字形式。

这可以通过将地形图纸手工绘制到计算机软件或利用现代地面测量设备进行自动数据采集来完成。

2. 卫星遥感:利用卫星图像数据,如光学或合成孔径雷达(SAR),根据光度、回波时间或其他传感器测量高程信息的属性来提取高程数据。

这可以通过图像处理和反演算法来实现。

3. 激光雷达扫描:使用激光雷达设备测量地面上点的精确位置和高程。

通过发送激光脉冲并测量其回波时间来获得目标的距离,然后结合GPS定位数据来确定目标点的位置和高程。

4. 插值算法:将已知高程点的数据点之间的高程值进行插值,以便在整个区域内生成连续的高程模型。

常用的插值算法包括反距离权重插值、克里金插值和样条插值等。

以上是提取DEM的一些常见方法,这些方法可以根据实际应
用和数据可用性的不同进行组合使用。

提取的DEM数据可用
于各种领域,例如地形分析、水文模拟、城市规划和环境研究等。

DEM数据获取方法

DEM数据获取方法

DEM数据获取⽅法⼀、DEM数据获取⽅法:定义:地形图指的是地表起伏形态和地物位置、形状在⽔平⾯上的地物和地貌按⽔平投影的⽅法,并按照⼀定的⽐例缩绘到图纸上,这种图称为地形图。

特点:(1)具有统⼀的⼤地坐标系统的⾼程系统(2)具有完整的⽐例尺系列和分幅编号系统:国家基本地形图含1:5千、1:1万、1:2:2.5/1:5万、1:10万、1:25万、1:50万、1:100万8种⽐例地形图。

缺点:(1)地形图现势性较差:纸质地形图制作⼯艺复杂,更新周期⽐较长,⼀般不及时反映局部地形地貌的变化情况(2)地形图存储介质单⼀,容易变形:传统地形图多为纸质存储介质,存放环境(温湿度)导致地形图图幅产⽣不同程度的变形,这种变形表现在不同⽅向上的长度变形和图幅⾯积上的变形(3)地图精度有限:地图精度决定这地形图对实际地形表达的可信度,与地形图⽐例尺、等⾼线密度(由等⾼距表⽰),成图⽅法有关。

不同⽐例尺的地形图,其所表⽰的⼏何精度和内容详细程度有很⼤的差别。

在应⽤DEM的时候要考虑DEM分辨率、存储格式、数据精度和可信度等因素。

⼆、DEM数据采样策略与采样⽅法:采样:确定在何处需要测量点的过程,这个过程有三个参数。

决定:点的分布、点的密度和点的精度。

1.采样数据的分布:由数据位置和结构(分布)来确定,指数据点的分布形态位置有地理坐标系统中经纬度或者⽹格坐标系统中坐标决定。

结构的形式很多,因地形特征、设备、应⽤的不同⽽不同。

2.数据的密度:是指采样数据密集程度,与研究区域的地貌类型和地形复杂程度有关。

⽤于刻画地形形态所必须的最少的数据点。

表⽰⽅式:相邻的两点之间的距离、单元⾯积内的点数、截⽌频率(采样数据所能表⽰的最⾼频率)、单位线段上的点数等。

采样距离:相邻两点之间的距离,也称采样间隔。

·通常数字加单位来表⽰,如采样距离为20⽶,表⽰规格⽹分布的采样数据·另⼀种表⽰法是单位⾯积内的点数,如每平⽅⽶500点,描述随机分布的采样数据·描述数据分布是沿等⾼线或特征等线状分布采样点,常⽤单位线段上的点数,如每⽶2点3.数据的精度:是指数据点本⾝所具有的精确度,是数据获取过程中各种不同类型误差的综合反映采样数据精度与数据源、数据的采集⽅法和数据采集的⼀起密切相关。

dem数据是什么

dem数据是什么

dem数据是什么DEM数据是什么摘要:高程数据模型(Digital Elevation Model,DEM)是地理空间数据的重要组成部分,它描述了地球表面的海拔高度和地形特征。

本文将详细介绍DEM数据的定义、获取方法、应用领域以及常见的DEM数据源,旨在帮助读者更好地理解和利用DEM数据。

一、定义:DEM数据是一种以离散点的方式描述地球表面高程的数学模型。

简单来说,它将地球表面划分为一系列规则的网格或栅格,每个网格点都对应一个海拔高度值。

根据DEM数据的精度不同,这些高度值可以表示数米到数百米之间的范围。

二、获取方法:1. 激光雷达测量:激光雷达是获取高精度DEM数据的主要工具之一。

它通过发射激光束并测量返回的反射时间来计算地表距离,进而确定地表的高程数据。

2. 光学影像测量:利用航空和卫星遥感技术获取的光学影像也可以用来生成DEM数据。

通过对影像进行几何校正和高程解算处理,可以得到地表的高程信息。

3. 陆地测量:地理测量工程师的陆地测量测量技术也可用于获取DEM数据。

通过使用全站仪、GPS等设备进行测量,再通过数据处理生成DEM数据。

三、应用领域:DEM数据在地理信息系统(GIS)和遥感应用中有着重要的作用,广泛应用于以下领域:1. 地形分析:DEM数据可以用来分析地形特征,如山脉、河流、湖泊等。

通过对DEM数据进行计算和建模,可以获得水文模型、洪水模型等,为地质灾害的预测和防范提供支持。

2. 地质勘探:DEM数据可以用于地质勘探,帮助揭示地下的地质构造和地下水资源分布情况。

通过对DEM数据进行分析和解译,可以确定矿产资源的潜力,为矿产勘探和开采提供指导。

3. 城市规划:DEM数据可以用来构建城市数字地形模型,为城市规划和基础设施建设提供支持。

通过对DEM数据进行可视化和分析,可以评估城市的景观特征,优化城市的道路和建筑布局。

4. 农业和生态研究:DEM数据可以用来研究农田的排灌系统和土地利用规划。

数字高程模型的数据获取方法

数字高程模型的数据获取方法

InSAR系统用于地表三维重建的几何原理。图 干预DEM生成过程。
3.5 从地形图采集数据的方法
对地形图要素进行数字化处理,用某种数据建模方法内插DEM。 坐标转换的后台处理。
3.5.1 手扶跟踪数字化
流方式 点方式
3.5.2 扫描数字化和栅格矢量化
图3.5.3 DLG〔数字线划地图〕 图
3.6 从地面直接采集数据的方法
3.1.1 影像
航空
3.1 DEM的数据来源
航天:传统的立体扫描仪,精度低,适合小比例尺DEM 高分辨率影像、SAR技术、激光扫描技术等,精度提高。
3.1.2 地形图
现势性问题,地表变化快,无法及时更新。 精度问题,与比例尺有关。
3.1.3 地面本身及其他数据源
地面直接采集,精度高但适合小范围。 气压测高法、水文站、气象站、地质勘探和重力测量等,范围大,精度低。
商业星载SAR系统获取干预数据:欧空局的ERS-1,ERS-2、日本的 JERS-1和加拿大的RADARSAT-1等。
NASA/JPL屡次短期的民用卫星或航天飞机SAR成像试验,SEASAT SAR、 SIR-A、SIR-B、SIR-C/射一个椭圆锥状的微波脉冲束,椭圆锥的轴垂直于 平台飞行方向,在垂直于轨道面内,波束高度角与雷达天线的宽度有关; 在平行于轨道面内的椭圆锥顶角与雷达天线的长度有关。〔见公式和 〕 椭圆锥状的微波脉冲束在地表形成一个辐照带(footprint),可看作由许多 小的空间面元组成,每一个面元将雷达脉冲后向散射回去。〔图3.3.3)
X L 2
雷达影像的每一像素不仅包含灰度值,而且包含与雷达斜距〔一般取样 到垂直于平台飞行方向的斜距上〕有关的相位值。 InSAR主要是基于这些相位数据的处理来提取有用信息。

DEM数据获取方法资料

DEM数据获取方法资料

DEM数据获取方法资料地形高程模型(Digital Elevation Model,简称 DEM)是地理信息系统(Geographical Information System,简称 GIS)中一种常用的地理数据类型,表示地球表面的高程信息。

DEM数据广泛应用于地形分析、自然资源管理、地质研究、水文模拟、城市规划等领域。

本文将介绍DEM数据的获取方法。

一、遥感获取方法:1.光学遥感技术:利用航空或卫星搭载的相机,采集地表的光学图像。

通过影像匹配、三角测量等技术手段,可以获取DEM数据。

光学遥感技术通常分为两种:一种是航空摄影,一种是卫星遥感。

航空摄影主要采用低空飞行的方式,分辨率较高,适用于较小范围的地形获取;卫星遥感则可以覆盖大范围的地区,但分辨率较低。

2.雷达遥感技术:利用雷达在地表和物体间相互反射,测量地形的高程信息。

雷达遥感技术可以在云层和夜间等恶劣条件下工作,具有全天候、全天时的优势。

雷达遥感数据可以通过反射、多频和干涉等技术处理,得到高精度的DEM数据。

3.激光遥感技术:利用激光束在地表和物体间反射,测量地面的距离信息。

激光遥感技术通常通过激光测距仪获取地表的高程信息,然后通过GPS定位和惯性测量单元确定传感器的位置和姿态。

激光遥感技术具有高精度、高分辨率和高效率的特点,已成为获取DEM数据的主流方法。

二、测量获取方法:1.全站仪测量:全站仪是一种测量仪器,可以通过测量地面上的点的三维坐标,获取地面的高程信息。

全站仪测量通常需要精确的测量点布设和复测,适用于小范围和高精度的地形获取。

2.扫描测量:利用扫描仪在地面上扫描并记录物体表面的形状,然后通过数据处理,得到地面的高程信息。

扫描测量可以采用激光扫描仪、光学扫描仪等不同的仪器,可以获得高分辨率和高精度的DEM数据。

3. GNSS测量:GNSS(全球导航卫星系统)是通过卫星系统提供全球定位和时间服务的系统,包括GPS(全球定位系统)、GLONASS(格洛纳斯)和Galileo(伽利略)等多个系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DEM数据获取方法
DEM(Digital Elevation Model)是地球表面的数字高程模型,用于
获取地理数据中的地面高程信息。

DEM数据的获取方法主要有以下几种:
1.雷达遥感测量方法:通过搭载在飞机或卫星上的雷达系统,发射电
磁波束到地面并接收反射回来的波束,通过测量波束的反射时间和强度,
可以得到地面的高程信息。

这种方法具有全天候、全地形、大范围和高精
度等优点,但其成本较高。

2.光学遥感测量方法:通过卫星或无人机搭载的相机,拍摄地表影像,然后利用几何纠正和影像匹配技术,可以提取出地表的高程信息。

这种方
法比较经济实用,但受到云雾和遮挡物的影响,精度相对较低。

3.GPS测量方法:利用全球定位系统(GPS)接收器接收卫星发射的
信号,通过计算信号的传播时间和接收器的位置信息,可以确定接收器所
在位置的地面高程。

这种方法具有实时性和高精度,但需要在采集点周围
建立GPS基准站网,并受到天线高度、大气折射等影响。

4.内插方法:通过已知高程点的坐标和高程值,应用一定的数学模型
和插值算法,推测其他未知点的高程值。

常用的插值算法有三角网内插、
反距离加权法和克里金法等。

这种方法用于填补高程采样不均匀的空白区
域或增加数据的空间分辨率。

5.大地测量方法:使用传统的测量仪器(如全站仪、水准仪、测距仪等)对地面各点进行测量,然后计算出各点的坐标和高程信息。

这种方法
精度较高,适用于小范围的高程测量,但测量效率相对较低。

6.水文模型方法:通过对河流水位、水流速度等水文数据的观测和测量,结合河床地貌特征和水力学原理,推算出河床高程信息。

这种方法适用于河谷地形数据的获取,但对于非水流区域的地形数据获取不适用。

在DEM数据的获取过程中,需要注意以下几个问题:
1. 数据源的选择:选择合适的DEM数据源是获取高质量DEM数据的重要保证。

根据实际需求和应用场景,可以选择高分辨率的商业卫星(如WorldView、QuickBird),或者公开的DEM数据集(如SRTM、ASTER GDEM)等。

2.数据预处理:获取原始数据后,需要进行预处理操作,包括坐标系转换、去噪、填洼处理、空白填补等。

这些操作可以提高DEM数据的质量和精度,使其更适用于后续的分析和应用。

3.数据精度评估:在获取DEM数据后,需要对数据进行精度评估,以验证其可靠性和准确性。

常用的评估方法包括与其他已知高程数据对比、计算坡度和坡向等。

4.数据后处理:根据实际需求,对获取的DEM数据进行后处理操作,如地形分析、体积计算、地表特征提取等。

后处理可以更好地满足用户对高程数据的需求,并进一步优化数据的应用效果。

总之,DEM数据的获取方法涉及多种遥感技术和地面测量技术,不同方法适用于不同的场景和需求。

在实际操作中,需要综合考虑数据质量、成本和时间等因素,选择合适的方法和数据源,进行数据获取和处理。

相关文档
最新文档