高等数学 常微分方程
高等数学常微分方程讲义,试题,答案

高等数学常微分方程讲义,试题,答案常微分方程§4.1 基本概念和一阶微分方程(甲)内容要点一、基本概念1、常微分方程和阶2、解、通解和特解3、初始条件4、齐次线性方程和非齐次线性方程二、变量可分离方程及其推广1、dyp(x)Q(y)dx(Q(y) 0) 2、齐次方程:dy dxy f x三、一阶线性方程及其推广1、dydyP(x)y Q(x) 2、P(x)y Q(x)y dxdx( 0,1)四、全微分方程及其推广(数学一)1、P(x,y)dx Q(x,y)dy 0,满足Q P2、P(x,y)dx Q(x,y)dy 0,五、差分方程(数学三)(乙)典型例题例1、求y x22Q p (RQ) (RP)但存在R(x,y),使x y x ydydyxy的通解。
dxdx解:y (x xy)22dy0dxydyy2 x d__y x2 y1 x2yduu2令u,则u x udx x(1 u)du 0xdxu 11 udxdu u x C1 ln|xu| u C1例2C1 uce, y cedyy的通解d__ y4uyx求微分方程d__ y4dx1解:此题不是一阶线性方程,但把x看作未知函数,y看作自变量,所得微分方程即x y3是一阶dyydyy11dy 14 dy 133yydy C y Cy 线性方程P(y) ,Q(y) y x e yey 3例3设y e是xy p(x)y x的一个解,求此微分方程满足yx ln2 0的特解xx解:将y e代入微分方程求出P(x) xe先求出对应齐次方程x,方程化为dy(e x 1)y 1 dxx xdy(e x 1)y 0的通解y cex e根据解的结构立刻可得非齐次方程通解y ex cex e dx再由yx ln2 0得2 2ec 0,c e例4设1212故所求解y e exx e x12满足以下件F(x) f(x)g(x),其中f(x),g(x)在( , )内f (x) g(x),g (x) f(x),且f(0) 0,f(x) g(x) 2ex(1)求F(x)所满足的一阶微分方程(2)求出F(x)的表达式解:(1)由F (x) f (x)g(x) f(x)g (x) g2(x) f2(x) [f(x) g(x)]2 2f(x)g(x) (2ex)2 2F(x) 可知F(x)所满足的一阶微分方程为F (x) 2F(x) 4e2x (2)F(x) e2dx4e2xe 2dxdx c e 2x 4e4xdx c e2x ce 2x将F(0) f(0)g(0) 0代入,可知c 1 于是例52F(x) e2x e 2xdy2(1 y)的通解求微分方程(y x) xdxsec2udusec3u 解:令y tanu,x tanv, 原方程化为(tanu tanv)secv2secvdv化简为sin(u v)dudzdudz 1 再令z u v,则1,方程化为sinz 1 sinz dvdvdvdv sinz(sinz 1) 1dz dv c, 1 sinz 1 sinzdz v c,1 sinzv c21 sinz1 sinz z v c 2coszz tanz secz v c z最后Z再返回x,y,v也返回x,即可。
高等数学(第三版)课件:常微分方程的基本概念

y 1 (e2x e2x ). 4
y' |xx0 y'0 , 或 y'(x0 ) y'0 , 其中x0 , y0 , y'0都是已知值. 一般地,对于n阶微分方程需给出n个初值条件:
y(x0 ) y0,y'(x0 ) y'0 ,,y(n1) (x0 ) y0(n1) .
4.微分方程的解的几何意义 微分方程的解的图形称为微分方程的积分曲线.通
(11)
的特解.
解 将函数y C1e2x C2e2x分别求一阶及二阶导数, 得 y' 2C1e2x 2C2e2x,
y" 4C1e2x 4C2e2x,
把它们代入微分方程(10)的左端,得
y" 4 y 4C1e2x 4C2e2x 4C1e2x 4C2e2x 0
所以函数y C1e2x C2e2x是所给微分方程(10)的解. 又因这个解中含有两个独立的任意常数,任意常数
微分方程的基本概念
一、引例 二、微分方程的一般概念
一、引例
例1 一曲线通过点 (1,2),且该曲线上任意点P(x,y)处的切
线斜率等于该点的横坐标平方的3倍,求此曲线的方程.
解 设所求曲线的方程为y y(x).由导数的几何意义得
dy 3x2 , d(1,2),故y y(x)应满足条件:
解 设物体在时刻t所经过的路程为s s(t), 根据牛顿 第二定律可知,作用在物体上的外力mg(重力) 应等于物体的质量m 与加 速度的乘积,于是得
m d2s mg,即 d2s g
(5)
dt 2
dt 2
其中g是重力加速度.
将上式改写为
d dt
ds dt
g,
因此可得
高数微分方程公式大全

高数微分方程公式大全微分方程是数学中的重要概念,包含了许多公式和方法。
下面我将从不同角度介绍一些常见的高等数学微分方程公式。
1. 一阶微分方程:可分离变量方程公式,dy/dx = f(x)g(y),可通过分离变量并积分求解。
齐次方程公式,dy/dx = f(x)/g(y),可通过变量代换或分离变量求解。
线性方程公式,dy/dx + P(x)y = Q(x),可通过积分因子法或常数变易法求解。
2. 二阶微分方程:齐次线性方程公式,d²y/dx² + P(x)dy/dx + Q(x)y = 0,可通过特征方程法求解。
非齐次线性方程公式,d²y/dx² + P(x)dy/dx + Q(x)y = f(x),可通过常数变易法或待定系数法求解。
欧拉方程公式,x²d²y/dx² + pxdy/dx + qy = 0,可通过变量代换或特征方程法求解。
3. 高阶微分方程:常系数线性齐次方程公式,andⁿy/dxⁿ +an⁻¹dⁿ⁻¹y/dxⁿ⁻¹ + ... + a1dy/dx + a0y = 0,可通过特征方程法求解。
常系数线性非齐次方程公式,andⁿy/dxⁿ +an⁻¹dⁿ⁻¹y/dxⁿ⁻¹ + ... + a1dy/dx + a0y = f(x),可通过常数变易法或待定系数法求解。
常系数二阶齐次方程公式,d²y/dx² + py' + qy = 0,可通过特征方程法求解。
4. 常见的变换和公式:指数函数变换,对于形如y = e^(kx)的方程,可通过变量代换进行求解。
对数函数变换,对于形如y = ln(x)的方程,可通过变量代换进行求解。
三角函数变换,对于形如y = sin(kx)或y = cos(kx)的方程,可通过变量代换进行求解。
常用公式,如指数函数的导数公式、对数函数的导数公式、三角函数的导数公式等。
常微分方程在高数学科中的重要作用与应用

常微分方程在高数学科中的重要作用与应用常微分方程(Ordinary Differential Equations,ODE)是一类数学方程,描述了未知函数的导数与自变量之间的关系。
在高等数学中,常微分方程是一个重要的数学分支,具有广泛的应用领域。
在高数学科中,常微分方程的重要作用体现在以下几个方面:1. 物理学中的应用常微分方程广泛应用于物理学领域,以描述自然界中的各种动力学过程。
例如,牛顿第二定律可以用常微分方程来描述,通过求解运动方程,我们可以精确地预测物体在各种条件下的运动。
另外,光学、热力学、电动力学等领域也利用常微分方程建立物理模型,从而推导出系统的行为规律。
2. 生物学中的应用常微分方程在生物学领域中有着广泛的应用。
生物学家可以利用常微分方程来描述生物体内各种生命周期的变化和生物群体的动态行为。
例如,人口动态模型、免疫系统模型等都可以通过常微分方程加以描述,进而理解生物系统中的行为和相互作用。
3. 工程学中的应用工程学中的很多问题可以通过常微分方程进行建模和求解。
例如,电路中的电流和电压变化可以通过常微分方程来描述,并进而分析电路中的稳定性和响应特性。
此外,工程学中的动力学问题、机械振动问题和控制系统的建模等也离不开常微分方程的应用。
4. 经济学中的应用常微分方程在经济学中也有重要的应用。
例如,经济增长模型、消费行为模型等都可以通过常微分方程来建立。
这些模型可以揭示经济体制中的供求关系、市场波动以及经济增长的趋势,为经济政策的制定提供重要依据。
除了以上几个领域,常微分方程还可以在人口学、地理学、环境科学等学科中找到广泛的应用。
例如,人口增长模型可以通过常微分方程描述,地球温度变化模型也可以用常微分方程建立。
在实际应用中,常微分方程的求解往往是比较困难的,需要借助数值方法或近似方法来求解。
数值解法如欧拉法、龙格-库塔法等可以在计算机上进行求解,而近似解法如级数解、变量分离法等则可以对一些特殊的常微分方程进行求解。
高等数学6章常微分方程

则
y
u x e
P x dx
uP x e
P x dx
代入(1)中有:
uxeP xd xuxP xeP xdxPxuxePxdx Qx
Qxuxe
Pxdx
,即:u
x
Q x e
P xdx
ux
Qxe
Pxdx
d
xC,从而,
y uxe Pxdx
e
P xdx
Q x e
可化为
y x
的函数
y x
,即:
f
x,
y
y x
,称
该方程为齐次方程.
如: x y y 2 d x x 2 2 x d y 0 y
可化为:dy
dx
xy y 2 x2 2xy
y x
y x
1 2
2
y x
由齐次方程的形式:dy
dx
y x
得其解法为:
对于
dy dx
y x
,令 u
当 y 0 时,原方程有解: y 0 当 p 0 ,即 y 0 时,原方程有解: y C
显 然 此 二 解 是 (*) 式 分 别 当 C2 0 和 C2 C,C1 0 时的特殊情形.
将
d2x dt 2
,
x
代入方程
d2x dt 2
k
2
x
0
得:
k2C 1co k ts C 2sikn tk 2 C 1co k s tC 2sikn t 0
即:x
C1
cos kt
C2
sin
kt
是
d2x dt 2
k
2
x
高等数学11单元第八章常微分方程

授课11单元教案第一节微分方程的基本概念教学过程一、引入新课初等数学中就有各种各样的方程:线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。
这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后求取方程的解。
方程的定义:含有未知数的的等式。
它表达了未知量所必须满足的某种条件。
根据对未知量所施行的数学运算的不同,我们可以将方程分成许多不同的类型来研究。
引例1二、新授课1、微分方程的定义:含有未知函数的导数或微分的方程,称为微分方程如果未知函数是一元函数的微分方程称为常微分方程式;如果未知函数是多元函数的微分方程式称为偏微分方程。
例如,22;d yx y x dx=+=dx 和是常微分方程dyzxy x∂=∂是偏微分方程. 微分方程中未知函数的最高阶导数的阶数,称为微分方程式的阶。
一阶微分方程的一般形式为 (,,)0F x y y '= 例如:2354()0y x y x '+-=,2()20dy dyx y x dx dx-+=都是一阶微分方程。
二阶微分方程的一般形式为 (,,,)0F x y y y '''= 例如:222sin 0d y dyyx dx dx-+=,2223()(2)y k y '''=+都是二阶微分方程。
类似可写出n 阶微分方程的一般形式 ()(,,,,)0n F x y y y y '''=。
其中F 是n +2个变量的函数。
这里必须指出,在方程()(,,,,)0n F x y y y y '''=中,()n y 必须出现,而,,,x y y '(1),n y y -''等变量可以不出现。
例如()()n y f x =也是n 阶微分方程。
例1 .指出下列方程中哪些是微分方程,并说明它们的阶数:122222222(1) 0; (2) 2;(3) sin 0; (4) 3;(5) '''3; (6) ;(7) '''(')0. t dy y dx y y x d yxdy y xdx y e dt yy y x dy dx x y xy y -==++=+=+==+-=2、微分方程的解能够满足微分方程的函数都称为微分方程的解 求微分方程的解的过程,称为解微分方程例如,函数3x 16是微分方程22d y x dx =的解。
《高等数学》第6章常微分方程

y x2 4 4 x2
想一想
一电机开动后,每分钟温度升高10 C,同时将按冷却定律不断发散
热量.设电机安置在15 C恒温的房子里,求电机温度与时间t的函
数关系.
6.3 二阶常系数线性微分方程
了解二阶常系数线性微分方程的 概念及分类;掌握二阶常系数齐 次、非齐次线性微分方程的求解 方法及分类;能够灵活运用公式 解决实际问题.
Cx x 1,两边积分得 : Cx 1 x 12 C.因此原方程通
2 解为 :
y
1 2
x
12
C x
12
1 2
x
14
Cx
12
(C为任意常数).
2. 求微分方程y 2 y x满足条件y2 0的特解.
x
解:先解方程y 2 y 0 dy 2 dx,两边积分得y Cx2.
方程. 这类方程的求解一般分为两步:
1 分离变量:化原方程为 dy f (x)dx的形式;
g( y)
2 两边积分: gd(yy) f (x)dx得到x与y的一个关系式,即通解.
例题
1. 求微分方程 dy 2xy的通解.
dx
解:分离变量为dy
y
2 xdx, 两边积分得
dy y
2xdx ln
同时,C1,C2为任意常数,故y C1ex C2e2x是微分方程的通解.
将条件代入通解中, 得CC11
C2 0 2C2 1
CC12
1 .
1
故所求特解为: y ex e2x.
想一想
建设绿地、防止土地沙漠化的环保意识已成为人 们的共识.现已查明,有一块土地正在沙化,并且 沙化的数量正在增加,其增加的速率与剩下的绿地 数量成正比.有统计得知,每年沙化土地的增长率 是绿地的 1 ,现有土地10万亩,试求沙化土地与
《高等数学》第6章常微分方程知识讲解

微分方程的通解
如果微分方程的解中含有任意常数,且相互独立的任意
常数的个数与微分方程的阶数相同,则这样的解称为微
分方程的通解.
例 函 S 数 0 .4 t2 ct c是微 d 2 S 分 0 .8 的 方 .通 程
12
d2 t
注 形y如 n fx的微分 ,只方 要程 通过 (n次 逐 ), 次积
方程的阶.
例dy 2x是一阶微 ,d2S分 0.8方 都程 是二阶 . 微
dx
d2t
注 通 n 阶 常微分方 为 F 程 (: x,y,y 的 ,y, 一 ,yn)般 0 .
微分方程的解
若把某个函数代入微分方程后,使该方程成为恒等式,则 这个函数称为微分方程的解.
例函数 yx2c和yx2都是微分方 . 程的解
德育目标
培养学生小心求证,大胆应用于实际的综 合能力.
6.1 微分方程的基本概念
通过实际例子;了解微分方程的 概念和微分方程的阶的概念;掌 握求微分方程通解的方法;能够 利用初始条件求微分方程的特解.
6.1.1 实例分析
想一想:
已知曲线上各 斜点 率的 等切 于线 该点 二横 倍 ,且 坐过 标的
0.8,
dt2
且满足条件:t 0时S 0,v dS 40(或写成S(0) 0,S(0) 40). dt
将d2S 0.8两端对x积分,得v dS 0.8t c .再积分一次,得
dt2
dt
1
S 0.4t2 ct c (其中c ,c 都是任意常数 ).将所满足的条件代入
1
2
12
上式,得:c 40,c 0.于是,路程S关于时间t的函数为:
10
时间的函数关系式.
6.2 一阶微分方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【分类2】 一阶微分方程 F ( x, y, y) 0, y f ( x, y);
高阶(n)微分方程 F ( x, y, y, , y(n) ) 0,
y(n) f ( x, y, y, , y(n1) ).
【分类3】线性与非线性微分方程. y P( x) y Q( x), x( y)2 2 yy x 0;
dx yy 2xy 3,
dx x sint t 2 , dt y cos y 1,
线性的; 非线性的.
机动 目录 上页 下页 返回 结束
11
一阶线性微分方程的解法
1). 解齐次方 程
dy P(x)y 0 dx
分离变量
两边积分得 故通解为
ln y P( x)dx ln C
特解: y x2 1
s 0.2t 2 20t
机动 目录 上页 下页 返回 结束
5
主要内容
一阶方程
基本概念
类型
1.直接积分法 2.可分离变量 3.齐次方程 4.可化为齐次 方程 5.全微分方程 6.线性方程
7.伯努利方程
二阶常系数线性 方程解的结构
特征方程法
待 特征方程的根 定 及其对应项
y C e P( x)dx
2). 解非齐次方程
dy P(x) y Q(x) dx
机动 目录 上页 下页 返回 结束
12
用常数变易法: 作变换 y( x) u( x) e P( x)d x , 则 u e P( x)d x P( x) u e P( x)d x P( x) u e P( x)d x Q( x)
n 阶方程的初始条件(或初值条件):
y( x0 )
y0 ,
y( x0 )
y0 ,
,
y(n1) ( x0 )
y (n1) 0
引例1
dy dx
2x
y x1 2
引例2
d2 y dx2
0.4
s t0 0 ,
ds dt
t0
20
通解: y x2 C
s 0.2 t 2 C1t C2
方程中所含未知函数导数的最高阶数叫做微分方程的阶.
一般地 , n 阶常微分方程的形式是F ( x, y, y, , y(n) ) 0
或 y(n) f ( x, y, y, , y(n1) ) ( n 阶显式微分方程)
机动 目录 上页 下页 返回 结束
3
【分类1】常微分方程, 偏微分方程.
对应齐次 方程通解
非齐次方程特解
机动 目录 上页 下页 返回 结束
13
3)、伯努利方程
伯努利(Bernoulli)方程的标准形式
dy P( x) y Q( x) yn (n 0,1) dx
当n 0,1时, 方程为线性微分方程. 当n 0,1时, 方程为非线性微分方程.
机动 目录 上页 下页 返回 结束
7
二、一阶微分方程求解
1、可分离变量微分方程
可分离变量方程
dy dx
f1( x) f2( y)
M1( x) M2( y)dx N1( x) N2( y)d y 0
转化
g( y)dy f ( x)dx
解分离变量方程
两边积分, 得 则有
f (x)dx
1
第十二章
习题课
微分方程
一、微分方程的概念
二、一阶微分方程求解
三、可降阶的高阶微分方程求解
四、常系数齐次线性微分方程求解
机动 目录 上页 下页 返回 结束
2
一、微分方程的概念
含有自变量、未知函数及其导数的方程叫做微分方程 . 常微分方程 (本章内容)
分类 偏微分方程
【例】 y xy, y 2 y 3 y e x , (t 2 x)dt xdx 0, z x y, x
机动 目录 上页 下页 返回 结束
8
2、齐次方程
属于一阶微分方程 y f ( x, y)
1).【定义】形如 dy f ( y ) 的微分方程称为齐次方程. dx x
2). 【解 作变量代换 u y , 即 y xu,
法】
x
dy u x du ,
dx
dx
代入原式
u x du f (u), dx
代回原方程 , 得齐次方程的解 y u0 x.
机动 目录 上页 下页 返回 结束
10
3、线性方程
一阶线性微分方程的标准形式:
dy P( x) y Q( x) dx
当Q( x) 0, 上方程称为齐次的. 当Q( x) 0, 上方程称为非齐次的.
【例如】 dy y x2 ,
【分类4】单个微分方程与微分方程组.
dy dx
3
y
2z,
dz
2y
z,
dx
机动 目录 上页 下页 返回 结束
4
微分方程的解 ---使方程成为恒等式的函数.
通解 --- 解中所含独立的任意常数的个数与方程 的阶数相等.
特解 --- 不含任意常数的解,其图形称为积分曲线.
定解条件 --- 确定通解中任意常数的条件.
即 du f (u) u .
dx
x
可分离变量的方程
机动 目录 上页 下页 返回 结束
9
当 f (u) u 0时,
得
f
du (u)
u
ln C1x ,
即 x Ce(u) , 将 u y 代入,
x
( (u)
f
du (u)
) u
得通解
x
( y)
Ce x ,
当 u0 , 使 f (u0 ) u0 0, 则 u u0是新方程的解,
即
非齐次方程
dቤተ መጻሕፍቲ ባይዱ P(x) y Q(x)
dx
两端积分得 u Q( x) e 对应齐次方程通解
P(
y
x)d
x
dx
Ce
PC( x
)dx
故原方程的通解
y
e
P( x)d
x
Q(
x)
e
P(
x)d
x
d
x
C
即 y Ce P( x)d x e P( x)d x Q( x) e P( x)d xd x
系 数
法 f(x)的形式及其
特解形式
高阶方程
可降阶方程
线性方程 解的结构
定理1;定理2 定理3;定理4
欧拉方程
机动 目录 上页 下页 返回 结束
6
微分方程解题思路
一阶方程
作降 变阶 换
高阶方程
分离变量法 全微分方程 常数变易法
作变换 积分因子
非非 变全 量微 可分 分方 离程
特征方程法
待定系数法
幂级数解法