人教版数学五年级上册第五章简易方程知识点

合集下载

五年级数学上册5简易方程方法及难点归纳新人教版

五年级数学上册5简易方程方法及难点归纳新人教版

解简易方程之方法及难点归纳重点概念:方程,方程的解,解方程,等式的基本性质(详见“知识点汇总”)要点回顾:“解方程”就是要运用“等式的基本性质”,对“方程”的左右两边同时进行运算,以求出“方程的解”的过程。

(方程的解即是如同“X=6”的形式)“解方程”就好像是要把复杂的绳结解开,因此一般要按照“绳结”形成的过程逆向操作(逆运算)。

过程规范:先写“解:”,“=”号对齐往下写,同时运算前左右两边要照抄,解的未知数写在左边。

注意事项:以下内容除了标明的外,全都是正确的方程习题示例,且没有跳步,请仔细观看其中每步的解题意图。

带“*”号的题目不会考查,但了解它们有助于掌握解复杂方程的一般方法,对简单的方程也就自然游刃有余了。

一、一步方程只有一步计算的方程,直接逆运算除未知数外的部分。

难点:当未知数出现在减数和除数时,要先逆运算含未知数的部分。

二、两步方程两步方程中,若是只有同级运算,也可以先计算,后当做一步方程求解。

注意要“带符号移动”,增添括号时还要注意符号的变化。

减法(即两边同加),再逆运算乘法(即两边同时除以),依此类推。

难点:当未知数出现在减数和除数时,要先把含有未知数的部分看作一个整体(可以看成是一个新的未知数),就相当于简化成了一步方程。

因此原方程就可以看成是6+y=10,5y=6和10-y=8的形式。

三、三步方程(一)应用乘法分配律,共同因数是已知数的具有乘法分配律的形式,即两个有共同因数的乘积(或具有相同除数的除法式子)相加或相减,而共同因数(或除数)是已知数的,既可以逆用乘法分配律提取共同因数而将其简化为两步方程,也可以直接算出已知部分而化简。

通过比较可以看出,一般来说提取共同因数的方法确实计算量要少一些,不容易算错。

(二)应用乘法分配律,共同因数是未知数的具有乘法分配律的形式,即两个有共同因数的乘积(或具有相同除数的除法式子)相加或相减,而共难点:隐藏的因数或错看的未知数容易成为此类问题的难点和易错点。

人教版数学五年级上册 第五单元 简易方程 思维导图知识梳理例题精讲易错专练(含答案)

人教版数学五年级上册 第五单元 简易方程 思维导图知识梳理例题精讲易错专练(含答案)

第五单元简易方程(思维导图知识梳理例题精讲易错专练)人教版数学五年级上册一、思维导图二、知识点梳理知识点一:用字母表示数1.用字母表示数:在含有字母的式子里,字母之间的乘号可以记作“·”,也可以省略不写;2.用字母表示运算定律加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc注意:数和字母相乘,省略乘号时,一般把数写在字母前面,数和数相等不能省略乘号。

3.用字母表示复杂的数量关系(1)用字母可以表示数量关系。

(2)将字母的具体数值代入含有字母的式子中,即可求得相应式子的值。

4.化简含有字母的式子并代入数据求值计算含有字母的式子的时候,可以先运用运算定律将含有字母的式子进行化简,再求值。

知识点二:方程的意义及等式的性质1.意义:含有未知数的等式叫做方程。

2.等式的性质性质1:等式两边加上或者减去同一个数,左右两边仍然相等;性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

注意:方程一定是等式,但等式不一定是方程。

知识点三:解方程及实际问题1.使方程左右相等的未知数的值,叫做方程的解,求方程的解的过程叫做解方程;2.根据等式的性质解不同形式的方程;3.把求得的未知数的值代入原方程,看方程左边的值是否等于右边的值,如果相等,所求的未知数的值就是原方程的解,否则就不是。

注意:解方程的依据是等式的性质;解方程时等号要上下对齐。

4.稍微复杂的方程(1)列方程解决实际问题的步骤:首先,找出未知数,用字母X表示;其次,分析实际问题中的数量关系,找出等量关系,列方程;最后,解方程并检验作答。

(2)方程解法与算式解法的区别列方程解决问题时,未知数用字母表示,参与列式,算式解法中未知数不参与列式;列方程解决问题时根据题中的数量关系,列出含有未知数的等式,求未知数由解方程来完成,算术解法是根据题中已知数和未知数之间的关系确定解答步骤,再进行计算。

人教版小学五年级数学上册第五单元《简易方程》课文课件全

人教版小学五年级数学上册第五单元《简易方程》课文课件全

对应练习
(教材第59页“做一做”)
1.动车的速度为220千米/ 时,普通列车 的速度为120 千米/ 时。
巩固练习
(教材第57页第12题)
4. 工作效率 工作时间 工作总量
(个/分) 分

x
5
5x
150÷m
m
150
a
t
c= at
王红每分钟打字50个,利用表中的公式计算她1
小时打多少个字。
1小时=60分
c=at=50×60=3000(个)
答:她1小时打3000个字。
拓展练习
(教材第57页第13题)
5* .在右图中,
120+10a (2)根据这个式子,当a等于25时,商店一共
有多少千克苹果?
a=25,120+10a=120+10×25=370(千克)
对应练习
(教材第58页“做一做”)
2.仓库里有货物96吨,运走了12车,每车运b 吨。
(1)用式子表示仓库里剩下货物的吨数。
96-12b (2)根据这个式子,当b等于5时,仓库里剩下
巩固练习
(教材第60页第2题)
4. 用含有字母的式子表示下面的数量关系。
(1)t与3的和。 t+3
(2)20减去a的差。20-a
(3)x的2倍。 2x
(4)b除以12的商。 b÷12
(5)a的5倍减去4.8的差。 5a-4.8 (6)比x小9的数。 x-9
巩固练习
(教材第60页第3题)
有20人,平均分成a组, 每组(20÷a)人。
当x等于8时,一共用了多少根小棒? 7×8=56(根)
摆x个正方形比摆x个三角形多用了多少根小棒呢?
方法小结

五年级数学上册简易方程知识点汇总

五年级数学上册简易方程知识点汇总

实用精品文献资料分享
五年级数学上册《简易方程》知识点汇总
五年级数学上册《简易方程》知识点汇总
1、在含有字母的式子里,数字和字母中间的乘号,字母和字母之间的乘号,可以记作“・”,也可以省略不写。

加号、减号,除号以及数与数之间的乘号不能省略。

2、a×a可以写作a・a或a ,a 读作a的平方。

2a表示a+a
3、方程:含有未知数的等式称为方程。

方程一定是等式,但等式不一定是方程。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

(解方程要先写“解”)方程的解是一个数;解方程是一个计算过程。

4、解方程的原理:(1)等式的基本性质等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

(2)10个数量关系式:加法:和=加数+加数一个加数=和-两一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数×因数一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数除数=被除数÷商
5、方程的检验过程:检验:方程左边=…… =方程右边所以,x=…是方程的解。

6、列方程解应用题的步骤:(1)弄清题意,找出未知数,用x表示。

(2)分析、找出数量之间的等量关系,列出方程;(3)解方程。

(4)检验,写出答案。

7、和倍或差倍应用题的解答方法:设一倍的量为x,另一个量根据倍数关系表示为几x。

再根据两个量的和或差列出方程。

新人教版小学数学五年级上册 《简易方程》知识点梳理 复习资料

新人教版小学数学五年级上册 《简易方程》知识点梳理 复习资料

第五单元《简易方程》知识点梳理一、用字母表示数1.在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写,字母和数字相乘一般要把数字写在前面。

加号、减号、除号以及数与数之间的乘号不能省略。

2.a2读作a的平方,表示2个a相乘或a×a。

2a表示2个a相加或a+a 或2×a 。

3.用字母表运算定律。

加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法交换律:ab=ba 乘法结合律:abc=a(bc)乘法分配律:(a+b)c=ac+bc4.用字母表示计算公式。

长方形的周长公式:c=2(a+b) 长方形的面积公式:s=ab正方形的周长公式:c=4a 正方形的面积公式:s= a2二、等式和方程1.等式:表示相等关系的式子叫等式。

2.等式的性质1:等式两边加上(或减去)同一个数,左右两边仍然相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

3.方程:(1)方程:含有未知数的等式叫做方程。

(2)使方程左右两边相等的未知数的值,叫做方程的解。

(3)求方程的解的过程叫做解方程。

(4)所有的方程都是等式,但等式不一定都是方程。

(5)方程的解是一个数,解方程是一个计算过程。

4.四则运算的10个关系式:加法:和=加数+加数一个加数=和-另一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数×因数一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数除数=被除数÷商8、方程的检验过程:方程左边=……=……=方程右边所以,X=……是方程的解。

9.方程与实际问题中常用的等量关系式。

路程=速度X 时间速度=路程÷时间时间=路程÷速度总价=单价X 数量单价=总价÷数量数量=总价÷单价工作总量=工作效率X 工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率总产量=单产量X 数量单产量=总产量÷数量数量=总产量÷单产量大数-小数=相差数大数-相差数=小数小数+相差数=大数一倍量X倍数=几倍量几倍量÷倍数=一倍量几倍量÷一倍量=倍数评价测试样例一、填空题。

五年级上册数学第五单元简易方程

五年级上册数学第五单元简易方程

五年级上册数学第五单元简易⽅程第五章简易⽅程【知识回顾】⽤字母表⽰数(1)⽤字母表⽰数量关系、运算定律和计算公式知识点⼀、⽤字母表⽰数⽤含有字母的式⼦表⽰数量关系时,如果出现字母与数相乘时,要省略乘号时,⼀般把数写在字母前⾯。

知识点⼆、⽤字母表⽰运算定律和计算公式(1)乘法交换律:a×b=b×a → a·b=b·a 或ab=ba乘法结合律:(a×b)×c=a×(b×c)→(a·b)·c=a·(b·c)或(ab)c=a(bc)乘法分配律:(a+b)×c =a×c+b×c→(a+b)·c =a·c+b·c或(a+b)·c =ac+bc(2)⽤S表⽰⾯积,⽤C表⽰周长。

1)如果⽤a表⽰正⽅形的边长,那么这个正⽅形的周长:C =a·4=4a(省略乘号时,⼀般把数写在字母前⾯)这个正⽅形的⾯积:S =a·a=(读作:a的平⽅,表⽰2个a相乘)2)如果⽤a表⽰长⽅形的长, b表⽰宽,那么这个长⽅形的周长:C =(a+b)·2=2(a+b)这个长⽅形的⾯积:S = a·b=ab【典题解析】例:(1)读出下⾯各式,并说明表⽰的意义.(2)把下⾯各式写成⼀个数的平⽅的形式.5×5(3)省略乘号,写出下⾯各式.(4)根据运算定律在□填上适当的字母或数.(□+□)+□□·(□·□)(5)如果⽤表⽰长⽅形的长,表⽰宽,那么这个长⽅形的⾯积 _____________________,这个长⽅形的周长 _____________________.【随堂练习】⼀、我会省略乘号写出下⾯各式。

a×12=b×b=a×b=x×y×7=5×x=2×c×c=7x×5=2×a×b=⼆、我会判断。

人教版小学数学五年级上册简易方程知识点总结

人教版小学数学五年级上册简易方程知识点总结

5简易方程
特别注意:
加号、减号、除号及数与
数之间的乘号不能省略。

提示:
2a与a2的区别:
2a表示a+a,a2表示a×a。

提示:
省略乘号时,一般把数字写
在字母的前面。

举例:x×6可以写成6x。

提示:
1×a省略乘号时,不能写成
1a,要写成a,这里的“1”我们要
省略不写。

温馨提示:
用含有字母的式子表示数
量关系,是加减关系时,如果后
面加单位,必须把这个含有字母
的式子用括号括起来。

注意:
方程必须满足的条件:必须
是等式,必须有未知数,二者缺
一不可。

易错点:
误认为含有未知数的式子
是方程。

举例:
3x-2>18是方程。

( )
正确解答:(✕)
提示:
等式的性质是解方程的重。

人教版五年级上册数学第五单元《简易方程》方程的意义和解方程教学课件

人教版五年级上册数学第五单元《简易方程》方程的意义和解方程教学课件

(教材P66 练习十四T5)
2. 如果a=b,根据等式的性质填空。 a+3=b+( 3 ) a-( 9 )=b-9 a×1.5=b×(1.5) a+( m)=b+m a-( c )=b-c a÷(10)=b÷10
课堂小结
同学们,今天的数学课你 们有哪些收获呢?
义务教育人教版五年级上册
5 简易方程
平衡的天平两边的物品数量都缩小到 原来的几分之一,天平仍保持平衡。
等式就像平衡的天平, 也具有同样的性质。
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,
左右两边仍然相等。
巩固运用
(教材P66 练习十四T4)
1. 要保持天平平衡,右边应该添加什么物品?
右边添加一个圆柱。
右边应该添加两个球 或两个长方体或一个 球和一个长方体。
50+50=100 100+x=250
100+x>100 100+x<300
100+x>200 3x=2.4
50+50=100 100+x=250
3x=2.4 等式
100+x>100 100+x>200 100+x<300
不等式
50+50=100 100+x=250
3x=2.4 等式
在这些等式中,有的含有 未知数,有的不含未知数。
(1)x与3的和是16。 x+3=16
(2)x的5倍与20相等。 5x=20
课堂小结
同学们,今天的数学课你 们有哪些收获呢?
义务教育人教版五年级上册
5 简易方程
第6课时 等式的性质
复习导入 在下面的这些式子中,哪些是等式,哪些是方程?
15+x<38 35+12=47 18y=3600 90-a 3b=4c 60-x=28
义务教育人教版五年级上册
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五单元《简易方程》
一.用字母表示数
1.用字母表示数。

在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。

数和字母相乘时,省略乘号后,一律将数写在字母前面。

加号、减号除号以及数与数之间的乘号不能省略。

2.用字母表示运算定律。

加法交换律是a+b=b+a;
加法结合律是(a+b)+c=a+(b+c);
乘法交换律是ab=ba;
乘法结合律是(ab)c=a(bc);
乘法分配律是(a+b)c=ac+bc。

3.用字母表示常见的数量关系及计算公式。

用含有字母的式子表示指定的数量,再把字母的取值代入式子中求值,只要在答中写出得数即可。

4、a×a可以写作a•a或a2,a2 读作a的平方。

2a表示a+a
二.方程的意义
1.方程与等式的区别。

含有未知数的等式叫做方程;方程一定是等式,而等式不一定是方程。

2.等式的性质。

等式两边同时加上或减去相同的数,同时乘或除以相同的数(0除外),左右两边仍然相等。

3、两个数相加,和都相同,一个加数越小,另一个加数就越大。

两个数相减,差都相同,减数越大,被减数也越大。

两个数相乘,积都相同,一个因数越小,另一个因数就越大。

两个数相除,商都相同,除数越大,被除数就越大。

三.解方程
1.方程的解与解方程。

“方程的解”是一个数,是使等号左右两边相等的未知数的值;“解方程”是指演算过程。

2.解形如±a=b 和 a=b 的方程。

依据等式性质来解此类方程。

解方程时要注意写清步骤,等号对齐。

3.验算。

检验是不是方程的解,把解代入原方程的左边算出得数,再算出右边的得数,如果左右两边的得数相等,那么这个解就是原方程的解。

4、解方程原理:
1)、等式两边同时加或减相等的数,等式不变。

2)、等式两边同时乘或除以相同的数(0 除外),等式不变。

5、在列方程解决问题时,我们应统一单位,在方程求出的解的后面不写单位名称。

“三看两原则”
三看:
一看含有未知数的式子前面是否有“ - ”(减号),若有,先处理;
二看含有未知数的式子前面是否有“÷”(除号),若有,先处理;
三看是否含有小括号“()”,若有优先选择整体法;
两原则:
1、未知数前面的符合要为“ + ”(加号);
2、未知数前面的数字(系数)要为“ 1 ”。

四.实际问题与方程
1.列方程解决问题的步骤。

(1)求什么设什么(个别除外)
(2)找出等量关系,列方程;
(3)解方程;
(4)检验,作答。

2.算术解法与方程解法的区别。

(1)列方程解决问题时,未知数用字母表示,参加列式;算术解法中未知数不参加列式。

(2)列方程解决问题是根据题中的数量关系,列出含有未知数的等式,求未知数的过程由解方程来完成。

算术解法是根据题中已知数和未知数间的关系,确定解答步骤,再列式计算。

3.验算。

把未知数的值代人方程检验。

相关文档
最新文档