【高考必备】高三数学总复习:数列知识点及题型归纳总结

合集下载

2024高考数学数列知识点总结与题型分析

2024高考数学数列知识点总结与题型分析

2024高考数学数列知识点总结与题型分析数列是高中数学中的重要内容,作为数学的一个分支,数列的掌握对于高考数学的考试非常关键。

在本文中,我们将对2024年高考数学数列的知识点进行总结,并分析可能出现的相关题型。

一、等差数列与等差数列的通项公式等差数列是数学中最常见的数列类型之一。

对于等差数列,首先要了解等差数列的概念:如果一个数列中任意两个相邻的项之差都相等,则称该数列为等差数列。

1.1 等差数列的通项公式等差数列的通项公式是等差数列中非常重要的一个公式,它可以用来求解等差数列中任意一项。

设等差数列的首项为$a_1$,公差为$d$,第$n$项为$a_n$,则等差数列的通项公式为:$a_n = a_1 + (n-1)d$1.2 等差数列的性质与常用公式等差数列有一些重要的性质与常用的公式,掌握这些性质与公式可以帮助我们更好地解决与等差数列相关的题目。

(1)等差数列中,任意三项可以构成一个等差数列。

(2)等差数列的前$n$项和公式为:$S_n = \frac{n}{2}(a_1 + a_n)$(3)等差数列的前$n$项和的差为:$S_n - S_m = (n-m+1)\frac{a_1 + a_{n+m}}{2}$二、等比数列与等比数列的通项公式等比数列也是数学中常见的数列类型之一。

与等差数列不同的是,等比数列中的任意两项的比值都相等。

2.1 等比数列的通项公式等比数列的通项公式可以用来求解等比数列中的任意一项。

设等比数列的首项为$a_1$,公比为$q$,第$n$项为$a_n$,则等比数列的通项公式为:$a_n = a_1 \cdot q^{(n-1)}$2.2 等比数列的性质与常用公式等比数列也有一些重要的性质与常用的公式,下面我们来了解一下:(1)等比数列中,任意三项可以构成一个等比数列。

(2)等比数列的前$n$项和公式为($q\neq1$):$S_n = \frac{a_1(1-q^n)}{1-q}$(3)当公比$q \neq 1$时,等比数列的前$n$项和与第$n$项的关系为:$S_n = \frac{a_nq - a_1}{q - 1}$三、数列题型分析与解题技巧在高考数学中,对于数列的考察主要包括以下几个方面:3.1 数列的递推关系与通项公式的应用常见的数列题目往往要求我们根据已知的递推关系或者通项公式来求解数列中的某一项或者求解前$n$项的和。

高考数列必考知识点

高考数列必考知识点

高考数列必考知识点数列作为高中数学中的重要知识点之一,在高考中占据着重要的位置。

掌握数列的概念、性质以及常见的数列类型是高考数学取得好成绩的必备知识。

本文将为同学们总结归纳高考数列必考的知识点。

一、数列的概念和性质1. 数列的定义:数列是按照一定顺序排列的由数字组成的序列。

2. 数列的通项公式:数列的通项公式表示数列中第n个数的一般项,常用符号有an或者Un。

3. 数列的首项和公差:对于等差数列,首项表示数列的第一个数,常用符号是a1;公差表示相邻两项之间的差值,常用符号是d。

4. 数列的递推公式:数列的递推公式表示数列中第n+1项与第n项的关系式。

二、等差数列1. 等差数列的定义:等差数列是指数列中相邻两项之差保持不变的数列。

2. 等差数列的通项公式:对于公差为d的等差数列,其通项公式为an = a1 + (n-1)d。

3. 等差数列前n项和:等差数列前n项和的公式为Sn = (a1 + an) *n / 2。

三、等比数列1. 等比数列的定义:等比数列是指数列中相邻两项之比保持不变的数列,且首项不能为0。

2. 等比数列的通项公式:对于公比为q的等比数列,其通项公式为an = a1 * q^(n-1)。

3. 等比数列前n项和:等比数列前n项和的公式为Sn = a1 * (1-q^n) / (1-q)。

四、特殊数列1. 斐波那契数列:斐波那契数列是指数列中的每一项都是前两项之和,首几项为0、1、1、2、3、5、8、13……2. 等差-等比混合数列:等差-等比混合数列是指数列中既存在等差关系又存在等比关系的数列。

五、数列求和问题1. 常用的数列求和方法:对于等差数列或者等比数列,可以通过数列求和公式或者特殊方法进行求和。

2. 数列求和的技巧:对于一些特殊的数列,可以利用数列的性质进行化简,从而简化求和的过程。

六、题目实战演练1. 高考数列选择题:通过对历年高考数学试卷中关于数列的选择题进行分类整理,帮助同学们熟悉数列的考点和解题思路。

数列高考知识点归纳(非常全!) - 含答案

数列高考知识点归纳(非常全!) - 含答案

数列高考知识点大扫描第一节等差数列的概念、性质及前n 项和例1.等差数列{a n }中,69121520a a a a +++=,求S 20 [思路]等差数列前n 项和公式11()(1)22n n a a n n n S na d +-==+: 1、 由已知直接求a 1,公差d.2、 利用性质q p n m a a a a q p n m +=+⇒+=+[解题 ] 由69121520a a a a +++=,615912120a a a a a a +=+=+,得1202()20a a +=,12010a a ∴+=,120()201002n a a S +⨯∴==。

[收获] 灵活应用通项性质可使运算过程简化。

练习:1.等差数列{a n }满足121010a a a +++= ,则有()A 、11010a a +> B 、21000a a +< C 、3990a a += D 、5151a =2.等差数列中,a 3+a 7-a 10=8,a 11-a 4=4,求13S 。

3.等差数列{a n }共10项,123420a a a a +++=,12360n n n n a a a a ---+++=,求S n. [思路] 已知数列前四项和与后四项和,结合通项性质,联想S n 公式推导方法。

[解题] 已知123420a a a a +++=,12360n n n n a a a a ---+++=,又14()80n a a +=,得120n a a +=,1()201010022n n a a n S +⨯∴==⨯=,[收获] 1、重视倒加法的应用,恰当运用通项性质:q p n m a a a a q p n m +=+⇒+=+,快捷准确;1、 求出1n a a +后运用“整体代换”手段巧妙解决问题。

4.等差数列{a n }前n 项和为18 ,若1S =3, 123n n n a a a --++=, 求项数n .第2变已知前n 项和及前m 项和,如何求前n+m 项和[变题2] 在等差数列{a n }中,S n =a,S m =b,(m>n),求S n+m 的值。

高考数列必懂的知识点总结

高考数列必懂的知识点总结

高考数列必懂的知识点总结数列作为高中数学中重要的一个章节,经常出现在高考试卷中。

掌握数列的相关知识点对考试成绩至关重要。

下面将针对高考数列的必懂知识点进行总结与归纳。

一、等差数列1. 等差数列的定义:数列中任意两个相邻的数之差相等,这个公差为常数,就是等差数列。

2. 等差数列的通项公式:设等差数列的首项为a₁,公差为d,第n项为aₙ,则有aₙ = a₁ + (n-1)d。

3. 等差数列的前n项和公式:设等差数列的首项为a₁,公差为d,前n项和为Sₙ,则有Sₙ = n(a₁ + aₙ)/2。

4. 教材上常见的等差数列:斐波那契数列、等差数列的特殊形式等。

二、等比数列1. 等比数列的定义:数列中任意两个相邻的数之比相等,这个比值为常数,就是等比数列。

2. 等比数列的通项公式:设等比数列的首项为a₁,公比为q,第n项为aₙ,则有aₙ = a₁q^(n-1)。

3. 等比数列的前n项和公式:设等比数列的首项为a₁,公比为q,前n项和为Sₙ,则有Sₙ = a₁(q^n-1)/(q-1) (当q ≠ 1时)。

4. 教材上常见的等比数列:几何数列、等比数列的特殊形式等。

三、数列的性质与应用1. 数列的有界性:有界数列是指存在上界或下界(甚至同时存在上下界)的数列。

2. 数列的单调性:单调数列是指数列中的数单调递增或单调递减。

3. 数列的极限:数列的极限表示数列随着项数趋向于无穷时的极限值。

4. 数列的应用:数列可以用来解决各种实际问题,如计算质数、拓展数列的概念、运用数列解决函数极限等。

四、递推数列1. 递推数列的定义:数列的第n+1项与前面的n项有一定的关系。

2. 递推数列的通项公式:通过递推公式可以求得递推数列的任意项。

3. 递推数列的性质:递推数列具有独特的性质,如线性递推数列、非线性递推数列、齐次递推数列等。

5. 教材上常见的递推数列:斐波那契数列、阶乘数列等。

五、其它常见数列1. 二项式系数:二项式系数通常用来展开二项式的幂,是数学上常见的一种数列。

数学数列与级数知识点清单 2024高考总结题型应用

数学数列与级数知识点清单 2024高考总结题型应用

数学数列与级数知识点清单 2024高考总结题型应用2024高考数学数列与级数知识点清单一、等差数列与等比数列的概念及性质等差数列是指一个数列中,任意两个相邻的项之差都相等的数列。

等差数列的通项公式为:an = a1 + (n-1)d,其中an表示第n个项,a1表示第一个项,d表示公差。

等比数列是指一个数列中,任意两个相邻的项之比都相等的数列。

等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n个项,a1表示第一个项,r表示公比。

二、数列的求和公式1. 等差数列的前n项和:Sn = (n/2)(a1 + an),其中Sn表示前n项和,n表示项数,a1表示第一个项,an表示第n个项。

2. 等比数列的前n项和:Sn = (a1(1-r^n))/(1-r),其中Sn表示前n项和,a1表示第一个项,r表示公比。

三、常见数列的特殊性质与应用1. 等差数列(1)若等差数列的前n项和与项数的乘积为定值k,即Sn * n = k,则称该数列为等差-等比数列。

(2)若等差数列中的每一项皆为两个自然数的和,则称该数列为等差数列配对数列。

2. 等比数列(1)若等比数列的前n项和与项数的乘积为定值k,即Sn * n = k,则称该数列为等比-等差数列。

(2)若等比数列的每一项均为两个自然数的积,则称该数列为等比数列配对数列。

四、数列求和的应用1. 题型一:求前n项和对于已知数列的首项和公差(或首项和公比)的情况,可以根据前n项和的公式求解。

2. 题型二:求项数已知数列的前n项和与定值k的情况下,可以通过前n项和与项数的乘积等于k的等式,解得项数n。

3. 题型三:数列和其他数学概念的应用数列的概念与求和公式可以应用于等差数列与等比数列的性质推导,以及数学中其他相关概念的计算等。

五、数列与级数知识点在高考中的应用1. 考点一:等差数列与等比数列的识别与应用在高考数学中,往往需要通过题干给出的条件,确定问题所涉及的数列类型,并灵活运用数列性质和求和公式解决问题。

2024年高考数学数列易错知识点总结

2024年高考数学数列易错知识点总结

2024年高考数学数列易错知识点总结高考数学中的数列作为重要考点之一,经常涉及到的知识点较多且易错。

在2024年高考数学考试中,以下是数列的易错知识点总结:一、数列的基本概念与性质1. 数列的概念:数列是由一系列按照一定规律排列的数字组成的序列。

需要区分数列的元素与项,元素是指数列中的具体数字,而项是指元素所在的位置。

2. 等差数列与等差中项:等差数列是指数列中相邻两项之间的差值相等的数列。

等差中项是指位于等差数列中的任意一项。

3. 等差数列的通项公式:对于等差数列${a_1, a_2,a_3, ..., a_n}$,其通项公式为$a_n = a_1 + (n-1)d$,其中$a_n$表示第n项,$a_1$表示首项,d表示公差。

4. 等比数列与等比中项:等比数列是指数列中相邻两项之间的比值相等的数列。

等比中项是指位于等比数列中的任意一项。

5. 等比数列的通项公式:对于等比数列${a_1, a_2,a_3, ..., a_n}$,其通项公式为$a_n = a_1r^{n-1}$,其中$a_n$表示第n项,$a_1$表示首项,r表示公比。

6. 等差数列与等比数列的前n项和公式:等差数列的前n项和公式为$S_n = \\frac{n}{2}(a_1 + a_n)$,等比数列的前n项和公式为$S_n = \\frac{a_1(1 - r^n)}{1 - r}$。

7. 数列的性质:数列的奇数项和与偶数项和的关系,数列的倒数项和与首项和的关系。

如等差数列中的奇数项和是首项和的一半,倒数项和是首项和的倒数。

二、数列的综合应用1. 数列的增长率与减少率:通过对序列中的元素进行操作,可以计算出数列的增长率与减少率。

如等差数列中,相邻元素的增长率是公差d;等比数列中,相邻元素的增长率是公比r。

2. 数列的问题转化:将数列问题转化为方程或等价式,从而找到解题的方法。

如通过设置未知数,将一个复杂的数列问题转化为简单的方程求解。

数列专题总复习知识点整理及经典例题讲解-高三数学

数列专题总复习知识点整理及经典例题讲解-高三数学

数列专题复习一、等差数列的有关概念:1、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。

如设{}n a 是等差数列,求证:以b n =na a a n+++ 21*n N ∈为通项公式的数列{}n b 为等差数列。

2、等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。

如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a =(答:210n +);(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值围是______(答:833d <≤) 3、等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。

如(1)数列{}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,则1a =_,n =_(答:13a =-,10n =);(2)已知数列{}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答:2*2*12(6,)1272(6,)n n n n n N T n n n n N ⎧-≤∈⎪=⎨-+>∈⎪⎩).4、等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。

提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。

只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。

(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d )5、等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0.(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。

2024年高考数学数列易错知识点总结

2024年高考数学数列易错知识点总结

2024年高考数学数列易错知识点总结【数学数列易错知识点总结】数学数列是高考数学中的一个重要考点,也是一些同学容易出错的地方。

下面将针对2024年高考数学数列部分常见易错知识点进行总结,帮助同学们更好地备考。

一、数列的概念和性质1. 数列的概念:数列是按照一定顺序排列的一列数,一般用字母a_n表示第n个数。

2. 通项公式与通项:数列的通项公式是指通过计算得到第n 项的公式,一般用a_n表示。

通项公式能够简化计算,提高解题效率,需要了解并熟练掌握各种数列的通项公式。

3. 数列的性质:数列包括有界性、递增性、递减性、单调性、有限性等性质。

在计算题中,要根据题目给出的条件判断数列的性质。

二、等差数列1. 等差数列的定义:如果一个数列从第二项开始,每一项与它的前一项的差都相等,这个数列就是等差数列。

2. 等差数列的通项公式:对于等差数列a_n=a_1+(n-1)d,其中a_1为首项,d为公差。

熟练掌握并能够根据题目条件求出等差数列的通项公式。

3. 等差数列的性质:等差数列的前n项和、项数与首项、末项的关系等。

在计算等差数列的和时,要注意首项、末项以及项数的确定。

4. 数列位置问题:计算等差数列的第几项、确定项数时要注意各个变量的含义,尤其是考虑首项的位置是第一项还是第零项。

三、等比数列1. 等比数列的定义:如果一个数列从第二项开始,每一项与它的前一项的比值都相等,这个数列就是等比数列。

2. 等比数列的通项公式:对于等比数列an=a1*q^(n-1),其中a_1为首项,q为公比。

要注意当公比q为0或1时,等比数列的特殊情况。

3. 等比数列的性质:等比数列的前n项和、项数与首项、末项的关系等。

熟练掌握并能够根据题目条件求出等比数列的通项公式和相关性质。

四、等差数列与等比数列的联系与区别1. 联系:等差数列与等比数列都属于数列的一种特殊类型,都有对应的通项公式和性质。

可以通过等差数列与等比数列之间的相互转化,简化计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三总复习----数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。

记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。

例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9;(2)2010年各省参加高考的考生人数。

(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。

例如:①:1 ,2 ,3 ,4, 5 ,…②:514131211,,,,…数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1n(n N +∈)。

说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。

例如,n a = (1)n -=1,21()1,2n k k Z n k -=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。

例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。

从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。

例:画出数列12+=n a n 的图像.(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。

例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,…(5)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥例:已知数列}{n a 的前n 项和322+=n s n ,求数列}{n a 的通项公式练习:1.根据数列前4项,写出它的通项公式:(1)1,3,5,7……;(2)2212-,2313-,2414-,2515-;(3)11*2-,12*3,13*4-,14*5。

(4)9,99,999,9999…(5)7,77,777,7777,…(6)8, 88, 888, 8888…2.数列{}n a中,已知21()3nn na n N++-=∈(1)写出,1a,2a,3a,1na+,2na;(2)2793是否是数列中的项?若是,是第几项?3.(2003京春理14,文15)在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观察表中数据的特点,用适当的数填入表中空白(_____)内。

4、由前几项猜想通项:根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形和数,写出点数的通项公式.5.观察下列各图,并阅读下面的文字,像这样,10条直线相交,交点的个数最多是(),其通项公式为 .A.40个 B.45个 C.50个 D.55个2条直线相交,最多有1个交点3条直线相交,最多有3个交点4条直线相交,最多有6个交点(1)(4)(7)()()二、等差数列题型一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。

例:等差数列12-=n a n ,=--1n n a a 题型二、等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。

例:1.已知等差数列{}n a 中,12497116a a a a ,则,==+等于( ) A .15 B .30 C .31 D .642.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )6703.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”)题型三、等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。

其中2a bA += a ,A ,b 成等差数列⇔2a bA +=即:212+++=n n n a a a (m n m n n a a a +-+=2) 例:1.(14全国I )设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++= ( )A .120B .105C .90D .752.设数列{}n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A .1 B.2 C.4 D.8题型四、等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列; (3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n ma a d n m-=-()m n ≠;(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; 题型五、等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+n da )(2n 2112-+=。

(),(2为常数B A BnAn S n +=⇒{}n a 是等差数列 )递推公式:2)(2)()1(1na a n a a S m n m n n --+=+=例:1.如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )352.(2015湖南卷文)设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ) A .13 B .35 C .49 D . 633.(2015全国卷Ⅰ理) 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++=4.(2015重庆文)(2)在等差数列{}n a 中,1910a a +=,则5a 的值为( )(A )5 (B )6 (C )8 (D )105.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A.13项B.12项C.11项D.10项 6.已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则 7.(2014全国卷Ⅱ理)设等差数列{}n a 的前n 项和为n S ,若535a a =则95S S = 8.(2014全国)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=100. (Ⅰ)求数列{b n }的通项b n ;9.已知{}n a 数列是等差数列,1010=a ,其前10项的和7010=S ,则其公差d 等于( )3132--..B A C.31 D.3210.(2015陕西卷文)设等差数列{}n a 的前n 项和为n s ,若6312a s ==,则n a =11.(2013全国)设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{nS n}的前n 项和,求T n 。

12.等差数列{}n a 的前n 项和记为n S ,已知50302010==a a , ①求通项n a ;②若n S =242,求n13.在等差数列{}n a 中,(1)已知812148,168,S S a d ==求和;(2)已知658810,5,a S a S ==求和;(3)已知3151740,a a S +=求题型六.对于一个等差数列:(1)若项数为偶数,设共有2n 项,则①S 偶-S 奇nd =; ② 1n n S aS a +=奇偶;(2)若项数为奇数,设共有21n -项,则①S 奇-S 偶n a a ==中;②1S nS n =-奇偶。

题型七.对与一个等差数列,n n n n n S S S S S 232,,--仍成等差数列。

例:1.等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )A.130B.170C.210D.2602.一个等差数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为 。

3.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为 4.设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-== 5.(2015全国II )设S n 是等差数列{a n }的前n 项和,若36S S =13,则612SS = A .310 B .13 C .18 D .19题型八.判断或证明一个数列是等差数列的方法: ①定义法:)常数)(*+∈=-N n d a a n n (1⇒{}n a 是等差数列②中项法:)221*++∈+=N n a a a n n n (⇒{}n a 是等差数列③通项公式法:),(为常数b k bkn a n +=⇒{}n a 是等差数列④前n 项和公式法:),(2为常数B A BnAn S n +=⇒{}n a 是等差数列例:1.已知数列}{n a 满足21=--n n a a ,则数列}{n a 为 ( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断2.已知数列}{n a 的通项为52+=n a n ,则数列}{n a 为 ( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断3.已知一个数列}{n a 的前n 项和422+=n s n ,则数列}{n a 为( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断4.已知一个数列}{n a 的前n 项和22n s n =,则数列}{n a 为( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断5.已知一个数列}{n a 满足0212=+-++n n n a a a ,则数列}{n a 为( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断 6.数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (*∈N n ) ①求数列{}n a 的通项公式;7.(14天津理,2)设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,而且也是等比数列 D.既非等比数列又非等差数列题型九.数列最值(1)10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;(2)n S 最值的求法:①若已知n S ,n S 的最值可求二次函数2n S an bn =+的最值;可用二次函数最值的求法(n N +∈);②或者求出{}n a 中的正、负分界项,即:若已知n a ,则n S 最值时n 的值(n N +∈)可如下确定100n n a a +≥⎧⎨≤⎩或10n n a a +≤⎧⎨≥⎩。

相关文档
最新文档