高中数学必修等差数列知识点总结和题型归纳

合集下载

高中数学必修五-等差数列

高中数学必修五-等差数列

等差数列知识集结知识元等差数列的性质知识讲解1.等差数列的性质【等差数列】如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示.等差数列的通项公式为:a n=a1+(n﹣1)d;前n项和公式为:S n=na1+n(n﹣1)或S n=(n∈N+),另一重要特征是若p+q=2m,则有2a m=a p+a q(p,q,m都为自然数)例:已知等差数列{a n}中,a1<a2<a3<…<a n且a3,a6为方程x2﹣10x+16=0的两个实根.(1)求此数列{a n}的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a3=2,a6=8.又∵{a n}为等差数列,设首项为a1,公差为d,∴a1+2d=2,a1+5d=8,解得a1=﹣2,d=2.∴a n=﹣2+(n﹣1)×2=2n﹣4(n∈N*).∴数列{a n}的通项公式为a n=2n﹣4.(2)令268=2n﹣4(n∈N*),解得n=136.∴268是此数列的第136项.这是一个很典型的等差数列题,第一问告诉你第几项和第几项是多少,然后套用等差数列的通项公式a n=a1+(n﹣1)d,求出首项和公差d,这样等差数列就求出来了.第二问判断某个数是不是等差数列的某一项,其实就是要你检验看符不符合通项公式,带进去检验一下就是的.【等差数列的性质】(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(首项不一定选a1).例题精讲等差数列的性质例1.设等差数列{a n}的前n项和为S n,若a2+a8=15-a5,则S9等于()A.18B.36C.45D.60例2.记等差数列{a n}的前n项和为S n.若a5=3,S13=91,则a1+a11=()A.7B.8C.9D.10例3.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12等差数列的通项公式知识讲解1.等差数列的通项公式【知识点的认识】等差数列是常见数列的一种,数列从第二项起,每一项与它的前一项的差等于同一个常数,已知等差数列的首项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代入2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是等差数列,题中a n的求法是数列当中常用到的方式,大家可以熟记一下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为首项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的一个重要性质,即等差中项的特点,通过这个性质然后解方程一样求出首项和公差即可.【考点点评】求等差数列的通项公式是一种很常见的题型,这里面往往用的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.例题精讲等差数列的通项公式例1.在等差数列{a n}中,a4,a12是方程x2+3x+1=0的两根,则a8=()A.B.C.D.不能确定例2.在等差数列{a n}中,a2+a10=0,a6+a8=-4,a100=()A.212B.188C.-212D.-188例3.在等差数列{a n}中,若a2=5,a4=3,则a6=()A.-1B.0C.1D.6当堂练习单选题练习1.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12练习2.等差数列{a n}中,已知a2+a6=4,则a4=()A.1B.2C.3D.4练习3.在等差数列{a n}中,若a3+a9=17,a7=9,则a5=()A.6B.7C.8D.9练习4.《孙子算经》是中国古代重要的数学著作,上面记载了一道有名的“孙子问题”(又称“物不知数题”),后来我国南宋数学家秦九韶在《数书九章∙大衍求一术》中将此问题系统解决.“大衍求一术”是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题.后传入西方,被称为“中国剩余定理”.现有一道一次同余式组问题:将正整数中,被3除余2且被5除余1的数,按由小到大的顺序排成一列,则此列数中第10项为()A.116B.131C.146D.161练习5.已知2,b的等差中项为5,则b为()A.B.6C.8D.10练习6.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A.B.C.D.练习7.等差数列{a n}中,S n是它的前n项和,a2+a3=10,S6=54,则该数列的公差d为()A.2B.3C.4D.6练习8.等差数列{a n}中,a1+a8=10,a2+a9=18,则数列{a n}的公差为()A.1B.2C.3D.4练习9.在等差数列{a n}中,已知a2+a6=18,则a4=()A.9B.8C.81D.63。

2024高考数学数列知识点总结与题型分析

2024高考数学数列知识点总结与题型分析

2024高考数学数列知识点总结与题型分析数列是高中数学中的重要内容,作为数学的一个分支,数列的掌握对于高考数学的考试非常关键。

在本文中,我们将对2024年高考数学数列的知识点进行总结,并分析可能出现的相关题型。

一、等差数列与等差数列的通项公式等差数列是数学中最常见的数列类型之一。

对于等差数列,首先要了解等差数列的概念:如果一个数列中任意两个相邻的项之差都相等,则称该数列为等差数列。

1.1 等差数列的通项公式等差数列的通项公式是等差数列中非常重要的一个公式,它可以用来求解等差数列中任意一项。

设等差数列的首项为$a_1$,公差为$d$,第$n$项为$a_n$,则等差数列的通项公式为:$a_n = a_1 + (n-1)d$1.2 等差数列的性质与常用公式等差数列有一些重要的性质与常用的公式,掌握这些性质与公式可以帮助我们更好地解决与等差数列相关的题目。

(1)等差数列中,任意三项可以构成一个等差数列。

(2)等差数列的前$n$项和公式为:$S_n = \frac{n}{2}(a_1 + a_n)$(3)等差数列的前$n$项和的差为:$S_n - S_m = (n-m+1)\frac{a_1 + a_{n+m}}{2}$二、等比数列与等比数列的通项公式等比数列也是数学中常见的数列类型之一。

与等差数列不同的是,等比数列中的任意两项的比值都相等。

2.1 等比数列的通项公式等比数列的通项公式可以用来求解等比数列中的任意一项。

设等比数列的首项为$a_1$,公比为$q$,第$n$项为$a_n$,则等比数列的通项公式为:$a_n = a_1 \cdot q^{(n-1)}$2.2 等比数列的性质与常用公式等比数列也有一些重要的性质与常用的公式,下面我们来了解一下:(1)等比数列中,任意三项可以构成一个等比数列。

(2)等比数列的前$n$项和公式为($q\neq1$):$S_n = \frac{a_1(1-q^n)}{1-q}$(3)当公比$q \neq 1$时,等比数列的前$n$项和与第$n$项的关系为:$S_n = \frac{a_nq - a_1}{q - 1}$三、数列题型分析与解题技巧在高考数学中,对于数列的考察主要包括以下几个方面:3.1 数列的递推关系与通项公式的应用常见的数列题目往往要求我们根据已知的递推关系或者通项公式来求解数列中的某一项或者求解前$n$项的和。

(完整版)等差数列知识点及类型题

(完整版)等差数列知识点及类型题

等差数列知识点及类型题一、数列由n a 与n S 的关系求n a由n S 求n a 时,要分n=1和n ≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的形式表示为11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩。

〖例1〗根据下列条件,确定数列{}n a 的通项公式。

nn n S a a 222,0=+>分析:将无理问题有理化,而后利用n a 与n S 的关系求解。

二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,1()(2)n n a a d n --=≥常数,第二种是利用等差中项,即112(2)n n n a a a n +-=+≥。

2、解选择题、填空题时,亦可用通项或前n 项和直接判断。

(1)通项法:若数列{n a }的通项公式为n 的一次函数,即n a =An+B,则{n a }是等差数列;(2)前n 项和法:若数列{n a }的前n 项和n S 是2n S An Bn =+的形式(A ,B 是常数),则{n a }是等差数列。

注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。

〖例2〗已知数列{n a }的前n 项和为n S ,且满足111120(2),2n n n n S S S S n a ---+=≥=g (1)求证:{1nS }是等差数列; (2)求n a 的表达式。

【变式】已知数列{a n }的各项均为正数,a 1=1.其前n 项和S n 满足2S n =2pa 2n +a n-p (p ∈R), 则{a n }的通项公式为________.(二)等差数列的基本运算1、等差数列的通项公式n a =1a +(n-1)d 及前n 项和公式11()(1)22n n n a a n n S na d +-==+,共涉及五个量1a ,n a ,d,n, n S ,“知三求二”,体现了用方程的思想解决问题;2、数列的通项公式和前n 项和公式在解题中起到变量代换作用,而1a 和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法。

新高考 核心考点与题型 数列 第1讲 等差数列及其前n项和 - 解析

新高考 核心考点与题型 数列 第1讲 等差数列及其前n项和 - 解析

第1讲 等差数列及其前n 项和[考情分析] 等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.知 识 梳 理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.[微点提醒]1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).考点一 等差数列的性质及应用 多维探究角度1 等差数列项的性质【例1】在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A.6B.12C.24D.48解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120,由等差数列的性质,a 1+3a 8+a 15=5a 8=120, ∴a 8=24,∴a 2+a 14=2a 8=48.【变式1】设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ). A .-6 B .-4 C .-2 D .2解析 (1)S 8=4a 3⇒8(a 1+a 8)2=4a 3⇒a 3+a 6=a 3,∴a 6=0,∴d =-2,∴a 9=a 7+2d =-2-4=-6.【变式2】已知数列{}{},n n a b 为等差数列,若11337,21a b a b +=+=,则55a b +=_______思路:条件与所求都是“n n a b +”的形式,由{}{},n n a b 为等差数列可得{}n n a b +也为等差数列,所以()33a b +为()()1155,a b a b ++的等差中项,从而可求出55a b +的值解:{}{},n n a b 为等差数列{}n n a b ∴+也为等差数列 ()()()3311552a b a b a b ∴+=+++()()553311235a b a b a b ∴+=+-+= 答案:35【变式3】等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于( )A.3B.4C.log 318D.log 324∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列,∵log 3(2x )+log 3(4x +2)=2log 3(3x ), ∵log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2,解之得x =4,x =0(舍去). ∵等差数列的前三项为log 38,log 312,log 318,∵公差d =log 312-log 38=log 332,∵数列的第四项为log 318+log 332=log 327=3.【例2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A.63B.45C.36D.27解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45,所以a 7+a 8+a 9=45.【变式1】在等差数列{a n }中.若共有n 项,且前四项之和为21,后四项之和为67,前n 项和S n =286,则n =________.解析 (1)依题意知a 1+a 2+a 3+a 4=21,a n +a n -1+a n -2+a n -3=67.由等差数列的性质知a 1+a n =a 2+a n -1=a 3+a n -2=a 4+a n -3,∴4(a 1+a n )=88,∴a 1+a n =22. 又S n =n (a 1+a n )2,即286=n ×222,∴n =26.【变式2】在等差数列{a n }中,前m 项的和为30,前2m 项的和为100,则前3m 项的和为________. 记数列{a n }的前n 项和为S n ,由等差数列前n 项和的性质知S m ,S 2m -S m ,S 3m -S 2m 成等差数列,则2(S 2m -S m )=S m +(S 3m -S 2m ),又S m =30,S 2m =100,S 2m -S m =100-30=70,所以S 3m -S 2m =2(S 2m -S m )-S m =110,所以S 3m =110+100=210.【例3】 已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.解 由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3,∴S 2 019=3×2 019=6 057. 【变式1】在等差数列{}n a 中,12008a =-,其前n 项和为n S ,若121021210S S -=,则2008S 的值等于( ) A. 2007- B. 2008- C. 2007 D. 2008 思路:由121021210S S -=观察到n S n 的特点,所以考虑数列n S n ⎧⎫⎨⎬⎩⎭的性质,由等差数列前n 项和特征2n S An Bn =+可得nS An B n=+,从而可判定n S n ⎧⎫⎨⎬⎩⎭为等差数列,且可得公差1d =,所以()1120091n S S n d n n =+-=-,所以()2009n S n n =-,即20082008S =-,答案:B【变式2】设S n ,T n 分别是等差数列{a n },{b n }的前n 项和,若a 5=2b 5,则S 9T 9=( )A .2B .3C .4D .6解 由a 5=2b 5,得a 5b 5=2,所以S 9T 9=9a 1+a 929b 1+b 92=a 5b 5=2,故选A.【变式3】等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727B.1914C.3929D.43解 a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.考点二 等差数列的判定与证明典例迁移【例1】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.【迁移探究1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0,所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n . 所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1), 所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1). 所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.【迁移探究2】 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1,又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n . 规律方法 1.证明数列是等差数列的主要方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立. 2.判定一个数列是等差数列还常用到结论:(1)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(2)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.问题的最终判定还是利用定义. 【变式1】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解 (1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎪⎨⎪⎧q =-2,a 1=-2.故a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎡⎦⎤-23+(-1)n·2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.【变式2】 已知数列{a n }满足:a 1=2,a n +1=3a n +3n +1-2n .设b n =a n -2n3n .证明:数列{b n }为等差数列,并求{a n }的通项公式.证明 ∵b n +1-b n =a n +1-2n +13n +1-a n -2n 3n =3a n +3n +1-2n -2n +13n +1-3a n -3·2n3n +1=1, ∴{b n }为等差数列,又b 1=a 1-23=0.∴b n =n -1,∴a n =(n -1)·3n +2n . 考点三 等差数列的前n 项和及其最值【例4】 在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15 B .S 16 C .S 15或S 16D .S 17解∵a 1=29,S 10=S 20,∵10a 1+10×92d =20a 1+20×192d ,解得d =-2,∵S n =29n +nn -12×(-2)=-n 2+30n =-(n -15)2+225.∵当n =15时,S n 取得最大值. 规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值.①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【变式1】 等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( )A.3B.3或4C.4或5D.5【变式2】已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎪⎨⎪⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S nn =na 1+n (n -1)2dn=-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4.(2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2=-n 2+21n =-⎝⎛⎭⎫n -2122+⎝⎛⎭⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.【变式3】在等差数列{}n a 中,10a >,若其前n 项和为n S ,且148S S =,那么当n S 取最大值时,n 的值为( )A. 8B. 9C. 10D. 11【变式4】在等差数列{}n a 中,10a >,054>+a a ,054<a a ,使前n 项和0n >S 成立的最大正整数n 的值为________3、从n S 的图像出发,由148S S =可得n S 图像中11n =是对称轴,再由10a >与148S S =可判断数列{}n a 的公差0d <,所以n S 为开口向下的抛物线,所以在11n =处n S 取得最大值,答案:D4、思路:0n >S 成立的最大正整数n ,即001<>+n n s s 且此时成立。

等差数列知识总结

等差数列知识总结

等差数列知识总结一、等差数列的一般概念1、定义一般地,如果一个数列从第二项起,每一项与前一项的差是同一个常数.....,称这样的数列为等差数列,这个常数为等差数列的公差,通常用字母d 表示。

表示为:1()n na a d n N *+-=∈ 2、通项公式:①:1(1)na a n d =+-,1a 为首项,d 为公差 ②:()(,)nm a a n m d n m N *=+-∈ ③:n a An B =+(关于n 的一次表达式)3、等差中项:如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,表示为:2a b A +=。

二、等差数列的性质(若数列{}n a 是公差为d 的等差数列)1、1()1、、n m k a a a a d m n k N n m k--==∈*--; 2、若()、、、m n p q m n p q N +=+∈*⇒m n p q a a a a +=+; 3、若2m n k +=⇒2()、、m n k a a a m n k N +=∈*;4、下标成等差数列且公差为m 的项()23,,,,、k k m k m k m a a a a k m N +++⋅⋅⋅∈*组成公差为md 的等差数列;5、()232,,,m m m m m S S S S S m N --⋅⋅⋅∈*也成等差数列,公差为2md ;6、①若项数为2n+1,则()21中S n a =+且奇偶中S S a -= ()1偶中奇中S na S n a =⎧⎪⎨=+⎪⎩,1奇偶S n S n += (中a 指中项,即1中n a a +=,而,奇偶S S 指所有奇数项、所有偶数项之和)②若项数2n ,则偶奇S S n d -=⋅三、等差数列的判断1、{}1()常数n n n a a d a +-=⇔是等差数列;2、{}122()n n n n a a a N a ++=+∈*⇔是等差数列;3、{}(,)为常数n n a kn b k b a =+⇔是等差数列;4、{}21(,)22-且无常数项n n d d S An Bn A B a a =+==⇔为等差数列。

高中数学必修等差数列知识点总结和题型归纳

高中数学必修等差数列知识点总结和题型归纳

二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6 ,2a -5 , -3a +2 ,则 a A . -1 B . 1 C .-2 D. 2 2.在数列 {a n } 中, a 1=2,2a n+1=2a n +1,则 a 101的值为 ( )A .49B .50C . 51D .52 3.等差数列 1,- 1,- 3,⋯,- 89的项数是( )等差数列一.等差数列知识点:知识点 1、等差数列的定义 : ①如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,那么这个数列 就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示 知识点 2、等差数列的判定方法 : ②定义法:对于数列 a n ,若a n 1 a n d (常数) ,则数列 a n 是等差数列 ③等差中项:对于数列 a n ,若2a n 1 a n a n 2,则数列 a n 是等差数列 知识点 3、等差数列的通项公式 : 的首项是 a 1 ,公差是 d ,则等差数列的通项为 该公式整理后是关于 n 的一次函数 n 项和 : n (n 1) ⑥ S n na 1 d2 ④如果等差数列 a n a n a 1 (n 1)d 知识点 4、等差数列的前 ⑤ Sn n (a 1 a n ) 2对于公式 2整理后是关于 n 的没有常数项的二次函数 知识点 5、等差中项 :⑥如果 a , A , b 成等差数列,那么 A 叫做 a 与b 的等差中项即: A a b 或2A a b 在一个等差数列中,从第 2 项起,每一项(有穷等差数列的末项除外)都是它的前一项 与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点 6、等差数列的性质 : ⑦等差数列任意两项间的关系:如果 且 m n ,公差为 d ,则有 a n a m (n ⑧ 对于等差数列 a n ,若 n m p a n 是等差数列的第 n 项, a m 是等差数列的第 m 项, m )d q ,则 a n a m a p a q 也就是: a 1 a n a 2 a n 1 a 3 a n 2 ⑨若数列 a n 是等差数列, 等差数列如下图所示:S n 是其前 n 项的和, k N ,那么 S k , S 2k S k ,S 3k S 2k 成 S 3ka 1 a2a3S k akak 1S 2ka2kS ka2k 1S 3k S 2ka3k①若项数为 2n n *, 则 S 2n n a n a n 1 , 且S 偶 S 奇 S 奇 nd, 奇 an. ②若项数为 2n 1 nS 偶 an 1S 奇n (其中 S 奇 na n , S 偶n 1 a n ).S偶n 1奇等差数列的前 n 项和的性质: 10、 ,则 S 2n 1 2n 1 a n ,且 S 奇 S 偶 a n,等于( )A.92 B .47 C.46D.44、已知等差数列{a n}中,a7 a9 16,a41,则a12的值是()( )A 15B 30C 31D 645. 首项为-24 的等差数列,从第10项起开始为正数,则公差的取值范围是(8 8 8> <3 C. ≤d<3 D. < d≤33 3 36、.在数列{ a n}中,a1 3,且对任意大于1的正整数n,点( a n , a n1)在直x y 3 则a n = _________________ .7、在等差数列{a n} 中,a5=3,a6=-2,则a4+a5+⋯+a10=.8、等差数列a n 的前n项和为S n,若a2 1,a3 3,则S4=()(A)12(B)10(C)8(D)69、设数列a n 的首项a17,且满足a n 1 a n 2(n N) ,则a1 a2a1710、已知{a n} 为等差数列,a3 + a 8 = 22,a6 = 7 ,则a5 = _________11、已知数列的通项a n= -5n+2, 则其前n 项和为S n=12、设S n为等差数列a n 的前n项和,S4 =14,S10 S7 30,则S9=.题型二、等差数列性质1、已知{ a n}为等差数列,a2+a8=12, 则a5 等于()(A)4 (B)5 (C) 6 (D)72、设S n是等差数列a n 的前n项和,若S7 35,则a4 ()A.8 B .7 C .6 D.53、若等差数列a n 中,a3 a7 a10 8,a11 a4 4,则a7 __________ .4、记等差数列a n 的前n项和为S n,若S2 4,S4 20 ,则该数列的公差d=()A .7 B. 6 C. 3 D. 215、等差数列{a n} 中,已知a1 ,a2 a5 4,a n 33,则n为()3(A)48 (B)49 (C)50 (D)516. 、等差数列{ a n}中,a1=1, a3+a5=14,其前n项和S n=100,则n=()(A)9 (B) 10(C)11 (D)127、设S n 是等差数列a n 的前n 项和,若a55, 则S9()a39 S5A . 1B .-11C .2D .28、已知等差数列{a n}满足α1+α 2+α 3+⋯+α 101=0 则有()A.α 1+α 101>0 B .α 2+α 100<0 C.α3+α 99=0 D .α 51=51 9、如果a1,a2,⋯,a8为各项都大于零的等差数列,公差 d 0,则()(A)a1a8 a4a5 (B)a8 a1 a4a5 (C)a1+a8 a4+a5 (D)a1a8=a4a5 10、若一个等差数列前3项的和为34,最后 3 项的和为146,且所有项的和为390 ,则这个数列有()(A)13 项(B)12项(C)11项(D)10 项题型三、等差数列前n 项和1、等差数列a n 中,已知a1 a2 a3 L a10 S n .2、等差数列2,1,4, 的前n 项和为(p,a n9 a n 8 L a n q ,则其前n 项和)0 上,A. 1n3n4 2B.1n 3n 7 2 C.1n 3n 24 D. 1n 3n 7 23、已知等差数列an 满足 a 1 a 2a 3a990 ,则)A. a 1 a 99 0B. a 1 a 99 0C. a 1 a 99 0D. a 50 50 4、在等差数列 a n 中, a 1 a 2 a 3 15,a n an 1 an 278, S n 155,则n 。

等差数列知识点总结与基本题型

等差数列知识点总结与基本题型

等差数列知识点总结与基本题型一、基本概念 1、等差数列的概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

(2)对于公差d ,需强调的是它是每一项与它前一项的差(从第2项起)要防止把被减数与减数弄颠倒。

(3)0d>⇔等差数列为递增数列0d =⇔等差数列为常数列 0d <⇔等差数列为递减数列(4)一个等差数列至少由三项构成。

2、等差数列的通项公式 (1)通项公式:1(1)na a n d =+-,(当1n =时,等式也成立);(2)推导方法:①不完全归纳法:在课本中,等差数列的通项公式是由1234,,,,a a a a 归纳而得,这种利用一些特殊现象得出一般规律的方法叫不完全归纳法。

②迭加法:也称之为逐差求和的方法:2132,,a a d a a d -=-=431,,n n a a d a a d --=-=,上述式子相加,1(1)n a a n d -=-,即1(1)n a a n d =+-。

③迭代法:1223()2()2n n n n n a a d a d d a d a d d ----=+=++=+=++313(1)n a d a n d-=+==+-。

(3)通项公式的应用与理解①可根据d 的情况来分析数列的性质,如递增数列,递减数列等。

②用于研究数列的图象。

11(1)()n a a n d dn a d =+-=+-,∴(Ⅰ)0d ≠时,na 是n的一次函数,由于n N *∈,因此,数列{}n a 的图象是直线1()n a dn a d =+-上的均匀排开的无穷(或有穷)个孤立点。

(Ⅱ)0d=时,1n a a =,表示平行于x 轴的直线上的均匀排开的无穷(或有穷)个孤立点。

不难得出,任意两项可以确定一个等差数列。

③从函数知识的角度考虑等差数列的通项公式:11(1)n a a n d d n a d =+-=+-,n a 是关于n的一次式()n N*∈,所以等差数列的通项公式也可以表示为n a pn q =+(设1,p d q a d==-)。

高一等差数列及其前n项和知识点+例题+练习 含答案

高一等差数列及其前n项和知识点+例题+练习 含答案

1.等差数列的定义 一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d __表示.2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d .3.等差中项如果A =a +b 2,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d . 6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A 、B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最__大__值;若a 1<0,d >0,则S n 存在最__小__值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ )(3)等差数列{a n }的单调性是由公差d 决定的.( √ )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( × )(5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( × )(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ )1.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n =________________________________________________________________________. 答案 6解析 设等差数列{a n }的公差为d ,∵a 1+a 9=a 4+a 6=-6,且a 1=-11,∴a 9=5,从而d =2.∴S n =-11n +n (n -1)=n 2-12n ,∴当n =6时,S n 取最小值.2.一个首项为23,公差为整数的等差数列,如果前6项均为正数,从第7项起为负数,则它的公差为________.答案 -4解析 a n =23+(n -1)d ,由题意知⎩⎪⎨⎪⎧ a 6>0,a 7<0, 即⎩⎪⎨⎪⎧23+5d >0,23+6d <0,解得-235<d <-236, 又d 为整数,所以d =-4.3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=________.答案 88解析 S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7=________.答案 28解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4,∴a 1+a 2+…+a 7=7a 4=28.5.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为________.(2)已知在等差数列{a n }中,a 2=7,a 4=15,则前10项和S 10=________.答案 (1)52 (2)210 解析 (1)由2a n +1=1+2a n 得a n +1-a n =12, 所以数列{a n }是首项为-2,公差为12的等差数列, 所以S 10=10×(-2)+10×(10-1)2×12=52. (2)因为a 2=7,a 4=15,所以d =4,a 1=3,故S 10=10×3+12×10×9×4=210. 思维升华 (1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(1)(2015·课标全国Ⅱ改编)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=________________________________________________________________________.(2)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是________. 答案 (1)5 (2)2解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3,∴a 1+a 3+a 5=3a 3=3,得a 3=1,∴S 5=5(a 1+a 5)2=5a 3=5. (2)∵S n =n (a 1+a n )2,∴S n n =a 1+a n 2,又S 33-S 22=1, 得a 1+a 32-a 1+a 22=1,即a 3-a 2=2, ∴数列{a n }的公差为2.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *). (1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.(1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *), b n =1a n -1(n ∈N *), 所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列. (2)解 由(1)知b n =n -72, 则a n =1+1b n =1+22n -7.设f (x )=1+22x -7, 则f (x )在区间(-∞,72)和(72,+∞)上为减函数. 所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),探求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n+1, 即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列, ∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n . 思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是________.①公差为3的等差数列 ②公差为4的等差数列③公差为6的等差数列 ④公差为9的等差数列(2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为______________. 答案 (1)③ (2)a n =1n解析 (1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2)=(a 2n -1-a 2n -3)+2(a 2n -a 2n -2)=2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列.(2)由已知式2a n +1=1a n +1a n +2可得 1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n . 题型三 等差数列的性质及应用命题点1 等差数列的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.(2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.答案 (1)10 (2)60解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10.(2)∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=10+2×10=30,∴S 30=60.命题点2 等差数列前n 项和的最值例4 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d , ∴d =-53. 方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53 =-53n +653. 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0.∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53 =130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.方法三 由S 10=S 15得a 11+a 12+a 13+a 14+a 15=0.∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 引申探究例4中,若条件“a 1=20”改为a 1=-20,其他条件不变,求当n 取何值时,S n 取得最小值,并求出最小值.解 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0,∴a 13=0.又a 1=-20,∴a 12<0,a 14>0,∴当n =12或13时,S n 取得最小值,最小值S 12=S 13=13(a 1+a 13)2=-130. 思维升华 (1)等差数列的性质:①项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a n m -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.②和的性质:在等差数列{a n }中,S n 为其前n 项和,则a .S 2n =n (a 1+a 2n )=…=n (a n +a n +1);b .S 2n -1=(2n -1)a n .(2)求等差数列前n 项和S n 最值的两种方法:①函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.②邻项变号法:a .当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ; b .当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m . (1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是________.(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为________.(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________. 答案 (1)6 (2)5或6 (3)110解析 (1)依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6.(2)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大.(3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝⎛⎭⎫n -2122+⎝⎛⎭⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.6.等差数列的前n 项和及其最值典例 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10=________.(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.(3)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________. 思维点拨 (1)求等差数列前n 项和,可以通过求解基本量a 1,d ,代入前n 项和公式计算,也可以利用等差数列的性质:a 1+a n =a 2+a n -1=…;(2)求等差数列前n 项和的最值,可以将S n 化为关于n 的二次函数,求二次函数的最值,也可以观察等差数列的符号变化趋势,找最后的非负项或非正项.解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45. (2)方法一 设数列{a n }的公差为d ,首项为a 1,则⎩⎨⎧ 10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧ a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110. 方法二 因为S 100-S 10=(a 11+a 100)×902=-90, 所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110. (3)因为⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,所以⎩⎪⎨⎪⎧a 5>0,a 6<0,所以S n 的最大值为S 5.答案 (1)45 (2)-110 (3)S 5温馨提醒 (1)利用函数思想求等差数列前n 项和S n 的最值时,要注意到n ∈N *;(2)利用等差数列的性质求S n ,突出了整体思想,减少了运算量.[方法与技巧]1.在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解.2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n 项和公式法判定一个数列是否为等差数列.3.等差数列性质灵活使用,可以大大减少运算量.4.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定.[失误与防范]1.当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数.2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.A 组 专项基础训练(时间:40分钟)1.(2015·课标全国Ⅰ改编)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=________________________________________________________________________. 答案 192解析 ∵公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6. ∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12, ∴a 10=a 1+9d =12+9=192. 2.(2015·北京改编)设{a n }是等差数列,下列结论中正确的是________.①若a 1+a 2>0,则a 2+a 3>0;②若a 1+a 3<0,则a 1+a 2<0;③若0<a 1<a 2,则a 2>a 1a 3;④若a 1<0,则(a 2-a 1)(a 2-a 3)>0.答案 ③解析 设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故①错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故②错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,所以a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,所以a 2>a 1a 3,故③正确;若a 1<0,则(a 2-a 1)·(a 2-a 3)=d ·(-d )=-d 2≤0,故④错.3.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =________. 答案 5解析 ∵数列{a n }为等差数列,且前n 项和为S n ,∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. ∴S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0, 解得m =5,经检验为原方程的解.4.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=________.答案 3解析 设{b n }的公差为d ,∵b 10-b 3=7d =12-(-2)=14,∴d =2.∵b 3=-2,∴b 1=b 3-2d =-2-4=-6.∴b 1+b 2+…+b 7=7b 1+7×62d =7×(-6)+21×2=0.又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为________.答案 7或8解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或8.6.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14. 7.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________. 答案 2n -1解析 设等差数列的公差为d ,∵a 3=a 22-4,∴1+2d =(1+d )2-4,解得d 2=4,即d =±2.由于该数列为递增数列,故d =2.∴a n =1+(n -1)×2=2n -1.8.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.9.在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2.从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N *,故k =7.10.(2015·济南模拟)等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解 方法一 由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1. 从而S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 又a 1>0,所以-a 113<0.故当n =7时,S n 最大. 方法二 由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由方法一可知a =-a 113<0,故当n =7时,S n 最大. 方法三 由方法一可知,d =-213a 1.要使S n 最大, 则有⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0,即⎩⎨⎧ a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大.方法四 由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.B 组 专项能力提升(时间:20分钟)11.已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则a 6·a 7的最大值为________. 答案 4解析 在等差数列{a n }中,∵S 12=6(a 6+a 7)=24,∴a 6+a 7=4,令x >0,y >0,由基本不等式可得x ·y ≤⎝ ⎛⎭⎪⎫x +y 22,当且仅当x =y 时“=”成立.又a 6>0,a 7>0,∴a 6·a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.即a 6·a 7的最大值为4.12.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k=-12,则正整数k =________. 答案 13解析 S k +1=S k +a k +1=-12+32=-212, 又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝⎛⎭⎫-3+322=-212,解得k =13. 13.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案1941 解析 ∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 14.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a n a n,若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________.答案 (-8,-7)解析 依题意得b n =1+1a n,对任意的n ∈N *,都有b n ≥b 8,即数列{b n }的最小项是第8项,于是有1a n ≥1a 8.又数列{a n }是公差为1的等差数列,因此有⎩⎪⎨⎪⎧ a 8<0,a 9>0,即⎩⎪⎨⎪⎧a +7<0,a +8>0,由此解得-8<a <-7,即实数a 的取值范围是(-8,-7).15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c . 解 (1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧ a 1=1,d =4.所以通项a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝⎛⎭⎫n -142-18. 所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c, 所以b 1=11+c ,b 2=62+c ,b 3=153+c. 因为数列{b n }是等差数列,所以2b 2=b 1+b 3,即62+c ×2=11+c +153+c ,所以2c2+c=0,所以c=-1或c=0(舍去),2时,{b n}是等差数列,经验证c=-12故c=-12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 知识点2、等差数列的判定方法:②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列 知识点3、等差数列的通项公式:④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数 知识点4、等差数列的前n 项和:⑤2)(1n n a a n S +=⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数知识点5、等差中项:⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2b a A +=或b a A +=2在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+=⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+也就是:ΛΛ=+=+=+--23121n n n a a a a a a⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列如下图所示:44444444444844444444444764434421Λ4434421Λ444344421Λk kk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 10、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1n n S aS a +=奇偶.②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶). 二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 22.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( )A .49B .50C .51D .52 3.等差数列1,-1,-3,…,-89的项数是( )A .92B .47C .46D .45 4、已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )( ) A 15 B 30 C 31 D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( )>38 <3 C. 38≤d <3 D.38<d ≤3 6、.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直03=--y x 上,则n a =_____________.7、在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= . 8、等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( ) (A )12 (B )10 (C )8 (D )69、设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=-=+且满足,则=+++1721a a a Λ______.10、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________ 11、已知数列的通项a n = -5n +2,则其前n 项和为S n = .12、设n S 为等差数列{}n a 的前n 项和,4S =14,30S S 710=-,则9S = .题型二、等差数列性质1、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)72、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .53、 若等差数列{}n a 中,37101148,4,a a a a a +-=-=则7__________.a =4、记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( )A .7 B. 6 C. 3 D. 2 5、等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( ) (A )48 (B )49 (C )50 (D )516.、等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)12 7、设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1 B .-1 C .2 D .21 8、已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=51 9、如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a 10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项题型三、等差数列前n 项和 1、等差数列{}n a 中,已知12310a a a a p ++++=L,98n n n a a a q --+++=L ,则其前n 项和n S = .2、等差数列Λ,4,1,2-的前n 项和为 ( )A. ()4321-n nB. ()7321-n nC. ()4321+n nD. ()7321+n n3、已知等差数列{}n a 满足099321=++++a a a a Λ,则 ( ) A. 0991>+a a B. 0991<+a a C. 0991=+a a D. 5050=a4、在等差数列{}n a 中,78,1521321=++=++--n n n a a a a a a ,155=n S , 则=n 。

5、等差数列{}n a 的前n 项和为n S ,若2462,10,S S S ==则等于( ) A .12 B .18 C .24 D .426、若等差数列共有12+n 项()*N n ∈,且奇数项的和为44,偶数项的和为33, 则项数为 ( )A. 5B. 7C. 9D. 117、 设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=8、 若两个等差数列{}n a 和{}n b 的前n 项和分别是n n S T ,,已知73n n S n T n =+,则55ab 等于( )A.7 B.23C.278 D.214题型四、等差数列综合题精选1、等差数列{n a }的前n 项和记为S n .已知.50,302010==a a(Ⅰ)求通项n a ; (Ⅱ)若S n =242,求n.2、已知数列{}n a 是一个等差数列,且21a =,55a =-。

(1)求{}n a 的通项n a ;(2)求{}n a 前n 项和n S 的最大值。

3、设{}n a 为等差数列,n S 为数列{}n a 的前n 项和,已知77=S ,7515=S ,n T 为数列⎭⎬⎫⎩⎨⎧n S n 的前n 项和,求n T 。

4、已知{}n a 是等差数列,21=a ,183=a ;{}n b 也是等差数列,4a 22=-b ,3214321a a a b b b b ++=+++。

(1)求数列{}n b 的通项公式及前n 项和n S 的公式;(2)数列{}n a 与{}n b 是否有相同的项 若有,在100以内有几个相同项若没有,请说明理由。

5、设等差数列{a n }的首项a 1及公差d 都为整数,前n 项和为S n . (Ⅰ)若a 11=0,S 14=98,求数列{a n }的通项公式;(Ⅱ)若a 1≥6,a 11>0,S 14≤77,求所有可能的数列{a n }的通项公式.6、已知二次函数()y f x =的图像经过坐标原点,其导函数为'()62f x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上。

(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1n n n a a 3b +=,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N *∈都成立的最小正整数m ;五、等差数列习题精选1、等差数列}{n a 的前三项依次为x ,12+x ,24+x ,则它的第5项为( ) A 、55+x B 、12+x C 、5 D 、42、设等差数列}{n a 中,17,594==a a ,则14a 的值等于( ) A 、11 B 、22 C 、29 D 、123、设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=( )A .120B .105C .90D .75 4、若等差数列}{n a 的公差0≠d ,则 ( )(A ) 5362a a a a > (B ) 5362a a a a <(C ) 5362a a a a = (D ) 62a a 与53a a 的大小不确定5、 已知{}n a 满足,对一切自然数n 均有1n n a a +>,且2n a n n λ=+恒成立,则实数λ的取值范围是( ) A.0λ>B.0λ<C.0λ=D.3λ>-6、等差数列{}d a a a d a a n 成等比数列,则若公差中,5211,,,0,1≠=为 ( ) (A) 3 (B) 2 (C) 2- (D) 2或2-7、在等差数列{}n a 中,)(,q p p a q a q p ≠==,则=+q p aA 、q p +B 、)(q p +-C 、0D 、pq8、设数列{}n a 是单调递增的等差数列,前三项和为12,前三项的积为48,则它的首项是 A 、1 B 、2 C 、4 D 、8 9、已知为等差数列,,则等于( )A. -1B. 1C. 3 10、已知为等差数列,且-2=-1, =0,则公差d = A.-2 B.- C.11、在等差数列中, ,则 其前9项的和S 9等于 ( )A .18B 27C 36D 9 12、设等差数列的前项和为,若,,则( )A .63B .45C .36D .2713、在等差数列{}n a 中,78,1521321=++=++--n n n a a a a a a ,155=n S , 则=n 。

相关文档
最新文档