线性回归的各种检验共74页文档

合集下载

线性回归的显著性检验

线性回归的显著性检验

线性回归的显着性检验1.回归方程的显着性在实际问题的研究中,我们事先并不能断定随机变量y与变量人,乂2,…,x p之间确有线性关系,在进行回归参数的估计之前,我们用多元线性回归方程去拟合随机变量y与变量X「X2,…,X p之间的关系,只是根据一些定性分析所作的一种假设。

因此,和一元线性回归方程的显着性检验类似,在求出线性回归方程后,还需对回归方程进行显着性检验。

设随机变量丫与多个普通变量x1, x2^ ,x p的线性回归模型为其中;服从正态分布N(0,;「2)对多元线性回归方程的显着性检验就是看自变量若接受X i,X2,…,X p从整体上对随机变量y是否有明显的影响。

为此提出原假设如果H。

被接受,则表明随机变量y与x「X2,…,X p的线性回归模型就没有意义。

通过总离差平方和分解方法,可以构造对H o进行检验的统计量。

正态随机变量y i,y2/ , y n的偏差平方和可以分解为:n n nS r f (y—y)2为总的偏差平方和,S R=為(懈-y)2为回归平方和,S E f (% - ?)2为残i 1i# im差平方和。

因此,平方和分解式可以简写为:回归平方和与残差平方和分别反映了b = 0所引起的差异和随机误差的影响。

构造F检验统计量则利用分解定理得到:在正态假设下,当原假设H o :b i =0, b2 =0,…,b p =0成立时,F服从自由度为(p,n -p-1)的F分布。

对于给定的显着水平[,当F大于临界值(p, n-p-1)时,拒绝H。

,说明回归方程显着,x与y有显着的线性关系。

实际应用中,我们还可以用复相关系数来检验回归方程的显着性。

复相关系数R定义为:平方和分解式可以知道,复相关系数的取值范围为0空R乞1。

R越接近1表明S E越小,回归方程拟合越好。

2.回归系数的显着性若方程通过显着性检验,仅说明b o,b i,b2,…b p不全为零,并不意味着每个自变量对y的影响都显着,所以就需要我们对每个自变量进行显着性检验。

第二节一元线性回归模型的统计检验

第二节一元线性回归模型的统计检验

关于常数项的显著性检验
• T检验同样可以进行。
• 一般不以t检验决定常数项是否保留在模型中, 而是从经济意义方面分析回归线是否应该通过 原点。
三、参数的置信区间
假设检验可以通过一次抽样的结果检验总 体参数可能的假设值的范围(如是否为零), 但它并没有指出在一次抽样中样本参数值到底 离总体参数的真值有多“近”。
在上述收入-消费支出例中,首先计算2的估计值
ˆ
2
2 e i
n2

2 ˆ 2 x2 y i 1 i
n2
2 2 3354955-0.670 4590020 0.777 7425000 13402 2734 10 2
t
ˆ
2
X
ˆ 0 0
2 i
要判断样本参数的估计值在多大程度上可 以“近似”地替代总体参数的真值,往往需要 通过构造一个以样本参数的估计值为中心的 “区间”,来考察它以多大的可能性(概率) 包含着真实的参数值。这种方法就是参数检验 的置信区间估计。
ˆ ˆ ) 1 P(
如果存在这样一个区间,称之为置信区间 (confidence interval); 1-称为置信系数(置信度) (confidence coefficient), 称为显著性水平(level of significance ) ; 置 信 区 间 的 端 点 称 为 置 信 限 (confidence limit)或临界值(critical values)。
一元线性模型中,i (i=0,1)的置信区间:
t 在变量的显著性检验中已经知道: ˆ i i s ˆ
i
~ t ( n 2)
意味着,如果给定置信度(1-),从分布表 中查得自由度为(n-2)的临界值,那么t值处在(t/2, t/2)的概率是(1- )。表示为:

线性回归的各种检验共76页

线性回归的各种检验共76页

61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰归的各种检验
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿

线性回归的显著性检验及回归预测.

线性回归的显著性检验及回归预测.

双曲线
1. 基本形式:
1. 线性化方法 令:y' = 1/y,x'= 1/x, 则有y' = a+ bx' 2. 图像
b<0
b>0
幂函数曲线
1. 基本形式:
2. 线性化方法
两端取对数得:lg y = lga + b lg x 令:y' = lgy,x'= lg x,则y' = lga + b x‘ 3. 图像
非线性回归--练习
一种商品的需求量与其价格有一定的关系。现对 一定时期内的商品价格 x 与需求量 y进行观察,取得 的样本数据如表所示。试判断商品价格与需求量之 间回归函数的类型,并求需求量对价格的回归方程, 以及相应的判定系数。
2 2 2
2 2
R 1 ( y yc ) / ( y y )
相关指数计算表
序号 1 y 106.42 yc 107.53 (y-yc)2 1.2321 (y-yˉ)2 13.0012
2
3 4 5 6 7 8
108.20
109.58 109.50 110.00 109.93 110.49 110.59
0.0023
0.0018 0.0013 0.0011 0.0009 0.0008 0.0006 0.0006 0.0006 0.0005 0.0005
14
合计
20

111.18
-
0.0500
2.1009
0.0090
0.1271
0.0025
0.5397
0.0004
0.0193
非线性判定系数与相关系数
0.0091

第三节 线性回归的显著性检验及回归预测

第三节 线性回归的显著性检验及回归预测
i
xy
i
n
]
2 b x i x i yi a x i 0 SS , SS E , SS R依赖: a y bx
5
注意:三个平方和SS , SS E , SS R的自由度分别记为 f , f E , f R , 则它们之间也有等式成立: f fE fR 且:f n-1, f E n 2, 则f R f f E 1.
2
x
i 1
n
i
x
2
式中:se为回归估计标准差
置信区间估计(例题分析)
【例】求出工业总产值的点估计为100亿元时, 工业总产值95%置信水平下的置信区间. yc 100 解:根据前面的计算结果,已知n=16, • se=2.457,t(16-2)=2.1448 • 置信区间为 1 (73 57.25)2
一元线性回归的方差分析表
离差来源 平方和 自由度 F值 SS R 回 归 SS y y 2 1 F R ci SS E 2 剩余 n-2
SS E yi yci
( n 2)
总计
SS yi y
2
n-1
8
线性关系的检验(例题分析)
1. 提出假设 H0 : 0; 2. 计算检验统计量F
i
(x
x ) nS xi
2 2
( xi )
2
③根据已知条件实际计算统计量t的值; ④ 比较②与③中的计算结果,得到结论.
3
回归系数的假设
b Se 1
对例题的回归系数进行显著性检验(=0.05)
H0 : 0;

i
H1 : 0

3.3多元线性回归检验-精选文档

3.3多元线性回归检验-精选文档
由于
2 1 ˆ) Cov ( β ( X X )
以cii表示矩阵(X’X)-1 主对角线上的第i个元素, 于是参数估计量的方差为: 2 ˆ ) Var ( c
i ii
其中2为随机误差项的方差,在实际计算 时,用它的估计量代替:
e ˆ
2
e e n k 1 n k 1
e e k AC ln ln n n n
这两准则均要求仅当所增加的解释变量能够减少 AIC值或AC值时才在原模型中增加该解释变量。
Eviews的估计结果显示: 中国居民消费一元例中:
AIC=6.68
AC=6.83
中国居民消费二元例中:
AIC=7.09
AC=7.19
从这点看,可以说前期人均居民消费CONSP(-1)应 包括在模型中。
注意:一个有趣的现象
i i i i i 2 2
ˆ ˆ Y Y Y Y Y Y ˆ ˆ Y Y Y Y Y Y ˆ ˆ Y Y Y Y Y Y
2 i i i 2 2 i i i i
2
可决系数
ESS RSS R 1 TSS TSS
RSS /( n k 1 ) R 1 TSS /( n 1 )
2
其中:n-k-1为残差平方和的自由度,n-1为总体平 方和的自由度。
n 1 R 1 (1 R ) n k 1
2 2
*2、赤池信息准则和施瓦茨准则
为了比较所含解释变量个数不同的多元回归模型 的拟合优度,常用的标准还有: 赤池信息准则(Akaike information criterion, AIC) e e 2 ( k 1 ) AIC ln n n 施瓦茨准则(Schwarz criterion,SC)

线性回归模型检验方法拓展-三大检验

线性回归模型检验方法拓展-三大检验

线性回归模型检验⽅法拓展-三⼤检验第四章线性回归模型检验⽅法拓展——三⼤检验作为统计推断的核⼼内容,除了估计未知参数以外,对参数的假设检验是实证分析中的⼀个重要⽅⾯。

对模型进⾏各种检验的⽬的是,改善模型的设定以确保基本假设和估计⽅法⽐较适合于数据,同时也是对有关理论有效性的验证。

⼀、假设检验的基本理论及准则假设检验的理论依据是“⼩概率事件原理”,它的⼀般步骤是(1)建⽴两个相对(互相排斥)的假设(零假设和备择假设)。

(2)在零假设条件下,寻求⽤于检验的统计量及其分布。

(3)得出拒绝或接受零假设的判别规则。

另⼀⽅⾯,对于任何的检验过程,都有可能犯错误,即所谓的第⼀类错误P(拒绝H|H0为真)=α和第⼆类错误P(接受H|H0不真)=β在下图,粉红⾊部分表⽰P(拒绝H0|H0为真)=α。

黄⾊部分表⽰P(接受H0|H0不真)=β。

⽽犯这两类错误的概率是⼀种此消彼长的情况,于是如何控制这两个概率,使它们尽可能的都⼩,就成了寻找优良的检验⽅法的关键。

下⾯简要介绍假设检验的有关基本理论。

参数显著性检验的思路是,已知总体的分布(,)F X θ,其中θ是未知参数。

总体真实分布完全由未知参数θ的取值所决定。

对θ提出某种假设001000:(:,)H H θθθθθθθθ=≠><或,从总体中抽取⼀个容量为n 的样本,确定⼀个统计量及其分布,决定⼀个拒绝域W ,使得0()P W θα=,或者对样本观测数据X ,0()P X W θα∈≤。

α是显著性⽔平,即犯第⼀类错误的概率。

既然犯两类错误的概率不能同时被控制,所以通常的做法是,限制犯第⼀类错误的概率,使犯第⼆类错误的概率尽可能的⼩,即在0()P X W θα∈≤ 0θ∈Θ的条件下,使得()P X W θ∈,0θ∈Θ-Θ达到最⼤,或1()P X W θ-∈,0θ∈Θ-Θ达到最⼩。

其中()P X W θ∈表⽰总体分布为(,)F X θ时,事件W ∈{X }的概率,0Θ为零假设集合(0Θ只含⼀个点时成为简单原假设,否则称为复杂原假设)。

线性回归的显著性检验

线性回归的显著性检验

线性回归的显着性检验1.回归方程的显着性在实际问题的研究中,我们事先并不能断定随机变量y与变量x1,x2/ ,x p之间确有线性关系,在进行回归参数的估计之前,我们用多元线性回归方程去拟合随机变量y与变量人〃2,…,X p之间的关系,只是根据一些定性分析所作的一种假设。

因此,和一元线性回归方程的显着性检验类似,在求出线性回归方程后,还需对回归方程进行显着性检验。

设随机变量丫与多个普通变量X j,X2,…,X p的线性回归模型为其中;服从正态分布N(o,;「2)对多元线性回归方程的显着性检验就是看自变量若接受X i, X2,…,X p从整体上对随机变量y是否有明显的影响。

为此提出原假设如果H。

被接受,则表明随机变量y与X i,X2,…,X p的线性回归模型就没有意义。

通过总离差平方和分解方法,可以构造对H o进行检验的统计量。

正态随机变量y i, y2/ , y n的偏差平方和可以分解为:n n nS r八(y i -y)2为总的偏差平方和,S R八(场-y)2为回归平方和,S E八(y i-?)2为残i 1i £i A差平方和。

因此,平方和分解式可以简写为:回归平方和与残差平方和分别反映了 b = 0所引起的差异和随机误差的影响。

构造F检验统计量则利用分解定理得到:在正态假设下,当原假设H°:b1 =0, d =0,…,b p =0成立时,F服从自由度为(p,n - p「1)的F 分布。

对于给定的显着水平[,当F大于临界值(p, n-p-1)时,拒绝H。

,说明回归方程显着,x与y有显着的线性关系。

R定义实际应用中,我们还可以用复相关系数来检验回归方程的显着性。

复相关系数为:平方和分解式可以知道,复相关系数的取值范围为O^R^I。

R越接近1表明S E越小,回归方程拟合越好。

2•回归系数的显着性若方程通过显着性检验,仅说明bog,b2,…b p不全为零,并不意味着每个自变量对y的影响都显着,所以就需要我们对每个自变量进行显着性检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档