5第五章 一元线性回归的假设检验解析

合集下载

【计量经济学】第五章精选题与答案解析

【计量经济学】第五章精选题与答案解析

第五章 异方差二、简答题1.异方差的存在对下面各项有何影响? (1)OLS 估计量及其方差; (2)置信区间;(3)显著性t 检验和F 检验的使用。

2.产生异方差的经济背景是什么?检验异方差的方法思路是什么?3.从直观上解释,当存在异方差时,加权最小二乘法(WLS )优于OLS 法。

4.下列异方差检查方法的逻辑关系是什么? (1)图示法 (2)Park 检验 (3)White 检验5.在一元线性回归函数中,假设误差方差有如下结构:()i i i x E 22σε=如何变换模型以达到同方差的目的?我们将如何估计变换后的模型?请列出估计步骤。

三、计算题1.考虑如下两个回归方程(根据1946—1975年美国数据)(括号中给出的是标准差):t t t D GNP C 4398.0624.019.26-+=e s :(2.73)(0.0060) (0.0736)R ²=0.999t t t GNP D GNP GNP C ⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡4315.06246.0192.25 e s : (2.22) (0.0068)(0.0597)R ²=0.875式中,C 为总私人消费支出;GNP 为国民生产总值;D 为国防支出;t 为时间。

研究的目的是确定国防支出对经济中其他支出的影响。

(1)将第一个方程变换为第二个方程的原因是什么?(2)如果变换的目的是为了消除或者减弱异方差,那么我们对误差项要做哪些假设? (3)如果存在异方差,是否已成功地消除异方差?请说明原因。

(4)变换后的回归方程是否一定要通过原点?为什么? (5)能否将两个回归方程中的R ²加以比较?为什么?2.1964年,对9966名经济学家的调查数据如下:资料来源:“The Structure of Economists’ Employment and Salaries”, Committee on the National Science Foundation Report on the Economics Profession, American Economics Review, vol.55, No.4, December 1965.(1)建立适当的模型解释平均工资与年龄间的关系。

线性回归模型的经典假定及检验修正

线性回归模型的经典假定及检验修正

线性回归模型的经典假定及检验、修正一、线性回归模型的基本假定1、一元线性回归模型一元线性回归模型是最简单的计量经济学模型,在模型中只有一个解释变量,其一般形式是Y =β0+β1X 1+μ其中,Y 为被解释变量,X 为解释变量,β0与β1为待估参数,μ为随机干扰项。

回归分析的主要目的是要通过样本回归函数(模型)尽可能准确地估计总体回归函数(模型)。

为保证函数估计量具有良好的性质,通常对模型提出若干基本假设。

假设1:回归模型是正确设定的。

模型的正确设定主要包括两个方面的内容:(1)模型选择了正确的变量,即未遗漏重要变量,也不含无关变量;(2)模型选择了正确的函数形式,即当被解释变量与解释变量间呈现某种函数形式时,我们所设定的总体回归方程恰为该函数形式。

假设2:解释变量X 是确定性变量,而不是随机变量,在重复抽样中取固定值。

这里假定解释变量为非随机的,可以简化对参数估计性质的讨论。

假设3:解释变量X 在所抽取的样本中具有变异性,而且随着样本容量的无限增加,解释变量X 的样本方差趋于一个非零的有限常数,即∑(X i −X ̅)2n i=1n→Q,n →∞ 在以因果关系为基础的回归分析中,往往就是通过解释变量X 的变化来解释被解释变量Y 的变化的,因此,解释变量X 要有足够的变异性。

对其样本方差的极限为非零有限常数的假设,旨在排除时间序列数据出现持续上升或下降的变量作为解释变量,因为这类数据不仅使大样本统计推断变得无效,而且往往产生伪回归问题。

假设4:随机误差项μ具有给定X 条件下的零均值、同方差以及无序列相关性,即E(μi|X i)=0Var(μi|X i)=σ2Cov(μi,μj|X i,X j)=0, i≠j随机误差项μ的条件零均值假设意味着μ的期望不依赖于X的变化而变化,且总为常数零。

该假设表明μ与X不存在任何形式的相关性,因此该假设成立时也往往称X为外生性解释变量随机误差项μ的条件同方差假设意味着μ的方差不依赖于X的变化而变化,且总为常数σ2。

第五章线性回归模型的假设与检验

第五章线性回归模型的假设与检验

⎟⎟⎠⎞
于是
βˆ1 = ( X1′X1)−1 X1′y1 , βˆ2 = ( X 2′ X 2 )−1 X 2′ y2
应用公式(8.1.9),得到残差平方和
和外在因素.那么我们所要做的检验就是考察公司效益指标对诸因素的依赖关系在两个时间 段上是否有了变化,也就是所谓经济结构的变化.又譬如,在生物学研究中,有很多试验花费 时间比较长,而为了保证结论的可靠性,又必须做一定数量的试验.为此,很多试验要分配在 几个试验室同时进行.这时,前面讨论的两批数据就可以看作是来自两个不同试验室的观测 数据,而我们检验的目的是考察两个试验室所得结论有没有差异.类似的例字还可以举出很 多.
而刻画拟合程度的残差平方和之差 RSSH − RSS 应该比较小.反过来,若真正的参数不满足
(5.1.2),则 RSSH − RSS 倾向于比较大.因此,当 RSSH − RSS 比较大时,我们就拒绝假设(5.1.2),
不然就接受它.在统计学上当我们谈到一个量大小时,往往有一个比较标准.对现在的情况,我
们把比较的标准取为 RSS .于是用统计量 (RSSH − RSS) RSS 的大小来决定是接受假设
(5.1.2),还是拒绝(5.1.2). 定理 5.1.1 对于正态线性回归模型(5.1.1)
(a )
RSS
σ2
~
χ2 n− p
(b )
若假设(8.1.2)成立,则 (RSSH
− RSS)
σ2
~
χ2 n− p
得愈好.现在在模型(5.1.1)上附加线性假设(5.1.2),再应用最小二乘法,获得约束最小二乘估计
βˆH = βˆ − ( X ′X )−1 A′( A( X ′X )−1 A′)−1 ( Aβˆ − b)

5第五章 一元线性回归的假设检验

5第五章 一元线性回归的假设检验
经典线性回归模型:classical liner regression model ,CLRM 一、9个假定 二、优良估计量应当具备的性质 三、假定的意义 返回
一、9个假定
1、零均值假定 2、同方差假定 3、无自相关假定 4、随机误差项和解释变量不相关假定 5、正态性假定 6、样本容量N>待估参数个数 7、解释变量 X值有变异性 8、无多重共线性假定 9、参数线性假定
1
注 : Var (Yi ) Var (b0 b1 X i i ) Var ( i ) 2
ˆ 证:Var (b1 ) Var (K i Y) i K i2Var Yi) 2 K i2 ( (
2
xi x xi2
2 i
)(
xi x
2 i

X
散点图
同方差假定
假定2:随机误差项方差相同
VAR ( i ) , 随机误差项的方差俱为
2
2
即与给定X相对应的Y值以相同方差分布在其条件 均值周围。 如果不满足这个假定,即为“异方差” 异方差的图示
异方差的图示
X=1000时,Y的 分布更靠拢均值。 即方差相对较小。
线 性 估 计 值
所 有 的 估 计 值
返回
1、线性性:参数估计量是被解释变量Yi的线性组合:
ˆ ˆ b1、b0都是Yi的线性函数
ˆ xi yi xi (Yi Y ) xiYi (xi ) Y xi Y b1 i 2 2 xi2 xi2 xi2 xi xi
第五章:一元线性回归模型的假 设检验
目录
第一节 经典线性回归模型的基本假定 第二节 OLS估计量的性质:高斯-马尔可夫 定理 第三节 一元线性回归模型的假设检验 第四节 预测 第五节 eviews软件入门和综合案例 考核要求和作业

计量经济学5一元线性回归:假设检验和置信区间

计量经济学5一元线性回归:假设检验和置信区间

Chapter 5Regression with a Single Regressor: Hypothesis Tests andConfidence Intervals 一元线性回归:假设检验和置信区间假设检验和置信区间概述 • 当知道 OLS 估计量的样本分布,就可以对β1 进行假设检 验,以及求取其置信区间。

本章内容将涉及以下问题: Also, we will cover some loose ends about regression: • 当 X 是二元回归变量情形 • 异方差(Heteroskedasticity)和同方差( homoskedasticity) • OLS 估计量的有效性 • t 统计量在假设检验中的应用2回顾z 根据样本数据了解总体回归线斜率的有关信息的步骤如 下:1. 界定关注研究对象。

2. 在一定假设为前提,得到估计量的样本分布。

3. 估计样本分布的离散程度,即计算出 OLS 估计量的标准误差(SE)。

4. 用估计量βˆ1得到点估计,结合标准误差进行假设检验和构造置信区间。

3研究对象:β1Yi = β0 + β1Xi + ui, i = 1,…, n β1 = ΔY/ΔX最小二乘假设:1. E(u|X = x) = 0.2. (Xi,Yi), i =1,…,n, 为 i.i.d.3. 不大可能存在异常值 (E(X4) < ∞, E(Y4) < ∞.βˆ1 的抽样分布为: 当上述最小二乘假设成立时,若 n 为大样本, βˆ1近似服从:βˆ1~N⎛ ⎜β1,⎝σ2 vnσ4 X⎞ ⎟,其中vi=(Xi–μX)ui⎠4关于某个回归系数的检验要根据样本数据检验一个关于斜率真值的假设,例如β1 = 0,步骤为: z 原假设对应双边备择假设为:H0: β1 = β1,0 ;. H1: β1 ≠ β1,0 原假设含义为假设总体斜率β1 的真值为某个具体值β1,0z 原假设对应单边备择假设为: H0: β1 = β1,0 ; H1: β1 < β1,05一般方法:计算 t 统计量,计算 p 值(或者与 N(0,1)的临界值 进行比较)• 一般形式:t=估计量 -假设值 估计量的标准误差• 对于检验 Y 的均值 :t = Y − μY ,0 sY / n• 对于检验 β1,t=βˆ1 − β1,0 SE ( βˆ1 ),其中 SE(βˆ1)为βˆ1的标准误差σ βˆ1 的估计值,是βˆ1抽样分布 的标准差。

一元线性回归假设检验与预测

一元线性回归假设检验与预测

第五章 双变量回归:区间估计与假设检验5.1 引言我们首先简要复习概率统计中关于假设检验的内容.1.假定随机变量X 有概率密度函数(PDF )θθ),,(x f 为分布参数。

从总体中抽取样本可得到参数估计为θˆ(如0.5,或1.2等),这是通过样本所得到的是参数的点估计,而真正的θ 一般是未知的,问题在于:估计量θˆ是否与总体真值或某个特定的或假设的*θ相等即*ˆθθ=,如假定*θ为总体真值,而样本是从总体中随机抽取,由此,接受*ˆθθ=就意味着我们的样本是来自于对应的总体,于是检验假设*θθ=,就是回答这一类问题。

用术语表示,对于原假设H 0:*θθ=,与之相对立的称为备选假设,记为H A :*θθ≠,显然,这种原假设和备选假设为简单的相等和不相等,称为复合(备)假设,因为拒绝原假设不能回答是*θθ>还是*θθ<,而类似于*θθ=对*θθ>称为简单假设。

于是对于所得到的估计量,我们以上的假设表述为H 0:*θθ= H A :*θθ≠ (5.1)要检验这种原对备选假设,必须使用样本信息,构造一个合适的统计量,并且原假设下这种统计量的抽样分布必须已知。

最后,为检验H 0对H A ,我们首先应所选定一个显著性水平,根据统计量的抽样分布而查对应的临界值表而得到相应的临界值,若所计算的统计量值小于这一临界值,或者说统计量值落入接受(原假设)域,则不拒绝H 0,否则拒绝H 0而倾向于接受备选假设H A 。

2.置信区间法。

思想: 对于样本X i , ,i =1,2,…,n , 来自于正态总体),(2σμN ,且相互独立, 构造一个基于样本信息的区间,使总体分布参数(以均值为例)以较大的可能性落入这一区间. 则这一区间为置信区间. 根据中心极限定理,有)/,(~2n N X σμ 置信区间构造的思想是,对于X 的正态分布,建立它的一个100(1-α)的置信区间,使这一区间包含了μ的置信水平(概率)为100(1-α)。

第五章一元线性回归

第五章一元线性回归

这三个准则也称作估计量的小样本性质。
拥有这类性质的估计量称为最佳线性无偏估计 量(best liner unbiased estimator, BLUE)。 当不满足小样本性质时,需进一步考察估计量的 大样本或渐近性质: (4)渐近无偏性,即样本容量趋于无穷大时,是 否它的均值序列趋于总体真值; (5)一致性,即样本容量趋于无穷大时,它是否 依概率收敛于总体的真值; (6)渐近有效性,即样本容量趋于无穷大时,是 否它在所有的一致估计量中具有最小的渐近方差。
i
X )
1 n

ei
可得
ˆ ˆ yi 1xi
Hale Waihona Puke (**)(**)式也称为样本回归函数的离差形式。
三、参数估计的最大或然法(ML)
最大或然法(Maximum Likelihood,简称ML), 也称最大似然法,是不同于最小二乘法的另一种 参数估计方法,是从最大或然原理出发发展起来 的其它估计方法的基础。 基本原理: 对于最大或然法,当从模型总体随机抽取n组 样本观测值后,最合理的参数估计量应该使得从 模型中抽取该n组样本观测值的概率最大。
ˆ ˆ 0 Y 0 X 1567
0 . 777 2150
103 . 172
因此,由该样本估计的回归方程为:
ˆ Y i 103 . 172 0 . 777 X
i
四、最小二乘估计量的性质
当模型参数估计出后,需考虑参数估计值的 精度,即是否能代表总体参数的真值,或者说需 考察参数估计量的统计性质。 一个用于考察总体的估计量,可从如下几个方 面考察其优劣性: (1)线性性,即它是否是另一随机变量的线性 函数; (2)无偏性,即它的均值或期望值是否等于总 体的真实值; (3)有效性,即它是否在所有线性无偏估计量 中具有最小方差。

一元线性回归分析

一元线性回归分析

一元线性回归分析摘要:一元线性回归分析是一种常用的预测和建模技术,广泛应用于各个领域,如经济学、统计学、金融学等。

本文将详细介绍一元线性回归分析的基本概念、模型建立、参数估计和模型检验等方面内容,并通过一个具体的案例来说明如何应用一元线性回归分析进行数据分析和预测。

1. 引言1.1 背景一元线性回归分析是通过建立一个线性模型,来描述自变量和因变量之间的关系。

通过分析模型的拟合程度和参数估计值,我们可以了解自变量对因变量的影响,并进行预测和决策。

1.2 目的本文的目的是介绍一元线性回归分析的基本原理、建模过程和应用方法,帮助读者了解和应用这一常用的数据分析技术。

2. 一元线性回归模型2.1 模型表达式一元线性回归模型的基本形式为:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。

2.2 模型假设一元线性回归模型的基本假设包括:- 线性关系假设:自变量X与因变量Y之间存在线性关系。

- 独立性假设:每个观测值之间相互独立。

- 正态性假设:误差项ε服从正态分布。

- 同方差性假设:每个自变量取值下的误差项具有相同的方差。

3. 一元线性回归分析步骤3.1 数据收集和整理在进行一元线性回归分析之前,需要收集相关的自变量和因变量数据,并对数据进行整理和清洗,以保证数据的准确性和可用性。

3.2 模型建立通过将数据代入一元线性回归模型的表达式,可以得到回归方程的具体形式。

根据实际需求和数据特点,选择适当的变量和函数形式,建立最优的回归模型。

3.3 参数估计利用最小二乘法或最大似然法等统计方法,估计回归模型中的参数。

通过最小化观测值与回归模型预测值之间的差异,找到最优的参数估计值。

3.4 模型检验通过对回归模型的拟合程度进行检验,评估模型的准确性和可靠性。

常用的检验方法包括:残差分析、显著性检验、回归系数的显著性检验等。

4. 一元线性回归分析实例为了更好地理解一元线性回归分析的应用,我们以房价和房屋面积之间的关系为例进行分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ˆ)b E (b 1 1
ˆ) 证:E(b 1
ˆ )b E (b 0 0
ˆ) 证:E(b 0 ˆ X) E (Y b
1
x i 2 E (b0 b1 X i ui ) xi xi b1 2 E (ui ) xi b1 K i E (ui ) b1
某参数真值为 ,设和 为其无偏估计,对于任 意样本容量, 始终存在VAR( ) VAR( ),我们称比 有效, 如果在的一切无偏估计中, VAR( )有最小值,则称 为其有效估计
4、小结:最佳线性无偏估计量
最佳线性无偏估计量(BLUE):在所 有线性无偏估计量中,方差最小的估计量 评价点估计量是否优良的的标准 返回
零均值假定
假定1:随机误差项均值为零 随机误差项囊括了大量未包括进模型的各 种变量影响之和,他们相互抵消,对被解 释变量没有系统性影响 E(µ|Xi)=0,简写为E(µi)=0
随机误差项均值为零
Y X=1000
X=1100
X=900
具体的 支出水 平是围 绕其条 件均值 波动的, 这种波 动的 “均值 为0”
第二节 OLS估计量的性质:高斯-马 尔可夫定理 p37
一、高斯-马尔可夫定理
二、ols估计量的概率分布 返回
一、高斯-马尔可夫定理
在所有线性无偏估计量中,普通最小二乘 (OLS)估计量有最小方差
即OLS估计量是最佳线性无偏估计量 1、线性 2、无偏性 3、最小方差性 4、小结 5、例题 返回
高斯-马尔科夫理论所考虑的 各种估计值分类图
最 小 二 乘 估 计 值 | 方 差 最 小
线性无 偏估计 值
线 性 估 计 值
所 有 的 估 计 值
返回
1、线性性:参数估计量是被解释变量Yi的线性组合:
ˆ 、b ˆ 都是Y 的线性函数 b 1 0 i
xi yi xi (Yi Y ) xiYi (xi ) xi ˆ b1 Y Yi 2 2 2 2 2 xi xi xi xi xi
xi ˆ KY 令 2 Ki , (K i 是常数),则b 1 i i xi 且K i 0; K i X i 1
ˆ Y b ˆX b 0 1
xi xi 1 Y X Yi ( X )Yi 2 2 xi n xi
返回
2、无偏性,估计量的均值=其对应参数的真值
X
散点图
同方差假定
假定2:随机误差项方差相同
VAR(i ) ,随机误差项的方差俱为
2
2
即与给定X相对应的Y值以相同方差分布在其条件 均值周围。 如果不满足这个假定,即为“异方差” 异方差的图示
异方差的图示
X=1000时,Y的 分布更靠拢均值。 即方差相对较小。
X=1000 X=900
某参数真值为,其估计量为,则 该估计量均值为 E( ),当E( ) 时,我们称 为的无偏估计
3、有效性
同一个参数的所有无偏估计量中,方差最小的那 个估计量称为有效估计量
方差衡量了数据的离散程度,估计量具备有效性,即
方差最小,可使其尽量靠近对应的待估参数的真值 (作图)返回
假定8 :如果有多个解释变量,要求解释变量间 没有很强的线性关系
无多重共线性
假定9:线性:回归模型对参数而言是线性的
二、优良估计量应具备的性质p35
评价点估计量是否优良的的标准: 1、线性 2、无偏性 3、有效性 4、小结:最佳线性无偏估计量 5、一致性(略) 返回
三、假定的意义
如果满足这些假定,则高斯-马尔可夫定理成立:
在所有线性无偏估计量中,普通最小二乘(OLS)估计
量有最小方差。即OLS估计量是blue.这使得OLS估计 量有着优良的性质可以进行统计推断
完全满足这些假定的方程在现实中是不存在的, 但这些假定为我们提供了一个比较的基准,本课 其他部分主要是围绕假定不被满足时,分析后果, 提出解决办法。返回

假定5:正态性假定:随机误差项服从正态分布
i ~ N (0, )
2
假定6:样本容量N>待估参数个数 假定7:解释变量 X值有变异性
即X有一个相对较大的取值范围 如果X只在一个狭窄的范围内变动,则无法充分估计X
对被解释变量Y的系统影响。 例:如果收入差异不大,我们无法观察支出Y的变动
1、线性
若估计量 是样本观测值的线性函数,则称 该估计量为线性估计量 意义:线性估计量Fra bibliotek理起来相对简单
样本均值就是一个线性估计量
返回
2、无偏性
估计量的均值=其对应的待估参数的真值(作 图)。
意义:随机变量围绕其均值,即数学期望波动,估计
量具备无偏性可使其尽量靠近对应的待估参数的真值 样本均值就是一个无偏估计量。返回
第五章:一元线性回归模型的假 设检验
目录
第一节 经典线性回归模型的基本假定 第二节 OLS估计量的性质:高斯-马尔可夫 定理 第三节 一元线性回归模型的假设检验 第四节 预测 第五节 eviews软件入门和综合案例 考核要求和作业
第一节 经典线性回归模型的基本假定 p29
无自相关假定
假定3:无自相关,即两个随机误差项之间不相关
cov(i , j ) 0, i j
也称无序列自相关,两个随机误差项之间不相关,即两
个Y之间也不相关。
假定4:随机误差项和解释变量不相关
当X是非随机的时,该假定自动满足 X是抽样时候人为设定的:比如前例中把家庭收入分
经典线性回归模型:classical liner regression model ,CLRM 一、9个假定 二、优良估计量应当具备的性质 三、假定的意义 返回
一、9个假定
1、零均值假定 2、同方差假定 3、无自相关假定 4、随机误差项和解释变量不相关假定 5、正态性假定 6、样本容量N>待估参数个数 7、解释变量 X值有变异性 8、无多重共线性假定 9、参数线性假定
相关文档
最新文档