多元线性回归模型的各种检验方法.doc

合集下载

多元线性回归模型的估计、回归系数和回归方程的检验、标准化回归方程、预测

多元线性回归模型的估计、回归系数和回归方程的检验、标准化回归方程、预测

实验二:多元线性回归模型的估计、回归系数和回归方程的检验、标准化回归方程、预测实验题目:研究货运总量y(万吨)与工业总产量x1(亿元),农业总产值x2(亿元),居民非商品支出x3(亿元)的关系。

数据如表:1.计算y,x1,x2,x3的相关系数矩阵;2.求y关于x1,x2,x3的三元线性回归方程;3.对所求得的方程作拟合度检验4.对回归方程作显著性检验;5.对每一个回归系数作显著性检验;6.如果有的回归系数没有通过显著性检验,将其剔除,重新建立回归方程,再作回归方程的显著性检验和回归系数的显著性检验;7.求出新回归方程的每一个回归系数的置信水平为95%的置信区间;8.求标准化回归方程;9.求当x01=75,x1=42, x2=3.1时的y的预测值,给定置信水平为95%,用SPSS 软件计算精确置信区间,手工计算近似预测区间?10 结合回归方程对问题作一些基本分析。

数据如下:y x1 x2 x31607035 1.02607540 2.42106540 2.02657442 3.02407238 1.22206845 1.52757842 4.01606636 2.02757044 3.22506542 3.0实验目的:掌握多元线性回归模型的估计、回归系数和回归方程的检验、标准化回归方程、预测SPSS主要操作:操作步骤类似于一元线性回归模型的方法SPSS输出结果及答案:1:y,x1,x2,x3的相关系数矩阵如下表:由上述输出结果知:y=-348.280+3.754x1+7.101x2+12.447x3 3模型汇总b模型R R 方调整 R 方标准估计的误差1 .898a.806 .708 23.44188a. 预测变量: (常量), 居民非商品支出X3(亿元), 工业总产值X1(亿元), 农业总产值X2(亿元)。

b. 因变量: 货运总量Y(万吨)由上述输出结果知:调整R square=0.708,拟合的较好4Anova b模型平方和df 均方 F Sig.1 回归13655.370 3 4551.790 8.283 .015a残差3297.130 6 549.522总计16952.500 9a. 预测变量: (常量), 居民非商品支出X3(亿元), 工业总产值X1(亿元), 农业总产值X2(亿元)。

多元线性回归模型的各种检验方法

多元线性回归模型的各种检验方法

对多元线性回归模型的各种检验方法对于形如u X X X Y k k +++++=ββββ 22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验:一、 对单个总体参数的假设检验:t 检验在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。

特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。

如果拒绝0H ,说明解释变量j X 对被解释变量Y 具有显著的线性影响,估计值j βˆ才敢使用;反之,说明解释变量j X 对被解释变量Y 不具有显著的线性影响,估计值j βˆ对我们就没有意义。

具体检验方法如下:(1) 给定虚拟假设 0H :j j a =β;(2) 计算统计量 )ˆ(ˆ)ˆ()(ˆjj j j j j Se a Se E t βββββ-=-= 的数值; 11ˆ)ˆ(++-==j j jj jj j C C Se 1T X)(X ,其中σβ(3) 在给定的显著水平α下(α不能大于1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ;(4) 如果出现 2/αt t >的情况,检验结论为拒绝0H ;反之,无法拒绝0H 。

t 检验方法的关键是统计量 )ˆ(ˆj jj Se t βββ-=必须服从已知的t 分布函数。

什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定):(1) 随机抽样性。

我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21 =。

这保证了误差u 自身的随机性,即无自相关性,0))())(((=--j j i i u E u u E u Cov 。

(2) 条件期望值为0。

给定解释变量的任何值,误差u 的期望值为零。

多元线性回归模型的统计检验

多元线性回归模型的统计检验
在总体上存在显著的线性关系; ❖ 若F F (k , n-k-1),接受H0 ,模型在总体
上的线性关系不显著。
12ቤተ መጻሕፍቲ ባይዱ
❖F检验只是把模型作为一个整体,对总体 线性关系进行检验;
❖方程在总体上存在显著的线性关系 每个解释变量对被解释变量都具有显著影响
❖还应对模型中的各个解释变量进行显著性 检验,以决定它们是否应当作为解释变量 被保留在模型之中。
可决系数R2 ESS 1 RSS
TSS
TSS
R2越接近于1,模型的拟合效果越好。
2
问题
❖ 如果在模型中增加一个解释变量,R2往往会 增大(Why?)
❖ 容易产生错觉:要使模型拟合得好,只要增 加解释变量即可。
❖ 但实际上,通过增加解释变量引起的R2的增 大与拟合好坏无关。
❖ R2度量模型拟合效果失真,R2需调整 。
9
若H0 成立,则有:
F
ESS / k
RSS /n k
1
~
F (k
,
n
k
1)
由样本数据求出F统计量的值。
(3)给定显著性水平,查表得到临界
值F(k , n-k-1)。
10
F检验的拒绝域
f (F)
1-
F F
11
(4)比较、判断 ❖ 若F F (k , n-k-1),拒绝H0,接受H1 ,模型
开关
类型,尽量选择平头

类的按键,以防按键
下陷。
2.开关按键和塑胶按
F检验的思想来自于TSS的分解: TSS = ESS + RSS
其中,ESS表示X对Y的线性作用结果。
考虑比值:ESS / RSS 如果这个比值较大,则X对Y的解释程 度较高,可认为二者在总体上存在线性 关系;

多元线性回归模型的各种检验方法

多元线性回归模型的各种检验方法

对多元线性回归模型的各种检验方法对于形如u X X X Y k k +++++=ββββ 22110 (1)的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验:一、 对单个总体参数的假设检验:t 检验在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。

特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。

如果拒绝0H ,说明解释变量j X 对被解释变量Y 具有显著的线性影响,估计值j βˆ才敢使用;反之,说明解释变量j X 对被解释变量Y 不具有显著的线性影响,估计值j βˆ对我们就没有意义。

具体检验方法如下:(1) 给定虚拟假设 0H :j j a =β;(2) 计算统计量 )ˆ(ˆ)ˆ()(ˆjj j j j j Se a Se E t βββββ-=-= 的数值; 11ˆ)ˆ(++-==j j jj jj j C C Se 1T X)(X ,其中σβ(3) 在给定的显著水平α下(α不能大于1.0即10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ;(4) 如果出现 2/αt t >的情况,检验结论为拒绝0H ;反之,无法拒绝0H 。

t 检验方法的关键是统计量 )ˆ(ˆj jj Se t βββ-=必须服从已知的t 分布函数。

什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定):(1) 随机抽样性。

我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21 =。

这保证了误差u 自身的随机性,即无自相关性,0))())(((=--j j i i u E u u E u Cov 。

(2) 条件期望值为0。

给定解释变量的任何值,误差u 的期望值为零。

多元线性回归模型检验

多元线性回归模型检验

多元线性回归模型检验引言多元线性回归是一种常用的统计分析方法,用于研究两个或多个自变量对目标变量的影响。

在应用多元线性回归前,我们需要确保所建立的模型符合一定的假设,并进行模型检验,以保证结果的可靠性和准确性。

本文将介绍多元线性回归模型的几个常见检验方法,并通过实例进行说明。

一、多元线性回归模型多元线性回归模型的一般形式可以表示为:$$Y = \\beta_0 + \\beta_1X_1 + \\beta_2X_2 + \\ldots + \\beta_pX_p +\\varepsilon$$其中,Y为目标变量,$X_1,X_2,\\ldots,X_p$为自变量,$\\beta_0,\\beta_1,\\beta_2,\\ldots,\\beta_p$为模型的回归系数,$\\varepsilon$为误差项。

多元线性回归模型的目标是通过调整回归系数,使得模型预测值和实际观测值之间的误差最小化。

二、多元线性回归模型检验在进行多元线性回归分析时,我们需要对所建立的模型进行检验,以验证假设是否成立。

常用的多元线性回归模型检验方法包括:1. 假设检验多元线性回归模型的假设包括:线性关系假设、误差项独立同分布假设、误差项方差齐性假设和误差项正态分布假设。

我们可以通过假设检验来验证这些假设的成立情况。

•线性关系假设检验:通过F检验或t检验对回归系数的显著性进行检验,以确定自变量与目标变量之间是否存在线性关系。

•误差项独立同分布假设检验:通过Durbin-Watson检验、Ljung-Box 检验等统计检验,判断误差项是否具有自相关性。

•误差项方差齐性假设检验:通过Cochrane-Orcutt检验、White检验等统计检验,判断误差项的方差是否齐性。

•误差项正态分布假设检验:通过残差的正态概率图和Shapiro-Wilk 检验等方法,检验误差项是否满足正态分布假设。

2. 多重共线性检验多重共线性是指在多元线性回归模型中,自变量之间存在高度相关性的情况。

多元线性回归模型的各种检验方法

多元线性回归模型的各种检验方法

对多元线性回归模型的各种检验方法对于形如u X X X Y k k +++++=ββββΛΛ22110 (1)的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验:一、 对单个总体参数的假设检验:t 检验在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。

特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。

如果拒绝0H ,说明解释变量j X 对被解释变量Y 具有显著的线性影响,估计值j βˆ才敢使用;反之,说明解释变量j X 对被解释变量Y 不具有显著的线性影响,估计值j βˆ对我们就没有意义。

具体检验方法如下:(1) 给定虚拟假设 0H :j j a =β;(2) 计算统计量 )ˆ(ˆ)ˆ()(ˆjj j j j j Se a Se E t βββββ-=-= 的数值; 11ˆ)ˆ(++-==j j jj jj j C C Se 1T X)(X ,其中σβ(3) 在给定的显著水平α下(α不能大于1.0即10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ;(4) 如果出现 2/αt t >的情况,检验结论为拒绝0H ;反之,无法拒绝0H 。

t 检验方法的关键是统计量 )ˆ(ˆj jj Se t βββ-=必须服从已知的t 分布函数。

什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定):(1) 随机抽样性。

我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21ΛΛ=。

这保证了误差u 自身的随机性,即无自相关性,0))())(((=--j j i i u E u u E u Cov 。

(2) 条件期望值为0。

给定解释变量的任何值,误差u 的期望值为零。

多元线性回归模型的各种检验方法

多元线性回归模型的各种检验方法

多元线性回归模型的各种检验方法多元线性回归模型是常用于数据分析和预测的方法,它可以用于研究多个自变量与因变量之间的关系。

然而,仅仅使用多元线性回归模型进行参数估计是不够的,我们还需要对模型进行各种检验以确保模型的可靠性和有效性。

下面将介绍一些常用的多元线性回归模型的检验方法。

首先是模型的整体显著性检验。

在多元线性回归模型中,我们希望知道所构建的模型是否能够显著解释因变量的变异。

常见的整体显著性检验方法有F检验和显著性检查表。

F检验是通过比较回归模型的回归平方和和残差平方和的比值来对模型的整体显著性进行检验。

若F值大于一定的临界值,则可以拒绝原假设,即模型具有整体显著性。

通常,临界值是根据置信水平和自由度来确定的。

显著性检查表是一种常用的汇总表格,它可以提供关于回归模型的显著性水平、标准误差、置信区间和显著性因素的信息。

通过查找显著性检查表,我们可以评估模型的显著性。

其次是模型的参数估计检验。

在多元线性回归模型中,我们希望知道每个自变量对因变量的影响是否显著。

通常使用t检验来对模型的参数估计进行检验。

t检验是通过对模型的回归系数进行检验来评估自变量的影响是否显著。

与F检验类似,t检验也是基于假设检验原理,通过比较t值和临界值来决定是否拒绝原假设。

通常,临界值可以通过t分布表或计算机软件来获取。

另外,我们还可以使用相关系数来评估模型的拟合程度。

相关系数可以用来衡量自变量与因变量之间的线性关系强度,常见的相关系数包括Pearson相关系数和Spearman相关系数。

Pearson相关系数适用于自变量和因变量都是连续变量的情况,它衡量的是两个变量之间的线性关系强度。

取值范围为-1到1,绝对值越接近1表示关系越强。

Spearman相关系数适用于自变量和因变量至少有一个是有序变量或者都是有序变量的情况,它衡量的是两个变量之间的单调关系强度。

取值范围也是-1到1,绝对值越接近1表示关系越强。

最后,我们还可以使用残差分析来评估模型的拟合程度和误差分布。

计量经济学第三章第3节多元线性回归模型的显著性检验

计量经济学第三章第3节多元线性回归模型的显著性检验

ˆ b ˆ X b ˆY ˆ b Y t 0 1 t 2 t 1 ˆ b ˆ X b ˆ Y b ˆY ˆ b Y
t 0 1 t 2 t 1
3 t 2
其中t为当前期变量,t-k称为k期滞后变量。
1) 使用软件估计模型
将之前已经建立的Workfile文件打开 点击菜单中的“Quick”→“Estimate Equations”
2
2
2
*赤池信息准则和施瓦茨准则
• 为了比较所含解释变量个数不同的多元回归模型的 拟合优度,常用的标准还有: 赤池信息准则(Akaike information criterion, AIC) e e 2( k 1) AIC ln n n 施瓦茨准则(Schwarz criterion,SC)
Yi b0 b1 X1i b2 X 2i bk X ki ui
样本回归方程为:
ˆ b ˆ X b ˆ X b ˆ X ˆ b Y i 0 1 1i 2 2i k ki
我们将Yi与其平均值Y之间的离差分解如下 ˆ ) (Y ˆ Y ) Y Y (Y Y
B)调整后的拟合优度(样本决定系数)
RSS n k 1 n 1 RSS R 1 1 TSS n 1 n k 1 TSS n 1 2 2 即,R 1 ( 1 R ) n k 1
2
说明:
n 1 “ ”与“1-R 2? 一增一减,此消彼长 n k 1 从而保证R 2不会随解释变量个数的变化产生大的波动。
在对话框中输入:
y c x y(-1)
y c x y(-1) y(-2)
字母之间用空格分隔。 注:滞后变量不需重新形成新的时间序列,软件 自动运算实现,k期滞后变量,用y(-k)表示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对多元线性回归模型的各种检验方法对于形如u X X X Y k k +++++=ββββΛΛ22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验:一、 对单个总体参数的假设检验:t 检验在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。

特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。

如果拒绝0H ,说明解释变量j X 对被解释变量Y 具有显著的线性影响,估计值j βˆ才敢使用;反之,说明解释变量j X 对被解释变量Y 不具有显著的线性影响,估计值j βˆ对我们就没有意义。

具体检验方法如下:(1) 给定虚拟假设 0H :j j a =β;(2) 计算统计量 )ˆ(ˆ)ˆ()(ˆjj j j j j Se a Se E t βββββ-=-= 的数值; 11ˆ)ˆ(++-==j j jj jj j C C Se 1T X)(X ,其中σβ(3) 在给定的显著水平α下(α不能大于1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ;(4) 如果出现 2/αt t >的情况,检验结论为拒绝0H ;反之,无法拒绝0H 。

t 检验方法的关键是统计量 )ˆ(ˆj jj Se t βββ-=必须服从已知的t 分布函数。

什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定):(1) 随机抽样性。

我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21ΛΛ=。

这保证了误差u 自身的随机性,即无自相关性,0))())(((=--j j i i u E u u E u Cov 。

(2) 条件期望值为0。

给定解释变量的任何值,误差u 的期望值为零。

即有0),,,(21=k X X X u E Λ这也保证了误差u 独立于解释变量X X X ,,,21Λ,即模型中的解释变量是外生性的,也使得0)(=u E 。

(3) 不存在完全共线性。

在样本因而在总体中,没有一个解释变量是常数,解释变量之间也不存在严格的线性关系。

(4) 同方差性。

常数==221),,,(σk X X X u Var Λ。

(5) 正态性。

误差u 满足 ),0(~2σNormal u 。

在以上5个前提下,才可以推导出:1~)ˆ(/)ˆ()1,0(~)ˆ(/)ˆ()]ˆ(,[~ˆ----k n j j j jj j jj j t Se N Sd Var N βββββββββ由此可见,t 检验方法所要求的条件是极为苛刻的。

二、 对参数的一个线性组合的假设的检验需要检验的虚拟假设为 0H :21j j ββ=。

比如21ββ=无 法直接检验。

设立新参数211ββθ-=。

原虚拟假设等价于0H :01=θ。

将211βθβ+=代入原模型后得出新模型:u X X X X Y k k ++++++=ββθβΛΛ)(212110 (2)在模型(2)中再利用t 检验方法检验虚拟假设0H :01=θ。

我们甚至还可以检验这样一个更一般的假设 C H k k =+++=βλβλβλΛ11000:λβ t 统计量为 )1(~ˆ2---=-k n t Se t T λX)λ(X λββλ1T三、 对参数多个线性约束的假设检验:F 检验需要检验的虚拟假设为 0H :0,,,021==+-+-k q k q k βββΛ。

该假设对模型(1)施加了q 个排除性约束。

模型(1)在该约束下转变为如下的新模型:u X X X Y q k q k +++++=--ββββΛΛ22110 (3) 模型(1)称为不受约束(ur )的模型,而模型(3)称为受约束(r )的模型。

模型(3)也称为模型(1)的嵌套模型,或子模型。

分别用OLS 方法估计模型(1)和(2)后,可以计算出如下的统计量:())1/(/---=k n RSS q RSS RSS F ur ur r关键在于,不需要满足t 检验所需要的假定(3),统计量F 就满足:1,~--k n q F F 。

利用已知的F 分布函数,我们就可以拒绝或接受虚拟假设 0H :0,,,021==+-+-kq k q k βββΛ了。

所以,一般来讲,F 检验比t 检验更先使用,用的更普遍,可信度更高。

利用关系式)1(2r r R TSS RSS -=,)1(2ur ur R TSS RSS -=,F 统计量还可以写成:())1/()1(/222----=k n R q R R F ur r ur四、 对回归模型整体显著性的检验:F 检验需要检验的虚拟假设为 0H :0,,,021==k βββΛ。

相当于前一个检验问题的特例,k q =。

嵌套模型变为 u Y +=0β。

02=r R ,TSS RSS r =,22R R ur =。

F 统计量变为: )1/(/)1/()1(/22--=---=k n RSS k ESS k n R k R F 五、 检验一般的线性约束需要检验的虚拟假设比如为 0H :0,,,121==k βββΛ。

受约束模型变为:u X Y ++=10β再变形为:u X Y +=-01β。

F 统计量只可用:())1/(/---=k n RSS q RSS RSS F ur ur r 其中,[][]∑∑---=---==-211211)()()()(1X X Y Y X Y X Y TSS RSS i i i i X Y r 。

六、 检验两个数据集的回归参数是否相等:皱(至庄)检验虚拟假定是总体回归系数的真值相等。

步骤如下:(1) 基于两组样本数据,进行相同设定的回归,将二者的RSS 分别记为1RSS 和2RSS 。

(2) 将两组样本数据合并,基于合并的样本数据,进行相同设定的回归,将回归的RSS 记为T RSS 。

(3) 计算下面的F 统计量:)22/()()1/()(212121--+++--=k n n RSS RSS k RSS RSS RSS F T (4) 如果αF F ≥,拒绝原假定。

七、 非正态假定下多个线性约束的大样本假设检验:LM (拉格郎日乘数)检验F 检验方法需要模型(1)中的u 满足正态性假定。

在不满足正态性假定时,在大样本条件下,可以使用LM 统计量。

虚拟假设依然是0H :0,,,021==+-+-k q k q k βββΛ。

LM 统计量仅要求对受约束模型的估计。

具体步骤如下:(ⅰ)将Y 对施加限制后的解释变量进行回归,并保留残差u ~。

即我们要进行了如下的回归估计u X X X Y q k q k ~~~~~22110+++++=--ββββΛΛ (ⅱ)将u ~对所有解释变量进行辅助回归,即进行如下回归估计 εααααˆˆˆˆˆ~22110+++++=k k X X X u ΛΛ并得到R-平方,记为2u R 。

(ⅲ)计算统计量 2u nR LM =。

(ⅳ)将LM 与2q χ分布中适当的临界值c 比较。

如果c LM >,就拒绝虚拟假设0H ;否则,就不能拒绝虚拟假设0H 。

八、 对模型函数形式误设问题的一般检验:RESET如果一个多元回归模型没有正确地解释被解释变量与所观察到的解释变量之间的关系,那它就存在函数形式误设的问题。

误设可以表现为两种形式:模型中遗漏了对被解释变量有系统性影响的解释变量;错误地设定了一个模型的函数形式。

在侦察一般的函数形式误设方面,拉姆齐(Ramsey ,1969)的回归设定误差检验(regression specilfication error test , RESET )是一种常用的方法。

RESET 背后的思想相当简单。

如果原模型(1)满足经典假定(3),那么在模型(1)中添加解释变量的非线性关系应该是不显著的。

尽管这样做通常能侦察出函数形式误设,但如果原模型中有许多解释变量,它又有使用掉大量自由度的缺陷。

另外,非线性关系的形式也是多种多样的。

RESET 则是在模型(1)中添加模型(1)的OLS 拟合值的多项式,以侦察函数形式误设的一般形式。

为了实施RESET ,我们必须决定在一个扩大的回归模型中包括多少个拟合值的函数。

虽然对这个问题没有正确的答案,但在大多数应用研究中,都表明平方项和三次项很有用。

令Y ˆ表示从模型(1)所得到的OLS 估计值。

考虑扩大的模型εδδββββ+++++++=322122110ˆˆY Y X X X Y k k ΛΛ (4)这个模型看起来有些奇怪,因为原估计的拟合值的函数现在却出作为解释变量出现。

实际上,我们对模型(4)的参数估计并不感兴趣,我们只是利用这个模型来检验模型(1)是否遗漏掉了重要的非线性关系。

记住,2ˆY 和3ˆY都只是j X 的非线性函数。

对模型(4),我们检验虚拟假设0,0:210==δδH 。

这时,模型(4)是无约束模型,模型(1)是受约束模型。

计算F 统计量。

需要查3,2--k n F 分布表。

拒绝0H ,模型(1)存在误设,否则,不存在误设。

九、利用非嵌套模型检验函数形式误设寻求对函数形式误设的其他类型(比如,试图决定某一解释变量究竟应以水平值形式还是对数形式出现)作出检验,需要离开经典假设检验的辖域。

有可能要相对模型εββββ+++++=)log()log()log(22110k k X X X Y ΛΛ (5) 检验模型(1),或者把两个模型反过来。

然而,它们是非嵌套的,所以我们不能仅使用标准的F 检验。

有两种不同的方法。

一种方法由Mizon and Richard (1986)提出,构造一个综合模型,将每个模型作为一个特殊情形而包含其中,然后检验导致每个模型的约束。

对于模型(1)和模型(5)而言,综合模型就是++++=k k X X Y γγγΛ110μγγ++++++)log()log(11k k k k X X Λ (6)可以先检验0,,0:10==++k k k H δγΛ,作为对模型(1)的检验。

也可以通过对检验0,,0:10==kH δγΛ,作为对模型(5)的检验。

另一种方法由Davison and MacKinnon (1981)提出。

认为,如果模型(1)是正确的,那么从模型(5)得到的拟合值在模型(1)中应该是不显著的。

因此,为了检验模型(1)的正确性,首先用OLS 估计模型(5)以得到拟合值,并记为Y ˆˆ。

在新模型μθββββ++++++=Y X X X Y k k ˆˆ122110ΛΛ (7) 中计算Y ˆˆ的t 统计量,利用t 检验拒绝或接受假定0:10=θH 。

相关文档
最新文档