动态规划基础详解(二)
动态规划算法难点详解及应用技巧介绍

动态规划算法难点详解及应用技巧介绍动态规划算法(Dynamic Programming)是一种常用的算法思想,主要用于解决具有重叠子问题和最优子结构性质的问题。
在解决一些复杂的问题时,动态规划算法可以将问题分解成若干个子问题,并通过求解子问题的最优解来求解原始问题的最优解。
本文将详细介绍动态规划算法的难点以及应用技巧。
一、动态规划算法的难点1. 难点一:状态的定义在动态规划算法中,首先需要明确问题的状态。
状态是指问题在某一阶段的具体表现形式。
在进行状态定义时,需要考虑到问题的最优子结构性质。
状态的定义直接影响到问题的子问题划分和状态转移方程的建立。
2. 难点二:状态转移方程的建立动态规划算法是基于状态转移的思想,即通过求解子问题的最优解来求解原始问题的最优解。
因此,建立合理的状态转移方程是动态规划算法的关键。
在进行状态转移方程的建立时,需要考虑问题的最优子结构性质和状态之间的关系。
3. 难点三:边界条件的处理在动态规划算法中,边界条件是指问题的最简单情况,用于终止递归过程并给出递归基。
边界条件的处理需要考虑问题的具体要求和实际情况,确保问题能够得到正确的解。
二、动态规划算法的应用技巧1. 应用技巧一:最长递增子序列最长递增子序列是一类经典的动态规划问题。
其求解思路是通过定义状态和建立状态转移方程,找到问题的最优解。
在应用最长递增子序列问题时,可以使用一维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。
2. 应用技巧二:背包问题背包问题是另一类常见的动态规划问题。
其求解思路是通过定义状态和建立状态转移方程,将问题转化为子问题的最优解。
在应用背包问题时,可以使用二维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。
3. 应用技巧三:最短路径问题最短路径问题是动态规划算法的经典应用之一。
其求解思路是通过定义状态和建立状态转移方程,利用动态规划的思想来求解最优解。
在应用最短路径问题时,可以使用二维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。
动态规划.pdf

第三章:动态规划3.1 动态规划的基本概念一、动态决策问题:决策过程具有阶段性和时序性(与时间有关)的决策问题。
即决策过程可划分为明显的阶段。
二、什么叫动态规划(D.P.–Dynamic Program):多阶段决策问题最优化的一种方法。
广泛应用于工业技术、生产管理、企业管理、经济、军事等领域。
三、动态规划(D.P.)的起源:1951年,(美)数学家R.Bellman等提出最优化原理,从而建立动态规划,名著《动态规划》于1957年出版。
四、动态决策问题分类:1、按数据给出的形式分为:•离散型动态决策问题。
•连续型动态决策问题。
2、按决策过程演变的性质分为:•确定型动态决策问题。
•随机型动态决策问题。
五1、阶段(stage)n :作出决策的若干轮次。
n = 1、2、3、4、5。
2、状态(state)S n :每一阶段的出发位置。
构成状态集,记为S nS 1={A},S 2={B 1,B 2,B 3},S 3={C 1,C 2,C 3},S 4={D 1,D 2,D 3},S 5={E 1,E 2}。
阶段的起点。
3、决策(decision)X n :从一个阶段某状态演变到下一个阶段某状态的选择。
构成决策集,记为D n (S n )。
阶段的终点。
D 1(S 1)={X 1(A)}={B 1,B 2,B 3}= S 2,D 2(S 2)={X 2(B 1),X 2(B 2),X 2(B 3)}={C 1,C 2,C 3}=S 3,D 3(S 3)={X 3(C 1),X 3(C 2),X 3(C 3)}={D 1,D 2,D 3}=S 4,D 4(S 4)={X 4(D 1),X 4(D 2),X 4(D 3)}={E 1,E 2}=S 5D 5(S 5)={X 5(E 1),X 5(E 2)}={F;F}={F}。
4、策略(policy):全过程中各个阶段的决策Xn 组成的有序总体{Xn }。
如 A àB2àC1àD1àE2àF5、子策略(sub-policy):剩下的n个阶段构成n子过程,相应的决策系列叫n子策略。
动态规划的基本原理和基本应用

动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。
动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。
它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。
1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。
2.定义状态:确定存储子问题解的状态变量和状态方程。
3.确定边界条件:确定初始子问题的解,也称为边界状态。
4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。
5.求解最优解:通过遍历状态变量找到最优解。
1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。
可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。
2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。
给定一个序列,找到其中最长的递增子序列。
可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。
3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。
给定一系列矩阵,求解它们相乘的最小计算次数。
可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。
4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。
可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。
动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。
本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。
二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。
其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。
具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。
这种分解可以通过递归的方式进行。
2. 定义状态:确定每个子问题的独立变量,即问题的状态。
状态具有明确的定义和可计算的表达式。
3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。
这个方程可以是简单的递推关系式、递归方程或其他形式的方程。
4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。
三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。
假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。
目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。
这个问题可以通过动态规划算法来求解。
具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。
(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。
(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。
(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。
2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。
动态规划算法详解及经典例题

动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。
(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。
⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。
⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。
动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。
这样就能够从表中得到原始问题的解。
(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。
关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。
⽽在各阶段中。
⼈们都须要作出⽅案的选择。
我们称之为决策。
⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。
这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。
因为各个阶段可供选择的决策往往不⽌⼀个。
因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。
每⼀个策略都对应地确定⼀种活动的效果。
我们假定这个效果能够⽤数量来衡量。
因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。
经常是⼈们所关⼼的问题。
我们称这种策略为最优策略,这类问题就称为多阶段决策问题。
(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。
在⾼负荷下⽣产时。
产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y 的关系为h=h(y)。
动态规划(生产和存储问题)

动态规划(生产和存储问题)一、动态规划法的发展及其研究内容动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。
20世纪50年代初美国数学家R.E.BELLMAN等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段问题转化为一系列的单阶段问题,逐个求解创立了解决这类过程优化问题的新方法——动态规划。
1957年出版的他的名著《Dynamic Proggramming》,这是该领域的第一本著作。
动态规划问世以来,在经济管理·生产调度·工程技术和最优控制等方面得到了广泛的应用。
例如最短路线·库存管理·资源分配·设备更新·组合·排序·装载等问题,采用动态规划法求解比用其他方法更为简便。
二、动态规划法基本概念一个多阶段决策过程最优化问题的动态规划模型通常包括以下几个要素:1.阶段阶段(stage)是对整个过程的自然划分。
通常根据时间顺序或是空间特征来划分阶段,对于与时间,空间无关的“静态”优化问题,可以根据其自然特征,人为的赋予“时段”概念,将静态问题动态化,以便按阶段的顺序解优化问题。
阶段变量一般用k=1.2….n.表示。
1.状态状态(state)是我们所研究的问题(也叫系统)在过个阶段的初始状态或客观条件。
它应能描述过程的特征并且具有无后效性,即当某阶段的状态给定时,这个阶段以后的过程的演变与该阶段以前各阶段的状态无关。
通常还要求状态是可以直接或者是间接可以观测的。
描述状态的变量称为状态变量(State Virable)用s 表示,状态变量的取值集合称为状态集合,用S表示。
变量允许取值的范围称为允许状态集合(set of admissble states).用x(k)表示第k阶段的状态变量,它可以是一个数或者是一个向量。
用X(k)表示第k阶段的允许状态集合。
n 个阶段的决策过程有n+1个状态变量,x(n+1)是x(n)的演变的结果。
动态规划习题详解
动态规划动态规划是运筹学的一个分支,它是解决多阶段决策过程最优化问题的一种方法。
该方法是由美国数学家贝尔曼(R.Bellman)等人在本世纪50年代初提出的。
他们针对多阶段决策问题的特点,提出了解决这类问题的“最优化原理”,并成功地解决了生产管理、工程技术等方面的许多实际问题,从而建立了运筹学的一个新分支——动态规划。
他的名著《动态规划》于1957年出版,该书是动态规划的第一本著作。
动态规划是现代企业管理中的一种重要决策方法,在工程技术、经济管理、工农业生产及军事及其它部们都有广泛的应用,并且获得了显著的效果。
动态规划可用于解决最优路径问题、资源分配问题、生产计划与库存问题、投资分配问题、装载问题、设备更新与维修问题、排序问题及生产过程的最优控制等。
由于它所具有独特的解题思路,在处理某些优化问题时,常常比线性规划或非线性规划方法更有效。
第一节动态规划的基本方法多阶段决策的实际问题很多,下面通过具体例子,说明什么是动态规划模型及其求解方法。
例1:最短路线问题某工厂需要把一批货物从城市A运到城市E,中间可经过B1 、B2、B3、C1、C2、C3、D1、D2等城市,各城市之间的交通线和距离如下图所示,问应该选择一条什么路线,使得从A到E的距离最短?下面引进几个动态规划的基本概念和相关符号。
(1)阶段(Stage)把所给问题的过程,按时间和空间特征划分成若干个相互联系的阶段,以便按次序去求每个阶段的解,阶段总数一般用字母n表示,用字母k表示阶段变量。
如例l中 (最短路线问题)可看作是n=4阶段的动态规划问题,k=2表示处于第二阶段。
(2)状态(State)状态表示每个阶段开始时系统所处的自然状况或客观条件,它描述了研究问题过程状况。
描述各阶段状态的变量称为状态变量,常用字母sk表示第k阶段的状态变量,状态变量的取值范围称为状态集,用Sk表示。
如例l中,第一阶段的状态为A(即出发位置)。
第二阶段有三个状态:B1 、B2、B3,状态变量s2=B2表示第2阶段系统所处的位置是B2。
动态规划基础
动态规划(一)、动态规划的基本思想:动态规划算法通常用于求解具有某种最优性质的问题。
在这类问题中,可能会有许多可行解。
每一个解都对应于一个值,我们希望找到具有最优值的解。
动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。
若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。
如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。
我们可以用一个表来记录所有已解的子问题的答案。
不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。
这就是动态规划法的基本思路。
具体的动态规划算法多种多样,但它们具有相同的填表格式。
二、设计动态规划法的步骤:1、找出最优解的性质,并刻画其结构特征;2、递归地定义最优值(写出动态规划方程);3、以自底向上的方式计算出最优值;4、根据计算最优值时得到的信息,构造一个最优解。
步骤1-3是动态规划算法的基本步骤。
在只需要求出最优值的情形,步骤4可以省略,步骤3中记录的信息也较少;若需要求出问题的一个最优解,则必须执行步骤4,步骤3中记录的信息必须足够多以便构造最优解。
三、动态规划问题的特征:动态规划算法的有效性依赖于问题本身所具有的两个重要性质:最优子结构性质和子问题重叠性质。
1、最优子结构:当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。
2、重叠子问题:在用递归算法自顶向下解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。
动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,在以后尽可能多地利用这些子问题的解。
(二)、动态规划算法的基本步骤设计一个标准的动态规划算法,通常可按以下几个步骤进行:1.划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。
动态规划算法详解及应用实例
动态规划算法详解及应用实例动态规划算法是一种常见的解决各种最优化问题的算法。
它适用于很多复杂的问题,如图形分析、路线规划、搜索引擎等等。
本文将详细讲解动态规划算法的基本原理、特点和应用实例,供大家学习和借鉴。
一、动态规划算法基本原理动态规划,简称DP,是一种递推式算法,通过将问题分解成一系列子问题,并按照一定的顺序对子问题进行求解,最终得到问题的最优解。
其主要思想是:当我们在解题时遇到一个问题时,如果能将这个问题划分成若干个与原问题相似但规模更小的子问题,而这些子问题又可以逐一求解,最终将所有子问题的结果汇总起来得到原问题的解,那么这个问题就可以使用动态规划算法解决。
由于动态规划算法中有“最优解”的要求,所以在求解过程中需要涉及到状态转移方程的设计。
状态转移方程是一个数学公式,它描述了一个状态如何从前一个状态转移而来,以及在当前状态下所做的某些决策对下一个状态的影响。
通过不断迭代求解状态转移方程,我们可以得到最优解。
二、动态规划算法的特点1、动态规划是一种自底向上的策略,通常需要维护一个状态表格,记录下每个阶段的最优解,最后汇总起来得到问题的最终解。
2、动态规划通常具有“无后效性”的特点,即求解某个决策问题时,当前状态之后的决策不会影响之前的决策。
因此,在涉及到状态转移时,只需考虑当前状态和以前的状态即可。
3、动态规划通常包含两个要素:最优子结构和重叠子问题。
最优子结构是指一个问题的最优解由其子问题的最优解递推而来,而重叠子问题则是指在递归求解的过程中,同一问题会被反复求解多次,因此需要使用记忆化搜索等技巧,避免重复计算。
4、动态规划算法的时间复杂度通常是O(n^2)或O(n^3),空间复杂度通常也会比较高。
三、应用实例:0-1背包问题0-1背包问题是指在背包容量固定的情况下,如何选择物品才能使得背包装载的价值最大,其中每个物品只能选择一次。
对于此类问题,可以采用动态规划算法进行求解。
首先需要确定问题的状态转移方程,具体如下:设f(i,j)表示在前i个物品中,当背包的容量为j时,能够装载的最大价值,那么状态转移方程为:f(i,j)=max{f(i-1,j), f(i-1,j-wi)+vi}其中,wi表示第i个物品的重量,vi表示第i个物品的价值。
《动态规划》课件
动态规划具有最优子结构和重叠子问题的特点,能够通过保存已解决的子问题来避免重复计 算。
应用场景
动态规划广泛应用于路线规划、资源分配、序列匹配等问题,能够有效地解决复杂的优化和 决策问题。
动态规划的优缺点
1 优点
动态规划能够提供最优的解决方案,同时能够高效地解决问题,避免重复计算。
2 缺点
使用动态规划解决问题需要设计状态转移方程,对于复杂问题可能需要较高的思维和计 算复杂度。
《动态规划》PPT课件
欢迎来到《动态规划》PPT课件! 本课程将深入探讨动态规划的应用和技巧, 帮助你理解这一强大的问题求解方法。
什么是动态规划
动态规划是一种通过将问题拆分为更小的子问题,并根据子问题的解来求解 原问题的方法。它可以应用于许多领域,包括优化、组合数学和图论。动态规划的特点 Nhomakorabea应用场景
参考资料
• 经典教材 • 学术论文 • 网络资源
确定问题的初始状态和结束条件,作为动态规划的边界。
4
确定优化方向
选择最优的状态转移路径,以达到问题的最优解。
经典问题解析
斐波那契数列
通过动态规划求解斐波那契数列,可以有效 地避免重复计算,提高计算效率。
最长公共子序列
使用动态规划求解最长公共子序列,可以在 时间复杂度为O(n*m)的情况下找到最长公共 子序列。
最优子结构
定义
最优子结构表示一个问题的最优解可以通过子 问题的最优解来构建。
举例
在路径规划问题中,通过求解子问题的最短路 径,可以获得整个路径规划的最短路径。
重叠子问题
定义
重叠子问题表示一个问题的子问题会被重复计 算多次。
举例
在斐波那契数列中,计算每个数字需要依赖于 前两个数字,导致重复计算了相同的子问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 i j t[i][ j ] min{t[i][k ] t[k 1][ j ] w(vi 1vk v j )} i j i k j
15
多边形游戏
多边形游戏是一个单人玩的游戏,开始时有一个由n个顶点 构成的多边形。每个顶点被赋予一个整数值,每条边被赋予一 个运算符“+”或“*”。所有边依次用整数从1到n编号。 游戏第1步,将一条边删除。 随后n-1步按以下方式操作: (1)选择一条边E以及由E连接着的2个顶点V1和V2; (2)用一个新的顶点取代边E以及由E连接着的2个顶点V1和V2。 将由顶点V1和V2的整数值通过边E上的运算得到的结果赋予新 顶点。 最后,所有边都被删除,游戏结束。游戏的得分就是所剩顶 点上的整数值。 问题:对于给定的多边形,计算最高得分。
13
最优子结构性质
•凸多边形的最优三角剖分问题有最优子结构性 质。 •事实上,若凸(n+1)边形P={v0,v1,…,vn}的最优 三角剖分T包含三角形v0vkvn,1≤k≤n-1,则T的 权为3个部分权的和:三角形v0vkvn的权,子 多边形{v0,v1,…,vk}和{vk,vk+1,…,vn}的权之和。 可以断言,由T所确定的这2个子多边形的三角 剖分也是最优的。因为若有{v0,v1,…,vk}或 {vk,vk+1,…,vn}的更小权的三角剖分将导致T不是 最优三角剖分的矛盾。
16000, 10500, 36000, 87500, 34500
5
矩阵连乘问题
给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1, 2…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次 序计算矩阵连乘积需要的数乘次数最少。 穷举法:列举出所有可能的计算次序,并计算出每一种计 算次序相应需要的数乘次数,从中找出一种数乘次数最少的 计算次序。 算法复杂度分析: 对于n个矩阵的连乘积,设其不同的计算次序为P(n)。 由于每种加括号方式都可以分解为两个子矩阵的加括号问题: (A1...Ak)(Ak+1…An)可以得到关于P(n)的递推式如下:
14
最优三角剖分的递归结构
•定义t[i][j],1≤i<j≤n为凸子多边形{vi-1,vi,…,vj}的最优三角剖分 所对应的权函数值,即其最优值。为方便起见,设退化的多边 形{vi-1,vi}具有权值0。据此定义,要计算的凸(n+1)边形P的最 优权值为t[1][n]。 •t[i][j]的值可以利用最优子结构性质递归地计算。当j-i≥1时,凸 子多边形至少有3个顶点。由最优子结构性质,t[i][j]的值应为 t[i][k]的值加上t[k+1][j]的值,再加上三角形vi-1vkvj的权值,其中 i≤k≤j-1。由于在计算时还不知道k的确切位臵,而k的所有可能 位臵只有j-i个,因此可以在这j-i个位臵中选出使t[i][j]值达到最小 的位臵。由此,t[i][j]可递归地定义为:
n 2 n ( n ) 2
由此可见,在递归计算时,许多子问题被重复计算多次。这也 是该问题可用动态规划算法求解的又一显著特征。 用动态规划算法解此问题,可依据其递归式以自底向上的方式 进行计算。在计算过程中,保存已解决的子问题答案。每个子 问题只计算一次,而在后面需要时只要简单查一下,从而避免 大量的重复计算,最终得到多项式时间的算法
0 i j m[i, j ] min{m[i, k ] m[k 1, j ] pi 1 pk p j } i j ik j k 的位臵只有 j i 种可能
9
计算最优值
对于1≤i≤j≤n不同的有序对(i,j)对应于不同的子问题。因此, 不同子问题的个数最多只有
2
通过应用范例学习动态规划算法设计策略。
(1)矩阵连乘问题; (2)最大子段和 (3)凸多边形最优三角剖分; (4)多边形游戏; (5)图像压缩; (6)电路布线; (7)流水作业调度; (8)最优二叉搜索树。
3
矩阵连乘问题
给定n个矩阵 {A1, A2 ,...,An } , 其中 Ai 与 Ai 1 是可乘 的, i 1,2,...,n 1 。考察这n个矩阵的连乘积
7
分析最优解的结构
特征:计算A[i:j]的最优次序所包含的计算矩阵子 链 A[i:k]和A[k+1:j]的次序也是最优的。 矩阵连乘计算次序问题的最优解包含着其子问题 的最优解。这种性质称为最优子结构性质。问题 的最优子结构性质是该问题可用动态规划算法求 解的显著特征。
8
建立递归关系
算法复杂度分析: 算法matrixChain的主要计算量取决于算法中对r, for (int k = i+1; k < j; k++) { i和k的3重循环。循环体内的计算量为O(1),而3重 int t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j]; 循环的总次数为O(n3)。因此算法的计算时间上界 if (t < m[i][j]) { m[i][j] = t; s[i][j] =为 k;} O(n3)。算法所占用的空间显然为O(n2)。
1 n 1 n 1 P ( n) P ( k ) P ( n k ) P ( n) ( 4 n / n 3 / 2 ) n 1 k 1
6
矩阵连乘问题
穷举法 动态规划 将矩阵连乘积
Ai Ai 1...Aj 简记为A[i:j] ,这里i≤j
考察计算A[i:j]的最优计算次序。设这个计算次序在矩阵 Ak和Ak+1之间将矩阵链断开,i≤k<j,则其相应完全 加括号方式为 ( Ai Ai 1...Ak )( Ak 1 Ak 2 ...Aj ) 计算量:A[i:k]的计算量加上A[k+1:j]的计算量,再加上 A[i:k]和A[k+1:j]相乘的计算量
}
} }
11
凸多边形最优三角剖分
•用多边形顶点的逆时针序列表示凸多边形,即P={v0,v1,…,vn-1} 表示具有n条边的凸多边形。 •若vi与vj是多边形上不相邻的2个顶点,则线段vivj称为多边形的 一条弦。弦将多边形分割成2个多边形{vi,vi+1,…,vj}和{vj,vj+1,…vi}。 •多边形的三角剖分是将多边形分割成互不相交的三角形的弦的 集合T。 •给定凸多边形P,以及定义在由多边形的边和弦组成的三角形 上的权函数w。要求确定该凸多边形的三角剖分,使得即该三角 剖分中诸三角形上权之和为最小。
动态规划—一些应用实例
1
要点:
掌握动态规划算法的基本要素 (1)最优子结构性质 (2)重叠子问题性质 掌握设计动态规划算法的步骤。
(1)找出最优解的性质,并刻划其结构特征。
(2)递归地定义最优值。 (3)以自底向上的方式计算出最优值。 (4)根据计算最优值时得到的信息,构造最优解。
16
最优子结构性质
•在所给多边形中,从顶点i(1≤i≤n)开始,长度为j(链中有j个顶点) 的顺时针链p(i,j) 可表示为v[i],op[i+1],…,v[i+j-1]。 •如果这条链的最后一次合并运算在op[i+s]处发生(1≤s≤j-1),则 可在op[i+s]处将链分割为2个子链p(i,s)和p(i+s,j-s)。 •设m1是对子链p(i,s)的任意一种合并方式得到的值,而a和b 分别是在所有可能的合并中得到的最小值和最大值。m2是 p(i+s,j-s)的任意一种合并方式得到的值,而c和d分别是在所 有可能的合并中得到的最小值和最大值。依此定义有a≤m1≤b, c≤m2≤d (1)当op[i+s]='+'时,显然有a+c≤m≤b+d (2)当op[i+s]='*'时,有min{ac,ad,bc,bd}≤m≤max{ac,ad, bc,bd} •换句话说,主链的最大值和最小值可由子链的最大值和最小值 得到。
17
图像压缩
图象的变位压缩存储格式将所给的象素点序列 {p1,p2,…,pn},0≤pi≤255分割成m个连续段S1,S2,…,Sm。第i 个象素段Si中(1≤i≤m),有l[i]个象素,且该段中每个象素都只用 i 1 b[i]位表示。设 t[i] l[k ] 则第i个象素段Si为 Si { pt[i ]1,, pt[i ]l[i ]} 设 ,则hib[i]8。因此需要用3位表示b[i], 如果限制1l[i]255,则需要用8位表示l[i]。因此,第i个象素 段所需的存储空间为l[i]*b[i]+11位。按此格式存储象素序列 m {p1,p2,…,pn},需要 l[i] * b[i] 11m 位的存储空间。
设有四个矩阵
A, B, C , D ,它们的维数分别是:
A 50 10 B 10 40 C 40 30 D 30 5
总共有五中完全加括号的方式
( A((BC)D)) (((AB)C )D)
( A( B(CD ))) (( A( BC))D)
(( AB)(CD ))
A1 303 5
A2 351 5
A3 15 5
A4 5 1 0
A5 102 0
A6 2025
m[i][j] = m[i+1][j]+ p[i-1]*p[i]*p[j]; s[i][j] = i;
m[2][2] m[3][5] p1 p 2 p5 0 2500 35 15 20 13000 m[2][5] minm[2][3] m[4][5] p1 p3 p5 2625 1000 35 5 20 7125 m[2][4] m[5][5] p p p 4375 0 35 10 20 11375 1 4 5