桥下河床冲刷计算
第六章 桥下河床冲刷计算

3
4
h1
Qcp h p 1.04 A Q c
WUHEE
Bc 1 B 2
0.66
hmax
二、粘性土河床的桥下一般冲刷 平均粒径小于0.05mm的泥沙,称为粘性土。 土力学中反映粘土粘结力大小的指标为液性 指数IL和孔隙率e。 IL和e越小,粘土的粘结力越 大,抗冲能力越强,冲止流速也就越大。
Z jd Z s hp hb h c
WUHEE
第三节 小桥涵进出口沟床加固
小桥涵修建后造成水流集中,流速增加,为防止冲刷, 危及桥涵基础和路基安全,在小桥涵进出口均应作铺 砌加固。 从实际工程遭破坏的情况来看,小桥涵进出口加固不当 常是导致破坏的主要原因,并且出水口引起的问题又 较进水口多。 对于小桥,其孔径是根据河床铺砌类型的允许流速值决 定的,其进出口沟床要采用同类铺砌规格。小桥进出 口的铺砌范围以及深度等的计算可参照涵洞进出口的 计算方法进行。
1 23 Vs 0.23 h p I L
Qp h max L j h hp 1.3 1 0.23 I L
WUHEE
53 35
1.3
1 Vs 0.22 I e L
冲刷停止时桥下的垂线水深表示该垂线处 的一般冲刷深度。一般冲刷停止时桥下的垂线 平均流速,称为冲止流速。 《公路桥位勘测设计规范》(JTJ062-91): 64-1修正公式,64-2简化公式
WUHEE
1. 64-1修正公式 根据谢才公式,得桥下冲刷前最大单宽流量与平 均单宽流量的关系:
h qm q m ax h
n
三、粘性土河床的局部冲刷计算
桥梁设计之桥下河床冲刷过程预计算

桥梁设计之桥下河床冲刷过程预计算桥梁设计中,桥下河床冲刷是一个重要的考虑因素。
河床冲刷是指水流对河床表面的侵蚀和搬运作用,导致河床深度增加或者流速加剧,从而对桥梁结构的稳定性和安全性造成潜在威胁。
为了预计算桥下河床冲刷过程,需要考虑以下几个方面:1.水动力条件:水的流速是决定河床冲刷程度的关键因素之一、因此,需要测定或估算桥北河段的流速,并将其作为输入条件用于模拟计算。
2.河床形态:河床的形态特征对于决定河床冲刷的程度和机理有着重要影响。
河床形态包括河床横断面形状、纵向坡度、河床材料等。
需要进行对河床的调查测量,并将其作为模拟计算的输入条件。
3.底床材料:底床材料的物质性质,如粒径分布、比重等,对河床冲刷的程度和速率有着显著的影响。
需要对底床材料选择进行粒度分析和物理性质测试,并将其作为模拟计算的输入条件。
4.侵蚀机理分析:根据水动力条件、河床形态和底床材料特征,可以通过数学模型对河床冲刷机理进行分析和预测。
常用的数学模型包括稳态均衡模型、非稳态均衡模型、非稳态水沙模型等。
通过选择合适的模型,可以模拟桥下河床冲刷过程,预计算河床冲刷的程度和速率。
5.设计桥台和桥墩:根据预计算结果,需要合理设计桥台和桥墩的结构和布置。
桥梁设计中,通常会采用防冲刷措施,如设置防冲刷装置、铺设防冲砾石、加固岸坡等方式来减轻河床冲刷的影响。
根据预计算结果进行桥梁设计,可以提高桥梁的稳定性和安全性。
总之,预计算桥下河床冲刷过程需要综合考虑水动力条件、河床形态、底床材料和侵蚀机理等因素。
通过合理选择数学模型,预计算河床冲刷的程度和速率,并根据结果进行桥梁设计,可以提高桥梁的稳定性和安全性。
在实际工程中,需要结合具体情况综合考虑,确保桥梁的设计符合工程要求。
桥涵水文4

桥涵水文
第一节
桥位河段水流图式和桥孔布置原则
二、桥孔布臵的原则
(3)桥位下端—压缩区
③-③’之间,水深继续降低,由于有桥墩的阻水,水流速 度继续增大,继续造成冲刷。 有导流堤——桥孔断面 过水断面的最小断面: 无导流堤——桥孔下游
桥涵水文
第一节
桥位河段水流图式和桥孔布置原则
(4)桥位下游—扩散区
水流逐渐扩散至天然河宽,流速逐渐变小直至恢复天然 河道流速,水流的携沙能力由大变小,在河床上从冲刷变小 到出现淤积,又从淤积逐渐减小到恢复天然河道河流状态。
桥涵水文
第二节
桥孔长度计算
桥涵水文
第二节
桥孔长度计算
桥孔长度:
设计水位两桥台前缘之间(埋入式桥台则为两桥台护
坡坡面之间)的水面宽度。
桥涵水文
第二节
桥孔长度计算
桥涵分类有两个标准:单孔跨径和多孔跨径总长。
公路桥涵
多孔跨径总长L/m L≥1000 100≤ L ≤ 1000 30< L<100 单孔跨径l/m l≥150 40 ≤ l ≤ 150 20<l<40
桥涵水文
第一节
桥位河段水流图式和桥孔
布臵原则
桥涵水文
第一节
桥位河段水流图式和桥孔布置原则
从桥涵水文的角度看,孔径若小于河道天然宽度太多, 河道被桥大量压缩,过水断面减小,桥位断面流速相应增大, 将引起较大的冲刷。从而影响了桥墩基础的埋臵深度,增加 了施工难度,使造价提高。
冲刷计算

4.3 冲刷与淤积分析计算建桥后,由于桥墩的束水作用,桥位处河床底部将发生下切冲刷。
根据工程地质勘探报告,该桥桥址处,河床冲刷层为亚粘土。
河床的冲刷计算按粘性土河床处理。
4.3.1一般冲刷计算采用《公路桥位勘测设计规范》中8.5.4-1式85135'233.0⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=L c mc c p I h h B Q A h μ(4-3式)式中, h p --桥下一般冲刷后的最大水深(m);Q 2--河槽部分通过的设计流量(m 3/s ); μ—桥墩水流侧向压缩系数,查《公路桥位勘测设计规范》中表8.5.3-1;h mc--桥下河槽最大水深(m ); c h --桥下河槽平均水深(m );A —单宽流量集中系数,5.0⎪⎪⎭⎫⎝⎛=H B A ,B 、H 为平滩水位时河槽宽度和河槽平均水深。
A=1.0~1.2'c B --桥下河槽部分桥孔过水净宽(m ) ,当桥下河槽扩宽至全桥时'c B 即为全桥桥下过水净宽;I L --冲刷坑范围内粘性土液性指数,在本公式中I L 的范围为0.16~1.19。
根据工程地质勘探报告,牧野桥I L =0.67。
经计算得:现状河道条件下,该桥100年一遇设计洪水位为72.73m 时,一般冲刷完成后,主槽最大水深h p 为9.19m ,最大冲坑深3.58m 。
按规划整治后的河道条件下,该桥100年一遇设计洪水位为71.30m 时,一般冲刷完成后,主槽最大水深h p 为6.42m ,最大冲坑深1.26m 。
4.3.2 局部冲刷计算牧野路卫河桥设计墩宽b=2.40m ,桥墩的走向与水流方向一致,墩形计算宽度B 1=2.40m ,查《公路桥位勘测设计规范》附录16,K ξ =0.98。
一、现状河道条件下,该桥100年一遇设计洪水位为72.73m 时,一般冲刷完成后,主槽最大水深h p 为9.19m ,H p /B 1=3.83>2.5,根据《公路桥位勘测设计规范》采用该规范中的8.5.4-3式V I B K h L b 25.16.0183.0ξ= (4-4式)式中,h b --桥墩局部冲刷深度(m);K ξ--墩形系数;B 1--桥墩计算宽度(m ); hp--一般冲刷后最大水深 (m);d -- 河床泥沙平均粒径, d =0.0145(mm );V-- 一般冲刷后墩前行进流速(m/s)3261ph d E V = =1.43E —与汛期含沙量有关的系数,查《公路桥位勘测设计规范》中表8.5.3-2,E=0.66。
Chapter06-桥梁墩台冲刷计算

4
g s1 11
4
1
Q1 B1 h 1
1-上游天然河道河槽流速,m / s;
B1-上游天然河道河槽河宽,m ;
h 1-上游天然河道河槽平均水深,m ;
故
Q 1 G1 1 Bh 1 1
B 1
4
64-2公式
桥下断面的排沙量
G2 g s 2 Q 2 4 B2 j= 2 2 B2 j= 2 B h 2j 2 Q 2 B B 2 2j 2j B2 j h 2
3 5
hm ax h
Qcp L j hp 1 0.22 I L e
1 z 0.22 I L 3e
1.3
5
1.15
hP
2 3
hm ax h
1.2 大中桥设计一般规定
2 桥下一般冲刷深度
一般冲刷深度hp:一般冲刷停止时的桥下铅直水深。(河 床在一般冲刷完成后从设计水位算起的 某一垂线水深。) 一般冲刷深度计算现主要按经验公式计算,常用 有64-1公式、64-2公式和包尔达可夫公式。 2.1 无粘性土河床 A) 河槽 当河槽断面流速等于冲止流速时,桥下一般冲 刷随即停止,且一般冲刷深度达到最大。
4
(1 ) B 2
4
2 hP 1
1 4
Q 2 Q 1
B1 (1 ) B 2
h 1
3 4
考虑单宽流量分布不均匀和集中趋势的影响。
Q 2 hP K Q 1
冲刷计算

4.4.1自然冲刷河床演变是一个非常复杂的自然过程,目前尚无可靠的定量分析计算方法,根据《公路工程水文勘测设计规范》(JTG C30—2002)中7.2条的要求,河床的自然冲刷是河床逐年自然下切的深度。
经深入调查,桥位处河段整体无明显自然下切现象,由于泥沙淤积,河床会逐年抬高,本次计算不考虑自然冲刷的情况。
4.4.2一般冲刷大桥建成后,由于受桥墩阻水影响,桥位断面过水断面减小,从而引起断面流速增大,水流挟沙能力也随之增大,会造成桥位断面河床冲刷。
根据地质勘察报告,桥位处河床为砂卵石层,河床泥沙平均粒径为40(mm )。
按《公路工程水文勘测设计规范》(JTG C30—2002)的技术要求,非粘性土河床的一般冲刷可采用64—2简化公式计算:()max 66.029.02104.1h B B Q Q A h cc p ⎭⎬⎫⎩⎨⎧-⎪⎪⎭⎫ ⎝⎛=μλ公式中: h p ——桥下河槽一般冲刷后最大水深(m ); Q 2——桥下河槽部分通过的设计流量(m 3/s ); Q c ——天然状态下河槽流量(m 3/s );A ——单宽流量集中系数 15.0⎪⎪⎭⎫⎝⎛=H B A ;B C ——计算断面天然河床宽度(m );λ——设计水位下,桥墩阻水面积与桥下过水面积比值;μ——桥台前缘和桥墩两侧的漩涡区宽度与桥孔长度之比; B 2——桥下断面河床宽度(m ); h max ——桥下河槽最大水深(m )。
经计算:桥址处各设计频率一般冲刷深度成果见表4.4—1。
表4.4—1 XX 大桥一般冲刷计算成果表4.4.3局部冲刷根据XX 大桥桥型布置图,按《公路工程水文勘测设计规范》(JTG C30—2002)的技术要求,局部冲刷计算采用65—1修正式中的公式进行计算:当V >V 0时,10,00,'006.011,b )(K n V V V V v B K h v ⎭⎬⎫⎩⎨⎧---=ηξ h b —桥墩局部冲刷深度(m )从一般冲刷后床面算起; K ξ—墩形系数,K ξ=1.05; K η1—河床颗粒影响系数; B 1—桥墩计算宽度;V—一般冲刷后墩前行近流速(m/s);V0—河床泥沙起动流速(m/s);V,0—墩前泥沙起冲流速(m/s);n1—指数。
第六章 冲刷计算及导治建筑物的布设

第六章 冲刷计算及导治建筑物的布设
1940年,美国华盛顿州的塔科玛峡谷上花费640万美 元,建造了一座主跨度853.4米的悬索桥。建成4个月后,于 同年11月7日碰到了一场风速为19米/秒的风。虽风不算大, 但桥却发生了剧烈的扭曲振动,且振幅越来越大(接近9 米),直到桥面倾斜到45度左右,使吊杆逐根拉断导致桥 面钢梁折断而塌毁,坠落到峡谷之中。人们在调查这一事 故收集历史资料时,惊异地发现:从1818年到19世纪末, 由风引起的桥梁振动己至少毁坏了11座悬索桥。
局部冲刷坑的组成:
下部是河底向下反向旋涡淘刷形成的,边坡比较陡,坑的范围 也不大;
上部是当下部冲刷坑形成后,床沙下塌形成的,其边坡接近于 土壤水中的安息角α,其范围随着下部冲刷坑的下降而加大;
在墩后一对竖轴漩涡,使得墩后的泥沙发生淤积。
滞 流 区 C) ( 回 流 区 B) ( 主 流 区 A) (
平均水深。
第六章 冲刷计算及导治建筑物的布设
(2)河滩及人工渠道部分
桥下河滩冲刷后,只有当流速降低到土壤容许不冲
刷流速时,才逐渐停止,其冲止流速为河滩土壤容许不
冲刷流速。桥下河滩部分的一般冲刷深度为:
5
hp
At
Q t ( hmt Bt ht
v H1
5
)3
6
B t — 桥下河滩部分桥孔过水净宽; v H 1 — 水深1m时非黏性土的不冲刷流速;
桥下河槽的一般冲刷主要是通过推移质的运 动来完成的。可以根据河槽断面推移质输沙量的 平衡条件,导出一般冲刷计算公式。
第六章 冲刷计算及导治建筑物的布设
推移质输沙率:
单位时间内,在河槽单位宽度过水断面上通过的推移 质数量,称为推移质输沙率(kg/s.m)。
第六章_冲刷计算

称为一般冲刷。
随着一般冲刷的发
ZS
展,河床不断刷深,桥
下断面逐渐扩大,过水
断面面积不断增大。
随着桥下断面的扩大,流速相应降低,水流挟沙 能力也随之降低。当流速降低到不能继续冲刷河床时, 冲刷即趋于停止了。此时,桥下过水断面最大,一般 冲刷的深度也达到最大。
表示方法:
通常用一般冲刷 停止时桥下的垂线水
挟沙能力也随着降低。当断面扩大到使流速降到Qb2 ≈ Qb1 ,输沙平衡,桥下一般冲刷就停止了,此时,桥 下过水断面最大,水深也达到最大。
来沙: 单宽输沙率: 断面输沙率: 排沙:
qb1 1V14
Qb1
B1qb1
B11V14
B11
(
Q1 B1h1
)4
单宽输沙率:
qb2
V4
22
断面输沙率: Qb2
式中,VH1为河滩水深为1m时非粘性土容许不冲刷流 速,与河滩泥沙组成有关,可查表6-1。
5
hP
QtP
LtjVH
1
( hmt ht
)
5
3
6
(6 9)
式中,Ltj为桥下河滩部分桥孔净长; QtP为桥下河滩部分通过的设计流量;
QtP
Qt Qc Qt
QP
QtP
tCt
n
ht
QP
(iCi hi )
qs Aqmax
(6 3)
A称为单宽流量集中系数。
A 0.15 ( B )0.15
H
(6 4)
稳定河段:A=1.0~1.2;次稳定河段:A=1.3~1.4;不稳
定河段:A=1.5~1.7,最大不超过1.8。
冲止流速:
Vs
Ed h 1 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于小桥,其孔径是根据河床铺砌类型的允许流速值决 定的,其进出口沟床要采用同类铺砌规格。小桥进出 口的铺砌范围以及深度等的计算可参照涵洞进出口的 计算方法进行。
WUHEE
一、进口沟床加固
WUHEE
WUHEE
Vs
0.23
1 IL
1.3
h
2 p
3
Qp
hmax
5
3
3
5
hp
L j
0.23
h
1 IL
1.3
Vs
0.22
1 IL
e
1.15
h
2 p
3
Qp
hmax
5
8
3
5
hp
L j
0.22
h
1 IL
1.15
《公路桥位勘测设计规范》(JTJ062-91)
WUHEE
四、墩台底面埋设高程计算 依据:自建桥前天然河床床面算起的河床自然演
变冲刷、一般冲刷和局部冲刷三者最不利组合 所得的总冲刷深度。墩台底面最低埋设高程就 是设计水位减去总冲刷深度和安全埋入深度。
Z jd Zs hp hb h c
WUHEE
第三节 小桥涵进出口沟床加固
小桥涵修建后造成水流集中,流速增加,为防止冲刷, 危及桥涵基础和路基安全,在小桥涵进出口均应作铺 砌加固。
hmax
h h
hmax
WUHEE
第二节 桥墩旁局部冲刷
一、局部冲刷现象
WUHEE
二、非粘性土河床的局部冲刷计算
《公路桥位勘测设计规范》(JTJ062-91): 65-1修正公式,65-2修正公式
1. 65-1修正公式
V V0
hb K K B0.6 V V0'
V V0
hb
K K B0.6
的一般冲刷深度。一般冲刷停止时桥下的垂线 平均流速,称为冲止流速。 《公路桥位勘测设计规范》(JTJ062-91):
64-1修正公式,64-2简化公式
WUHEE
1. 64-1修正公式
根据谢才公式,得桥下冲刷前最大单宽流量与平 均单宽流量的关系:
qm
q hmax h
5
3
Qp
L j
hmax h
5
1
3
hp
2 1
4
Q2 Q1
1
B1
B2
4
h1
hp
1.04
A Qcp Qc
0.90
1
Bc
B2
0.66 hmax
WUHEE
二、粘性土河床的桥下一般冲刷
平均粒径小于0.05mm的泥沙,称为粘性土。
土力学中反映粘土粘结力大小的指标为液性 指数IL和孔隙率e。 IL和e越小,粘土的粘结力越 大,抗冲能力越强,冲止流速也就越大。
WUHEE
WUHEE
2. 出口沟床加固
WUHEE
l kqn
h2
s
hk
h
WUHEE
WUHEE
很高兴与大家共同度过36 个学时的美好时光!
祝各位:学习进步! 事业有成!
WUHEE
第一节 桥下一般冲刷
桥下河床冲刷计算,是确定墩台基础埋深的重要 依据。
桥渡附近河床变形分为三类: 1. 河道自然变化引起; 2. 桥渡束狭水流,增加单宽流量所引起,称一般
冲刷; 3. 由桥墩阻水使水流结构变化,在桥墩周围发生
的,称局部冲刷。
WUHEE
一、非粘性土河床的一般冲刷 冲刷停止时桥下的垂线水深表示该垂线处
V
V0'
V V0
V0' V0'
n
WUHEE
2. 65-2修正公式法
hb
0.46K
B
0.6
h
0.15 p
d
0.068
V V0
V0' V0'
n
三、粘性土河床的局部冲刷计算
hp 2.5 B
hb 0.83K B0.6I 1L.25V
hp 2.5 B
hb 0.55K B0.6hp0.1I LV
3
(1)河槽B H
0.15
Vs E d 1 6 hp2 3
hp
qs Vs
AQcp
Lc Ed1
6
hmax hc
5
3
3
5
WUHEE
(2)河滩部分
hp
qs Vs
Qtp
LtVH
1
hmt ht
5 3 5 6
2. 64-2简化公式 根据输沙平衡原理,有Qb1=Qb2,h2=hp,可得:
(1)河槽部分
A
Qcp
hmax
5
3 5 8
hp
Lc hc
0.33
1 IL
(2)河滩部分
Qtp
hmt
5
3 6
7
hp
Lt ht
0.33
1 IL
WUHEE
三、桥台偏斜水流的一般冲刷
当桥前无导流堤,而河滩被压缩较多时,河 滩水流在桥台附近集中,形成偏斜冲刷。
h
' p
Ph