最新C1-第二节塑性变形与强化机制

合集下载

金属材料的塑性变形与强化机制

金属材料的塑性变形与强化机制

金属材料的塑性变形与强化机制金属材料广泛应用于制造业、建筑业、交通运输等领域,其具有高强度、优良的导电导热性能、易于加工等优点。

然而,金属材料的应力应变曲线呈现塑性区,即在一定范围内,随着应力的增大,材料的应变会逐渐增大,直到达到极限,然后发生塑性变形。

在工程实践中,如何控制金属材料的塑性变形,提高其性能,使其更加适用于各个领域,成为了当前研究的热点之一。

1. 金属材料的塑性变形与尺寸效应塑性变形过程中,材料内部原子的晶体结构和排列方式发生了变化,从而导致了材料的强化和塑化。

同时,尺寸效应也对金属材料塑性变形产生了重要的影响。

研究表明,当金属材料的直径小于100纳米时,由于晶体结构的变化,材料的电学性能和机械性能会发生显著变化。

在实际应用中,如何利用尺寸效应来控制金属材料的塑性变形是一个重要的研究课题。

一方面可以采用纳米技术加工制备金属纳米材料,如纳米管、纳米棒、纳米线等,来控制材料的晶体结构,使其具有更好的力学性能和导电性能;另一方面,可以利用不同的加工工艺和冷加工方法,来实现对材料晶体结构的调控,从而达到强化和塑化金属材料的目的。

2. 金属材料塑性变形的机理金属材料的塑性变形机理主要是由晶体滑移和重结晶两种过程组成。

晶体滑移是指晶格错位后,晶体中原子的移动和重组。

原子的移动发生在晶格中的间隙和空位中,导致晶体中的错位位移和变形。

观察金属材料的断面可以发现,断面中由于晶体滑移所引起的形变形成了大量细小的位错,从而促使晶体不断地沿位错的移动方向继续发生滑移。

另一种机理是重结晶。

当金属材料发生过大变形时,原本的晶粒会发生变化,小的晶粒会变成大的晶粒。

这个过程叫做重结晶,它会导致材料内部结构的变化,从而促进材料通道滑移和位错修复。

3. 金属材料强化机制金属材料的强化可以通过多种途径实现。

其中,冷加工是一种非常有效的方式。

通过冷加工(如轧制、拉伸、挤压等)可以使材料产生高密度的位错,而这些位错会增加晶体滑移的阻力,使得材料的屈服强度和拉伸强度得到了提高。

塑性变形与强化

塑性变形与强化
(2)晶体的孪生面和孪生方向与其晶体结构类型有关
bcc
fcc
{112}、< 111 >
{111}、<112 >
hcp {1012}、< 1011>
11
(3)孪晶的形成与堆垛层错相关
C B A C B
A
E D C B A
F
B C A B C
A B C D E
面心立方孪晶与层错
体心立方孪晶与层错
12
(4)孪生的机制 孪晶生成过程 极快速度形成薄片孪晶(形 核),然后通过界面扩展形 成孪晶带。由于形核所需应 力远大于扩展所需应力,固 当孪晶出现伴随载荷突然下 降现象。目前对于孪生形核 过程尚不十分清楚。
① 铁素体边界存在厚度C0的碳化物
② 在外力σ作用下形成位错塞积群 ③ 塞积群应力集中造成炭化物断裂 (2)开裂条件 ① 碳化物开裂条件
晶粒直径d
c0
4 E c 1/ 2 碳化物开裂 ] 当滑移面切应力满足: ( c i ) [ 2 (1 )d
36
1/ 2 ( ) [ ] c i ② 当满足: (1 2 )d /
α黄铜退火孪晶组织
锌中形变孪晶 100×
(6)孪生作用 孪生引起塑性形变不大,即使大部分晶体发生孪生,晶 体形变也不超过10%; 孪生过程触发滑移系开动; 孪生带相交可以导致脆断; 再结晶过程中,孪生带附近往往优先形核。 17
(二)屈服现象 1.现象
低碳钢应力-应变曲线出现明显屈服点(上、下屈服点)。
(1)加工硬化率明显高于单晶体,无第一阶段。
(2)加工硬化率高。
要使处于硬取向的滑移
塑性变形过程中各晶粒 内部运动位错的强烈交互 作用使位错塞积严重,晶 界处应力集中,硬化曲线 很陡,加工硬化率高。

6金属的塑性变形与形变强化

6金属的塑性变形与形变强化

孪生示意图
孪晶组织

与滑移相比: 孪生使晶格位向发生改变; 所需切应力比滑移大得多, 变形速度极快, 接近声速; 孪生时相邻原子面的相对位移量小于一个原子间距.


密排六方晶格金属滑移系少,常以孪生方式变形。
体心立方晶格金属只有在低温或冲击作用下才发生
孪生变形。

面心立方晶格金属,一般不发生孪生变形。

1、滑移变形的特点 : ⑴ 滑移只能在切应力的作 用下发生。产生滑移的最 小切应力称临界切应力。

⑵ 滑移常沿晶体中原
子密度最大的晶面和 晶向发生。因原子密 度最大的晶面和晶向 之间原子间距最大, 结合力最弱,产生滑 移所需切应力最小。 沿其发生滑移的晶面和晶向分别叫做滑移面和滑移 方向。通常是晶体中的密排面和密排方向。
第六章 金属的塑性变形与形变强化

塑性变形及随后的加热对金
属材料组织和性能有显著的
影响。了解塑性变形的本质,
塑性变形及加热时组织的变
化,有助第一节 纯金属的塑性变形
一、单晶体金属的塑性变形

单晶体受力后,外力在 任何晶面上都可分解为 正应力和切应力。正应 力只能引起弹性变形及


⑶滑移时,晶体两部分的相对 位移量是原子间距的整数倍. 滑移的结果在晶体表面形成台 阶,称滑移线,若干条滑移线 组成一个滑移带。

铜拉伸试样表面滑移带

⑷ 滑移的同时伴随着晶体的转动
转动的原因:晶体滑移后使正应力分量和切应力分 量组成了力偶。
F A
0
A
1
F

2、滑移的机理 把滑移设想为刚性整体滑动所需的

3、再结晶加热速度和加热时间

金属的塑性变形和强化

金属的塑性变形和强化

⾦属的塑性变形和强化第六章⾦属的塑性变形和强化练习与思考题1 什么叫强化?可能采⽤那些强化⼿段来强化⾦属?采⽤各种⽅式使得⾦属塑性变形时位错运动的阻⼒增⼤,即可实现⾦属材料的强化。

如冷变形的加⼯硬化,添加合⾦的固溶强化和析出沉淀强化,细晶强化,亚结构强化,多相组织的相变强化等。

2 ⾯⼼⽴⽅单晶体的应⼒应变曲线的硬化系数θ为什么各个阶段各不相同?θⅡ最⼤的原因是什么?第I阶段⼀般认为只有⼀个滑移系开动,强化作⽤不⼤,θI较⼩,为易滑移阶段;第Ⅱ阶段为线性强化阶段,出现了多系滑移;多系滑移产⽣⼤量位错,使得位错运动阻⼒明显增⼤,尤其是⾯⾓位错的出现,强烈的阻⽌位错源开动,并强最⼤。

烈阻⽌其他滑移⾯上的位错运动,从⽽使得这⼀阶段硬化指数θⅡ第Ⅲ阶段出现了交滑移,从⽽拜托了⾯⾓位错的封锁,使原被塞积的位错继续运动,使得位错的⾃由路程增⼤。

即在加⼯硬化的同时,存在着动态回复的软化过程,从⽽造成θⅢ随着γ增⼤⽽逐渐降低的现象。

3 晶界对塑性变形有什么影响?晶界对塑性变形过程的影响,主要是在温度较低时晶界阻碍滑移进⾏引起的障碍强化作⽤和变形连续性要求晶界附近多系滑移引起的强化作⽤。

为使多晶体塑性变形过程不破坏晶界连续性,相邻的晶粒必须协调变形。

多晶体塑性变形⼀旦变形传播到相邻的晶粒,就产⽣了多系滑移。

位错运动遇到的障碍⽐单系滑移多,阻⼒要增加。

存在晶界及晶界两侧晶粒取向有差别,多晶体的塑性变形有着很⼤的不均匀性。

在单个晶粒内,晶界变形要低于晶粒中⼼区域;由于细晶组织中晶界占的⽐例要⼤于粗晶组织中的晶界,细晶组织的强化效果⾼于粗晶组织。

4 多系滑移为何能起到强化作⽤?⾦属多晶体塑性变形⼀开始为什么就出现了多系滑移的强化?多系滑移产⽣⼤量位错,位错间相互作⽤使得位错运动阻⼒明显增⼤,尤其是⾯⾓位错的出现,强烈的阻⽌位错源开动,并强烈阻⽌其他滑移⾯上的位错运动。

多晶体材料中,某⼀晶粒产⽣滑移变形⽽不破坏晶界连续性,相邻的晶粒必须协调变形。

《塑性变形》课件

《塑性变形》课件
详细描述
当物体受到外力作用时,物体内部会产生应力,使得物体发生塑性变形。在这个过程中,物体总是沿着阻力最小 的方向发生变形,这是因为阻力最小的方向所需的力最小,因此物体更容易沿着这个方向发生变形。
流动法则
总结词
在塑性变形过程中,物体的流动方向与最大主应力的方向一致。
详细描述
在塑性变形过程中,物体的流动方向与最大主应力的方向是一致的。这是因为最大主应力决定了物体 变形的难易程度,当最大主应力较大时,物体更容易沿着这个方向发生变形。同时,物体的流动也受 到最小阻力定律的影响,使得物体更容易沿着阻力最小的方向发生变形。
拉拔
通过拉拔机将金属材料拉制成所需形 状和尺寸的工艺,用于制造线材、管 材等。
塑料的加工成型
注塑成型
挤出成型
将塑料原料加热熔化后注入模具中,冷却 固化后得到所需形状和尺寸的塑料制品。
将塑料原料加热熔化后通过挤出机挤出成 所需形状和尺寸的塑料制品,如塑料管、 塑料薄膜等。
压延成型
吹塑成型
将塑料原料加热熔化后通过压延机压制成 所需厚度和宽度的塑料制品,如塑料板材 、塑料片材等。
塑性变形过程的数值模拟与优化
有限元分析
利用有限元方法对塑性变形过程 进行数值模拟,预测材料的变形
行为、应力分布和应变场等。
优化设计
基于数值模拟结果,对塑性变形过 程进行优化设计,提高材料的塑性 变形能力、减少缺陷和节约成本。
工艺参数优化
通过调整塑性变形过程中的工艺参 数,如温度、压力、变形速度等, 实现更佳的塑性变形效果。
04
CATALOGUE
塑性变形过程中的力学行为
应力状态对塑性的影响
应力状态对塑性变形的影响主 要体现在不同应力分量对材料

金属的塑性变形与强化

金属的塑性变形与强化
1、塑性变形对组织影响
未变形 原始晶粒
25%变形
滑移线
50%变形
拉长或压 扁的晶粒
75%变形
细条状纤维 组织
第 1 节 金属的塑性变形
三、塑性变形对组织和性能的影响
形变织构:多晶体中各晶粒的某些位向与变形方向趋于一致。形 变织构不能够在显微镜下观察到,但可通过X光线衍射检测。
形变织构示意图
亚晶粒形成 :金属经大的塑性变形时, 位错密度增大, 大量位错 堆积在局部地区, 相互缠结, 形成不均匀的分布, 使晶粒分化成许 多位向略有不同的小晶块, 产生亚晶粒。
3、晶界阻碍位错运动:当位错运动到晶界附近时,受到晶界的阻碍而堆积起 来,要使变形继续进行, 则必须增加外力, 从而使金属的变形抗力提高。晶粒 越细,晶界总面积越大,位错障碍越多;需要协调的具有不同位向的晶粒越 多,使金属塑性变形的抗力越高。
晶粒大小与金属强度关系
第 1 节 金属的塑性变形
三、塑性变形对组织和性能的影响
• 降低内应力,稳定零件尺寸; • 提高导电性; • 防止应力腐蚀。 • 此阶段称为“去应力退火”
变形金属在不同加热温度 时组织和性能变化示意图
第 2节 冷塑性变形金属加热时组织和性能的变化
加热温度较高
再 再结晶形成新等轴晶 结 强度大大下降 晶 塑性大大升高
内应力完全去除
此阶段又称再结晶退火
变形金属在不同加热温度 时组织和性能变化示意图
第 2节 冷塑性变形金属加热时组织和性能的变化 工程应用
再结晶退火主要用于金属冷加工工艺过程中,使冷压 力加工得以进一步进行。
多次再结晶退火处理 Φ5mm的钢丝最终拉拔成 Φ0.1~0.2mm
第 2节 冷塑性变形金属加热时组织和性能的变化

C1-第二节塑性变形讲义与强化机制

C1-第二节塑性变形讲义与强化机制
因为晶粒越细,单位体积内的晶粒数就越多, 变形时同样的变形量可分散到更多的晶粒中发生, 以产生比较均匀的变形,这样,因局部应力集中而 引起材料开裂的几率较小,使材料在断裂前就有可 能承受较大的塑性变形,得到较大的伸长率、断面 收缩率和具有较高的冲击载荷抗力。
实验证明,金属的屈服强度与其晶粒尺寸之 间有下列关系:
弥散强化机制
➢绕过机制:基体与中间相的界面上存在点阵畸 变和应力场,成为位错滑动的障碍。滑动位错遇 到这种障碍变得弯曲,随切应力加大,位错弯曲 程度加剧,并逐渐成为环状。由于两个颗粒间的 位错线段符号相反,它们将断开,形成包围小颗 粒的位错环。位错则越过颗粒继续向前滑动。随 着位错不断绕过第二相颗粒,颗粒周围的位错环 数逐渐增加,对后来的位错造成更大的阻力。
大的置换原子引起的强化)。
例如: 纯Cu中加入19%的Ni,可使合金的强度由 220MPa提高到380~400MPa,硬度由44HBS升高到 70HBS,而塑性由70%降低到50%,降幅不大。若 按其它方法(如冷变形加工硬化)获得同样的强化 效果,其塑性将接近完全丧失。
固溶强化机制
由于形成固溶体的溶质原子和溶剂原子的尺 寸和性质不同,溶质原子的溶入必然引起一些现 象,例如:溶质原子聚集在位错周围钉扎住位错 (弹性交互作用);溶质原子聚集在层错处,阻 碍层错的扩展与束集(化学交互作用);位错与 溶质间形成偶极子(电学交互作用)。这些现象 都增加了位错运动的阻力,使金属的滑移变形变 得更加困难,从而提高了金属的强度和硬度。
2、加工硬化机制
金属的塑性变形是通过滑移进行的。在塑性变形 过程中,由于位错塞积(位错运动过程中遇到障 碍受阻)、位错之间的弹性作用、位错割阶等造 成位错运动受阻,从而使材料的强度提高。
3、金属强度与位错密度有左图所示的关系

铸造合金的塑性变形与强化机制

铸造合金的塑性变形与强化机制

铸造合金的塑性变形与强化机制铸造合金是一种通过高温熔炼和铸造工艺制备的金属材料,具有优异的力学性能和化学稳定性。

在使用过程中,铸造合金的力学性能往往需要通过塑性变形和强化机制进行改善。

本文将深入探讨铸造合金的塑性变形和强化机制,以及如何应用于实际工程中。

一、塑性变形机制塑性变形是指材料在外部加载下,在不改变化学成分的条件下,发生形状和尺寸变化的过程。

铸造合金的塑性变形机制主要包括滑移变形和孪晶形变。

1. 滑移变形滑移变形是铸造合金的常见变形机制之一。

在应力作用下,合金中的晶体发生位错运动,原子间的位错在晶面上滑移,形成滑移带,从而导致材料整体的塑性变形。

滑移变形可以增加材料的延性和韧性,提高其抗变形能力。

2. 孪晶形变孪晶形变是指合金晶粒在变形过程中发生取向关系突变,形成孪晶结构。

合金中的孪晶具有较高的位错密度和晶界能量,因此在塑性变形中扮演重要角色。

孪晶形变可以提高材料的强度和硬度,但对延性和韧性的影响较小。

二、强化机制强化是指通过添加合金元素或采取特定的热处理工艺,使铸造合金的力学性能得到提升。

常见的强化机制包括固溶强化、析出强化和取向强化。

1. 固溶强化固溶强化是通过向合金中加入固溶元素,使其溶解在基体中形成固溶体,从而提高合金的强度和硬度。

固溶元素的溶解度取决于温度和固溶元素浓度等因素。

固溶强化一般在高温下进行,然后通过快速冷却来保持固溶态,防止固溶元素重新析出。

2. 析出强化析出强化是在固溶体基体中形成微观尺寸小、分布均匀的析出物,如合金化合物、过饱和固溶体、间二相等,通过构筑复杂的位错和晶界结构,阻碍位错滑移和晶界移动,从而增加合金的强度和硬度。

3. 取向强化取向强化是通过优化合金的晶体取向结构,使其滑移带方向与应力方向更为一致,从而提高塑性变形的难度,增加合金的强度。

取向强化通常通过控制合金的凝固过程和热处理工艺来实现。

三、应用于实际工程中铸造合金的塑性变形和强化机制在工程实践中得到广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C1-第二节塑性变形与强 化机制
滑移的特征
滑移只能在切应力 的作用下发生
滑移的结果:
不同加载方式发生塑性变形的 能力不同。拉伸、扭转、压缩 塑性变形能力依次增加。
使晶体表面产生台阶、滑移线、滑移带
滑移通常沿原子密度最大的晶面和晶向进行—滑移系
固子的溶入必然引起一些现 象,例如:溶质原子聚集在位错周围钉扎住位错 (弹性交互作用);溶质原子聚集在层错处,阻 碍层错的扩展与束集(化学交互作用);位错与 溶质间形成偶极子(电学交互作用)。这些现象 都增加了位错运动的阻力,使金属的滑移变形变 得更加困难,从而提高了金属的强度和硬度。
金属材料经冷塑性变形后,其强度与硬度随变形 程度的增加而提高,而塑性、韧性则很快降低的 现象为加工硬化或形变强化。
例如:自行车链条板(16Mn钢板) 原始厚度3.5mm 150HB 五次冷轧后1.2mm 275HB
b=520MPa b>1000MPa
又如:冷拔高强度钢丝和冷卷弹簧是利用加工变 形来提高他们的强度和弹性极限;坦克和拖拉机 的履带、破碎机的颚板以及铁路的道叉等也都是 利用加工硬化来提高他们的硬度和耐磨性的。
位错→
切应力
第二相颗粒
➢切过机制:位错与颗粒之间的阻力较小时,直 接切过第二相颗粒,结果硬颗粒被切成上下两部分, 并在切割面上产生位移,颗粒与基体间的界 面面积增大,需要做功。并且,由于第二相与基 体结构不同,位错扫过小颗粒必然引起局部原子 错排,这也会增加位错运动的阻力,从而使金属 强化。
新的界面
新的界面
Mg17Al12
Mg3Sb2
σs=σ0+ K/d1/2 此式称为霍耳-配奇公式。
式中:σ0 ——为常数,相当于单晶体的屈服强度; d——为多晶体中各晶粒的平均直径; K——为晶界对强度影响程度的常数, 与晶界结构有关。 σs ——开始发生塑性变形的最小应力
细晶强化机制:晶界是位错运动过程中的障碍。 晶界增多,对位错运动的阻碍作用增强,致使位 错在晶界处塞积(即位错密度增加),金属的强 度增加;在单个晶粒内部,塞积的位错群的长度 减小,应力集中较小,不足于使位错源开动,必 须增加外力。
生产中细化晶粒的方法: 1、加快凝固速度 2、变质处理(如纯铝铸锭) 3、振动和搅拌
Ti变质处理
未变质处理
(三)位错强化
1、概念
金属中的位错密度越高,则位错运动时越容易发 生相互交割,形成割阶,造成位错缠结等位错运 动的障碍,给继续塑性变形造成困难,从而提高 金属的强度,这种用增加位错密度提高金属强度 的方法称为位错强化。
弥散强化机制
➢绕过机制:基体与中间相的界面上存在点阵畸 变和应力场,成为位错滑动的障碍。滑动位错遇 到这种障碍变得弯曲,随切应力加大,位错弯曲 程度加剧,并逐渐成为环状。由于两个颗粒间的 位错线段符号相反,它们将断开,形成包围小颗 粒的位错环。位错则越过颗粒继续向前滑动。随 着位错不断绕过第二相颗粒,颗粒周围的位错环 数逐渐增加,对后来的位错造成更大的阻力。
2、加工硬化机制
金属的塑性变形是通过滑移进行的。在塑性变形 过程中,由于位错塞积(位错运动过程中遇到障 碍受阻)、位错之间的弹性作用、位错割阶等造 成位错运动受阻,从而使材料的强度提高。
3、金属强度与位错密度有左图所示的关系
晶须强度 晶须强度 强 度 加工硬化态金属
退火态金属
金属强度与位错 密度关系示意图
因为晶粒越细,单位体积内的晶粒数就越多, 变形时同样的变形量可分散到更多的晶粒中发生, 以产生比较均匀的变形,这样,因局部应力集中而 引起材料开裂的几率较小,使材料在断裂前就有可 能承受较大的塑性变形,得到较大的伸长率、断面 收缩率和具有较高的冲击载荷抗力。
实验证明,金属的屈服强度与其晶粒尺寸之 间有下列关系:
弹性交互作用
化学交互作用
电学交互作用
(二)细晶强化
金属的晶粒越细,单位体积金属中晶界和亚晶 界面积越大,金属的强度越高,这就是细晶强化。
晶粒大小对纯铁力学性能的影响
晶粒的平 均直径 d(mm)
9.7 7.0 2.5
抗拉强度 b(MPa)
延伸率(%)
168
28.8
184
30.6
215
39.5
细化晶粒不仅能提高材料的强度,还可以改善 材料的塑性和韧性。
非晶态金属 位错密度
实验证明,金属强度 与位错密度有左图所 示的关系。退火态金 属的位错密度为 106~108/cm2 ,强度最 低,在此基础上增加 或降低位错密度,都 可有效提高金属强 度。加工硬化态金属 的位错密度为 1011~1012/cm2 。
冷加工过程中,除了力学性能的变化,金属 材料的物理化学性能也有所改变。
例如:冷加工后位错密度增加,晶格畸变很大, 给自由电子的运动造成一定程度的干扰,从而使 电阻有所增加;由于位错密度增大,晶体处于高 能量状态,金属易与周围介质发生化学反应,使 抗腐蚀性能降低。
(四)第二相强化
第二相粒子可以有效地阻碍位错运动,运动着 的位错遇到滑移面上的第二相粒子时,或切过, 或绕过,这样滑移变形才能继续进行。这一过 程要消耗额外的能量,需要提高外加应力,所 以造成强化。但是第二相粒子必须十分细小, 粒子越弥散,其间距越小,则强化效果越好。 这种有第二相粒子引起的强化作用称之为第二 相强化。根据两者相互作用的方式有两种强化 机制:弥散强化和沉淀强化。
相关文档
最新文档