自动控制系统课设
自动控制系统课程设计.ppt

保护电路
三相交流电源
三相全控桥
直流电动机
双闭环调速
触发电路
图2-3 系统设计框图
变流器主电路和保护环节设计
• 整流变压器
• 在一般情况下,晶闸管装置所要求的交流供电电 压与电网电压往往不一致;此外,为了尽量减小 电网与晶闸管装置的相互干扰,要求它们相互隔 离,故通常要配用整流变压器,这里选项用的变 压器的一次侧绕组采用△联接,二次侧绕组采用Y 联接。
课程设计的主要任务
• (一) 系统各环节的选型:
1、主回路方案确定; 2、控制回路选择;
• (二) 主要电气设备的计算和选择:
1、整流变压器计算; 2、晶闸管整流元件; 3、系统各主要环节的设计; 4、平波电抗器选择计算;
• (三) 系统参数计算:
1、电流调节器ACR中 、 计算; 2、转速调节器ASR中 、 计算;
本设计采用如下图阻容吸收回路来抑制过电压
图3-3 元件换相保护原理图
• 其中
C (2 ~ 4)IT 103
• 电阻功率选择 PR 1.75 fCUTm 2 10 6 (W )
• 过电流保护
• 将快速熔断器安装在交流侧或直流侧,在直流侧与元件直 接串联。
• 选择时应注意以下问题: • ① 快熔的额定电压应大于线路正常工作电压的有效值。 • ② 熔断器的额定电流应大于溶体的额定电流。 • ③ 溶体的额定电流 计算公式 三相交流电路的一次侧过电流保护 • 在本设计中,选用快速熔断器与电流互感器配合进行三
• β=0.77V/A,α=0.007Vmin/r
直流拖动系统系统总体设计
• 主要任务
1、系统总体方案的选择; 2、系统方案的实体设计; 3、系统各主要保护环节的设计; 4、系统的动态工程设计;
自动控制原理课程设计

自动控制原理课程设计一、引言自动控制原理课程设计是为了帮助学生深入理解自动控制原理的基本概念、原理和方法,通过实际项目的设计与实现,培养学生的工程实践能力和创新思维。
本文将详细介绍自动控制原理课程设计的标准格式,包括任务目标、设计要求、设计方案、实施步骤、实验结果及分析等内容。
二、任务目标本次自动控制原理课程设计的目标是设计一个基于PID控制算法的温度控制系统。
通过该设计,学生将能够掌握PID控制算法的基本原理和应用,了解温度传感器的工作原理,掌握温度控制系统的设计和实现方法。
三、设计要求1. 设计一个温度控制系统,能够自动调节温度在设定范围内波动。
2. 使用PID控制算法进行温度调节,实现温度的精确控制。
3. 使用温度传感器实时监测温度值,并将其反馈给控制系统。
4. 设计一个人机交互界面,能够实时显示温度变化和控制系统的工作状态。
5. 设计一个报警系统,当温度超出设定范围时能够及时发出警报。
四、设计方案1. 硬件设计方案:a. 使用温度传感器模块实时监测温度值,并将其转换为电信号输入到控制系统中。
b. 控制系统使用单片机作为主控制器,通过PID控制算法计算控制信号。
c. 控制信号通过电路板连接到执行器,实现温度的调节。
d. 设计一个报警电路,当温度超出设定范围时能够触发警报。
2. 软件设计方案:a. 使用C语言编写单片机的控制程序,实现PID控制算法。
b. 设计一个人机交互界面,使用图形化界面显示温度变化和控制系统的工作状态。
c. 通过串口通信将温度数据传输到电脑上进行实时监控和记录。
五、实施步骤1. 硬件实施步骤:a. 搭建温度控制系统的硬件平台,包括温度传感器、控制系统和执行器的连接。
b. 设计并制作电路板,将传感器、控制系统和执行器连接在一起。
c. 进行硬件连接调试,确保各个模块正常工作。
2. 软件实施步骤:a. 编写单片机的控制程序,实现PID控制算法。
b. 设计并编写人机交互界面的程序,实现温度变化和控制系统状态的实时显示。
自动控制课程设计pid

自动控制 课程设计pid一、课程目标知识目标:1. 让学生掌握PID控制原理,理解比例(P)、积分(I)、微分(D)各自的作用及相互关系。
2. 使学生了解自动控制系统中PID参数调整对系统性能的影响。
3. 引导学生运用数学工具描述控制系统的动态特性。
技能目标:1. 培养学生运用PID算法解决实际控制问题的能力。
2. 让学生掌握使用仿真软件进行PID控制器设计和参数优化的方法。
3. 培养学生通过实验分析控制效果,进而调整PID参数的能力。
情感态度价值观目标:1. 培养学生对自动控制技术的兴趣,激发学习热情。
2. 培养学生的团队合作意识,提高沟通与协作能力。
3. 引导学生关注自动化技术在生活中的应用,认识到科技发展对社会进步的重要性。
分析课程性质、学生特点和教学要求,本课程将目标分解为以下具体学习成果:1. 学生能够阐述PID控制原理,并解释P、I、D参数对系统性能的影响。
2. 学生能够运用仿真软件设计PID控制器,并完成参数优化。
3. 学生能够通过实验,观察和分析控制效果,根据实际情况调整PID参数。
4. 学生在课程学习中展现出积极的学习态度和良好的团队合作精神。
二、教学内容1. 理论部分:a. 控制系统基本概念及性能指标介绍(对应教材第2章)b. PID控制原理及其数学描述(对应教材第3章)c. PID参数调整对系统性能的影响分析(对应教材第4章)2. 实践部分:a. 使用仿真软件(如MATLAB/Simulink)进行PID控制器设计与仿真(对应教材第5章)b. 实际控制实验,观察和分析PID参数调整对系统性能的影响(对应教材第6章)3. 教学进度安排:a. 第1周:控制系统基本概念及性能指标学习b. 第2周:PID控制原理及其数学描述学习c. 第3周:PID参数调整对系统性能的影响分析d. 第4周:仿真软件操作培训及PID控制器设计e. 第5周:实际控制实验操作及结果分析教学内容遵循科学性和系统性原则,结合教材章节,确保学生能够逐步掌握自动控制及PID控制相关知识。
自动控制专题课程设计

自动控制专题课程设计一、课程目标知识目标:1. 学生能理解自动控制的基本原理和概念,掌握控制系统的数学模型、传递函数及状态空间表示。
2. 学生能够运用控制理论知识,分析控制系统的稳定性、快速性和准确性等性能指标。
3. 学生能了解常见的自动控制算法,如PID控制、模糊控制等,并掌握其适用范围和优缺点。
技能目标:1. 学生具备运用数学软件(如MATLAB)进行控制系统建模、仿真和性能分析的能力。
2. 学生能够结合实际控制问题,设计简单的自动控制方案,并通过实验或仿真验证其有效性。
3. 学生掌握自动控制相关电路的搭建和调试技巧,能够进行简单的控制系统硬件设计。
情感态度价值观目标:1. 学生通过学习自动控制专题,培养对工程技术的兴趣和热情,增强科技创新意识。
2. 学生能够认识到自动控制在国家经济、社会发展和人民生活中的重要作用,树立社会责任感。
3. 学生在团队合作中进行控制系统的设计与实践,培养沟通协调能力和团队合作精神。
课程性质:本课程为高二年级选修课程,旨在帮助学生掌握自动控制基本理论,提高实践操作能力,培养学生的创新意识和团队合作精神。
学生特点:高二学生在数学、物理等学科方面具备一定的基础,具备一定的逻辑思维能力和动手操作能力,对新技术和新知识充满好奇心。
教学要求:结合学生特点,注重理论与实践相结合,采用讲授、讨论、实验等多种教学方法,提高学生的参与度和积极性,确保课程目标的实现。
在教学过程中,注重目标分解和评估,及时调整教学策略,提高教学质量。
二、教学内容1. 自动控制基本原理:控制系统概述、开环与闭环控制、反馈控制原理、控制系统的数学模型。
教学安排:2课时,对应教材第一章内容。
2. 控制系统的数学描述:传递函数、状态空间表示、系统响应分析。
教学安排:3课时,对应教材第二章内容。
3. 控制系统性能分析:稳定性分析、快速性分析、准确性分析。
教学安排:3课时,对应教材第三章内容。
4. 常见自动控制算法:PID控制、模糊控制、自适应控制。
自动控制原理课程设计

自动控制原理课程设计一、课程目标知识目标:1. 理解自动控制原理的基本概念,掌握控制系统数学模型的建立方法;2. 掌握控制系统性能指标及其计算方法,了解各类控制器的设计原理;3. 学会分析控制系统的稳定性、快速性和准确性,并能够运用所学知识对实际控制系统进行优化。
技能目标:1. 能够运用数学软件(如MATLAB)进行控制系统建模、仿真和分析;2. 培养学生运用自动控制原理解决实际问题的能力,提高学生的工程素养;3. 培养学生团队协作、沟通表达和自主学习的能力。
情感态度价值观目标:1. 培养学生对自动控制原理的兴趣,激发学生探索科学技术的热情;2. 培养学生严谨、务实的学术态度,树立正确的价值观;3. 增强学生的国家使命感和社会责任感,认识到自动控制技术在国家经济建设和国防事业中的重要作用。
本课程针对高年级本科学生,结合学科特点和教学要求,将目标分解为具体的学习成果,为后续的教学设计和评估提供依据。
课程注重理论与实践相结合,提高学生的实际操作能力和解决实际问题的能力,为培养高素质的工程技术人才奠定基础。
二、教学内容本课程教学内容主要包括以下几部分:1. 自动控制原理基本概念:控制系统定义、分类及其基本组成;控制系统的性能指标;控制系统的数学模型。
2. 控制器设计:比例、积分、微分控制器的原理和设计方法;PID控制器的参数整定方法。
3. 控制系统稳定性分析:劳斯-赫尔维茨稳定性判据;奈奎斯特稳定性判据。
4. 控制系统性能分析:快速性、准确性分析;稳态误差计算。
5. 控制系统仿真与优化:利用MATLAB软件进行控制系统建模、仿真和分析;控制系统性能优化方法。
6. 实际控制系统案例分析:分析典型自动控制系统的设计原理及其在实际工程中的应用。
教学内容按照以下进度安排:第一周:自动控制原理基本概念及控制系统性能指标。
第二周:控制系统的数学模型及控制器设计。
第三周:PID控制器参数整定及稳定性分析。
第四周:控制系统性能分析及MATLAB仿真。
自动控制课程设计15页

自动控制课程设计15页一、教学目标本课程的教学目标是使学生掌握自动控制的基本理论、方法和应用,培养学生分析和解决自动控制问题的能力。
具体目标如下:1.知识目标:(1)掌握自动控制的基本概念、原理和特点;(2)熟悉常见自动控制系统的结构和特点;(3)了解自动控制技术在工程应用中的重要性。
2.技能目标:(1)能够运用自动控制理论分析实际问题;(2)具备设计和调试简单自动控制系统的能力;(3)掌握自动控制技术的实验方法和技能。
3.情感态度价值观目标:(1)培养学生的创新意识和团队合作精神;(2)增强学生对自动控制技术的兴趣和热情;(3)培养学生关注社会发展和科技进步的意识。
二、教学内容本课程的教学内容主要包括以下几个部分:1.自动控制基本理论:包括自动控制的概念、原理、特点和分类;2.控制系统分析:涉及线性系统的时域分析、频域分析以及复数域分析;3.控制器设计:包括PID控制、模糊控制、自适应控制等方法;4.常用自动控制系统:如温度控制、速度控制、位置控制等系统的原理和应用;5.自动控制系统实验:包括实验原理、实验设备、实验方法和数据分析。
三、教学方法为了达到本课程的教学目标,将采用以下教学方法:1.讲授法:用于传授基本理论和概念,使学生掌握基础知识;2.讨论法:通过分组讨论,培养学生分析问题和解决问题的能力;3.案例分析法:分析实际工程案例,使学生了解自动控制技术的应用;4.实验法:动手进行实验,培养学生实际操作能力和实验技能。
四、教学资源为了支持本课程的教学内容和教学方法,将准备以下教学资源:1.教材:选用权威、实用的教材,如《自动控制原理》等;2.参考书:提供相关领域的经典著作和论文,供学生深入研究;3.多媒体资料:制作课件、视频等,辅助讲解和展示;4.实验设备:准备自动控制实验装置,供学生进行实验操作。
五、教学评估为了全面、客观地评估学生的学习成果,将采用以下评估方式:1.平时表现:包括课堂参与度、提问回答、小组讨论等,占总成绩的20%;2.作业:布置适量作业,检查学生对知识点的理解和应用能力,占总成绩的30%;3.考试:包括期中和期末考试,主要测试学生对课程知识的掌握程度,占总成绩的50%。
自动控制操作课程设计

自动控制操作课程设计一、课程目标知识目标:1. 让学生理解自动控制系统的基本原理,掌握控制系统的组成、分类及工作方式。
2. 使学生掌握自动控制系统的数学模型,并能运用相关公式进行简单计算。
3. 帮助学生了解自动控制系统的性能指标,如稳定性、快速性、准确性等。
技能目标:1. 培养学生运用所学知识分析自动控制系统的能力,能对实际系统进行简单的建模与仿真。
2. 让学生学会使用自动控制设备,进行基本操作和调试,具备一定的动手实践能力。
3. 培养学生利用自动控制系统解决实际问题的能力,提高创新意识和团队协作能力。
情感态度价值观目标:1. 培养学生对自动控制技术的兴趣,激发学习热情,形成积极的学习态度。
2. 引导学生认识到自动控制在国家经济建设和科技进步中的重要作用,增强学生的社会责任感和使命感。
3. 培养学生严谨的科学态度,养成勤奋刻苦、团结协作的良好品质。
本课程针对高年级学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果,以便后续的教学设计和评估。
课程内容紧密联系课本,确保学生所学知识的实用性和针对性。
通过本课程的学习,使学生能够在理论知识和实践操作方面均取得较好的成果。
二、教学内容本章节教学内容依据课程目标,紧密结合教材,确保科学性和系统性。
主要包括以下几部分:1. 自动控制原理:介绍自动控制系统的基本概念、分类及其应用,重点讲解开环控制系统和闭环控制系统的原理及特点。
2. 控制系统数学模型:讲解控制系统的数学描述方法,包括传递函数、状态空间表达式等,并通过实例进行分析。
3. 控制系统性能分析:介绍控制系统的稳定性、快速性、准确性等性能指标,结合教材章节,进行深入讲解。
4. 自动控制设备操作与调试:教授自动控制设备的基本操作方法,包括控制器参数设置、传感器和执行器的使用等,并安排实践环节,让学生动手操作。
5. 自动控制系统仿真与设计:结合教材内容,指导学生运用仿真软件对自动控制系统进行建模、仿真和分析,培养学生的实际操作能力。
自动控制课题设计

自动控制课题设计
作为自然语言处理AI,我并不擅长具体的技术设计,但是我
可以为您提供一些设计自动控制课题的思路和建议:
1.明确课题要求和目标。
自动控制涉及很多领域和应用场景,
需要明确具体问题、要求和目标。
比如,设计一个自动控制系统,控制温度在一定范围内稳定;设计一个自动化生产线,提高生产效率和精度等等。
2.选择合适的控制算法和方法。
自动控制算法和方法种类繁多,需要根据具体问题和要求选择合适的算法和方法。
常见的控制方法包括PID控制、模糊控制、神经网络控制、自适应控制
等等。
3.硬件和软件的设计。
自动控制涉及到硬件和软件两个方面的
设计。
在硬件设计方面,需要考虑传感器、执行机构和控制器等;在软件设计方面,需要编写控制系统的程序,进行模拟、调试和优化等。
4.考虑可行性和稳定性。
自动控制系统需要考虑可行性和稳定性。
可行性包括系统是否能够实际应用,能否在长期运行中提供可靠的控制效果等;稳定性则涉及到系统在环境变化和干扰下的稳定性和鲁棒性。
5.测试和验证。
自动控制系统需要进行实验和测试,验证其控
制效果和稳定性。
测试和验证过程中需要进行数据采集和分析,调整系统参数,并根据实验结果优化算法和方法等。
希望上述提供的思路和建议能对您有所帮助,祝您顺利完成自动控制课题设计!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
唐山学院自动控制系统课程设计题目基于MATLAB的按转子磁链定向的异步电动机仿真系 (部) 智能与信息工程学院班级 12电本1班姓名董智博学号 4120208102 指导教师吕宏丽吴铮2016 年 1 月 18 日至 1 月 22 日共 1 周2016年 1 月 22 日《自动控制系统》课程设计任务书目录1引言 (1)2异步电动机的三相数学模型 (2)2.1异步电动机动态数学模型的性质 (2)2.2异步电机三相数学模型的建立过程 (2)2.2.1磁链方程 (3)2.2.2电压方程 (5)2.2.3转矩方程 (6)2.2.4运动方程 (7)3坐标变换和状态方程 (9)3.1坐标变换的基本思路 (9)3.2三相--两相变换(3/2变换和2/3变换) (10)3.3静止两相坐标系状态方程的建立 (11)4系统模型生成及仿真............................... 错误!未定义书签。
4.1各模型实现 (14)4.1.1 3/2变换模型 (14)4.1.2异步电动机模型 (15)4.2整体模型 (16)4.3仿真参数设置 (17)4.4仿真结果 (17)5总结 (20)参考文献 (21)1引言异步电动机具有非线性、强耦合性、多变量的性质,要获得高动态调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电动机的调速方案。
矢量控制系统和直接转矩控制系统是已经获得成熟应用的两种基于动态模型的高性能交流电动机调速系统,矢量控制系统通过矢量变换和按转子磁链定向,得到等效直流电机模型,然后模仿直流电机控制策略设计控制系统;直接转矩控制系统利用转矩偏差和定子磁链幅值偏差的正、负符号,根据当前定子磁链矢量所在位置,直接选取合适的定子电压矢量,实施电磁转矩和定子磁链的控制。
两种交流电动机调速系统都能实现优良的静、动态性能,各有所长,也各有不足。
但是无论是哪种控制方法都必须经过仿真设计后才可以进一步搭建电路实现异步电动机的调速。
本设计是基于MATLAB的按定子磁链定向的异步电动机控制仿真,通过模型的搭建,使得异步电动机能够以图形数据的方式经行仿真,模拟将要实施的转子磁链设计,查看设计后的转矩、磁链、电流、电压波形,对比观察空载起动和加载过程的转速仿真波形,观察异步电动机稳态电流波形,观察转子磁链波形。
2异步电动机的三相数学模型2.1异步电动机动态数学模型的性质异步电机数学模型的建立实质是找出异步电机的电磁耦合关系,而电磁耦合是机电能量转换的必要条件,电流与磁通的乘积产生转矩,转矩与磁通的乘积得到感应电势。
由于他励直流电机的励磁绕组和电枢绕组相互独立,励磁电流和电枢电流单独可控。
若忽略对励磁的电枢反应或通过补偿绕组抵消之,则励磁和电枢绕组各自产生的磁动势在空间相差π/3,无交叉耦合,气隙磁通由励磁绕组单独产生,而电磁转矩正比于磁通和电枢电流的乘积。
不考虑弱磁调速时,可以在电枢合上电源以前建立磁通,并保持励磁电流恒定,这样就可以认为磁通不参与系统的动态过程,一次直接通过电枢电流来控制转速了。
可以看出直流电机动态数学模型只有一个输入变量(电枢电压),和一个输出变量(转速),可以用单变量系统来描述,完全可以应用线性控制理论和工程设计方法进行分析。
而交流异步电动机则不同,不能简单用单变量的方法控制来设计分析,因为异步电机变压变频调速时需要进行电压(或电流)和频率的协调控制,有电压(电流)和频率两种独立的输入变量。
在输出变量中,除转速外,磁通也得算一个独立的输出变量。
这是由于电机有一个三相输入电源,磁通的建立和转速的变化是同时进行的,为了获得良好的动态性能,也需对磁通施加控制,使它在动态过程中尽量保持恒定,才能产生较大的动态转矩。
当直流电机在基速以下运行时,容易保持磁通恒定,可以视为常数,异步电动机无法单独对磁通进行控制,电流乘以磁通产生转矩,转速乘以磁通产生感应电动势,在数学模型中含有两个变量的乘积项,因此,即使不考虑磁路饱和等因素,数学模型也是非线性的。
三相异步电机定子绕组在空间互差2π/3,转子也可等效为空间互差2π/3的三相绕组,各绕组间存在交叉耦合,每个绕组都有各自的电磁惯性,再考虑运动系统的机电惯性,转速与转角积分关系等,动态模型是高阶的。
总而言之,异步电动机的动态数学模型是一个高阶,非线性,强耦合的高阶的多变系统。
2.2异步电机三相数学模型的建立过程研究异步电动机时,作如下假设:1)忽略空间谐波,设三相绕组对称,在空间互差2π/3电角度,所产生的磁动势沿气隙按正弦规律分布;2)忽略磁路饱和,各绕组的自感和互感都是恒定的;3)忽略铁芯损耗;4)不考虑频率变化和温度变化对绕组电阻的影响。
无论电机转子是绕线型还是笼型的,都将它等效成三相绕线转子,并折算到定子侧,折算后的定子和转子绕组匝数都相等。
这样,实际电机绕组就等效成图2-1所示的三相异步电机的物理模型。
图2-1 三相异步电动机的物理模型在图2-1中,定子三相绕组轴线A 、B 、C 在空间是固定的,以A 轴为参考坐标轴;转子绕组轴线a 、b 、c 随转子旋转,转子a 轴和定子A 轴间的电角度θ为空间角位移变量。
规定各绕组电压、电流、磁链的正方向符合电动机惯例和右手螺旋定则。
这时,异步电机的数学模型由下述磁链方程、电压方程、转矩方程和运动方程组成。
2.2.1磁链方程每个绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和,因此,六个绕组的磁链可表达为⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡c b a C B A cC cbcacCcBcAbc bb ba bC bB bA ac ab aa aC aB aA Cc Cb Ca CC CB CA Bc Bb Ba BC BB BA Ac Ab Aa AC AB AA c b a C B A i i i i i i L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L ψψψψψψ(2-1)或写成 Li Ψ=(2-2)式中,L 是6×6电感矩阵,其中对角线元素AA L ,BB L ,CC L ,aa L ,bb L ,ccL是各有关绕组的自感,其余各项则是绕组间的互感。
实际上,与电机绕组交链的磁通主要只有两类:一类是穿过气隙的相间互感磁通,另一类是只与一相绕组交链而不穿过气隙的漏磁通,前者是主要的。
电感的种类和计算:定子漏感Lls ——定子各相漏磁通所对应的电感,由于绕组的对称性,各相漏感值均相等;转子漏感Llr ——转子各相漏磁通所对应的电感; 定子互感Lms ——与定子一相绕组交链的最大互感磁通; 转子互感Lmr ——与转子一相绕组交链的最大互感磁通。
由于折算后定、转子绕组匝数相等,且各绕组间互感磁通都通过气隙,磁阻相同,故可认为Lms=Lmr对于每一相绕组来说,它所交链的磁通是互感磁通与漏感磁通之和,因此,定子各相自感为sms CC BB AA l L L L L L +=== (2-3) 转子各相自感为rms cc bb aa l L L L L L +===(2-4)两相绕组之间只有互感。
互感又分为两类:(1)定子三相彼此之间和转子三相彼此之间位置都是固定的,故互感为常值; (2)定子任一相与转子任一相之间的位置是变化的,互感是角位移θ的函数。
第一类固定位置绕组的互感:三相绕组轴线彼此在空间的相位差是±120°,在假定气隙磁通为正弦分布的条件下,互感值应为ms ms ms 21)120cos(120cos L L L -=︒-=︒于是ms AC CB BA CA BC AB 21L L L L L L L -======(2-5) ms ac cb ba ca bc ab 21L L L L L L L -======(2-6)第二类变化位置绕组的互感:定、转子绕组间的互感,由于相互间位置的变化,可分别表示为θcos ms cC Cc bB Bb aA Aa L L L L L L L ======(2-7) )120cos(ms bC Cb aB Ba cA Ac ︒-======θL L L L L L L (2-8) )120cos(ms aC Ca cB Bc bA Ab ︒+======θL L L L L L L(2-9)当定、转子两相绕组轴线一致时,两者之间的互感值最大,就是每相最大互感Lms 。
将式(2-5)~式(2-9)都代入式(2-2),即得完整的磁链方程,显然这个矩阵方程是比较复杂的,为了方便起见,可以将它写成分块矩阵的形式⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡r s rr rssr ssr s i i L L L L ΨΨ(2-10)式中[]T C B A ψψψ=s Ψ[]T c b a r ψψψ=Ψ []Ti i i C B A =s i[]Ti i i c b ar =i⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+---+---+=s ms ms ms ms s msms ms s ms 212121212121l l ms l L L L LL L L L L L L L ss L(2-11)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+---+---+=r ms ms ms ms r ms msms ms r ms 212121212121l l l L L L LL L L L L L L L rr L(2-12)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡︒+︒-︒-︒+︒+︒-==θθθθθθθθθcos )120cos()120cos()120cos(cos )120cos()120cos()120cos(cos ms L T sr rs L L (2-13)值得注意的是,sr L 和rs L两个分块矩阵互为转置,且均与转子位置θ有关,它们的元素都是变参数,这是系统非线性的一个根源。
为了把变参数转换成常参数须利用坐标变换,后面将详细讨论这个问题。
2.2.2电压方程三相定子绕组的电压平衡方程为tR i u d d As A A ψ+= t R i u d d Bs B B ψ+= tR i u d d Cs C C ψ+=与此相应,三相转子绕组折算到定子侧后的电压方程为t R i u d d ar a a ψ+= t R i u d d br b b ψ+= t R i u d d cr c c ψ+= 式中u A 、uB 、uC 、ua 、ub 、uc ——定子和转子相电压的瞬时值; iA 、iB 、iC 、ia 、ib 、ic ——定子和转子相电流的瞬时值; ψA 、ψB 、ψC 、ψa 、ψb 、ψc ——各相绕组的全磁链; Rs 、Rr ——定子和转子绕组电阻;上述各量都已折算到定子侧,为了简单起见,表示折算的上角标“ ’”均省略,以下同此。