《运筹学参考综合习题》

合集下载

最全运筹学习题及答案

最全运筹学习题及答案

最全运筹学习题及答案运筹学习题答案第⼀章(39页)1.1⽤图解法求解下列线性规划问题,并指出问题是具有唯⼀最优解、⽆穷多最优解、⽆界解还是⽆可⾏解。

(1)max 12z x x =+ 51x +102x ≤501x +2x ≥1 2x ≤4 1x ,2x ≥0(2)min z=1x +1.52x1x +32x ≥3 1x +2x ≥2 1x ,2x ≥0(3)max z=21x +22x1x -2x ≥-1-0.51x +2x ≤21x ,2x ≥0(4)max z=1x +2x1x -2x ≥031x -2x ≤-31x ,2x ≥0解:(1)(图略)有唯⼀可⾏解,max z=14 (2)(图略)有唯⼀可⾏解,min z=9/4 (3)(图略)⽆界解(4)(图略)⽆可⾏解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

(1)min z=-31x +42x -23x +54x 41x -2x +23x -4x =-21x +2x +33x -4x ≤14-21x +32x -3x +24x ≥21x ,2x ,3x ≥0,4x ⽆约束(2)k i z =1mk x=-∑ik x ≥(1Max s. t .-41x x 1x ,2x(2)解:加⼊⼈⼯变量1x ,2x ,3x ,…n x ,得: Max s=(1/k p )1ni =∑mk =∑ik αik x -M 1x -M 2x -…..-M n xs.t.m(1)max z=21x +32x +43x +74x 21x +32x -3x -44x =8 1x -22x +63x -74x =-31x ,2x ,3x ,4x ≥0(2)max z=51x -22x +33x -64x1x +22x +33x +44x =721x +2x +3x +24x =31x 2x 3x 4x ≥0(1)解:系数矩阵A 是:23141267----?? 令A=(1P ,2P ,3P ,4P )1P 与2P 线形⽆关,以(1P ,2P )为基,1x ,2x 为基变量。

《运筹学》习题集

《运筹学》习题集

第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥ 2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。

1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。

1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。

1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.6《运筹学》习题集1.7某班有男生30人,女生20人,周日去植树。

《运筹学》试题及答案(三)

《运筹学》试题及答案(三)

《运筹学》试题及答案(A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。

每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3)B.(3, 4, 0, 0)C.(2, 0, 1, 0)D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量6.下例错误的说法是A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。

(完整版)运筹学》习题答案运筹学答案

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。

CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。

DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。

CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。

DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。

CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。

CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。

最新运筹学试题及答案(共两套)

最新运筹学试题及答案(共两套)

运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。

每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。

清华大学运筹学综合习题解析

清华大学运筹学综合习题解析

x1 1/5
x3 8/5
x6
4
-27/5
1 1/5 0 0 3/5 0 01 1 0 -7/5 0
3/5 -1/5 0 -1/5 2/5 0 -1 0 1 -6/5 -3/5 0
最优解为(1/5,0,8/5,0,0,4)T Ζ max =27/5
例2.max Ζ=3x1+2x1+x3-x4
s.t.5x1+3xx21++22xx32+x3
P4 d1- 6 0 0 -1 1 -3/2 3/2 1/4 -1/4 0 0
0 x2 8 0 1 0 0 -1 1 0 0 0 0 0 x1- 3 1 0 0 0 3/2 -3/2 -1/4 1/4 0 0 P3 d4- 72 0 0 0 0 0 0 3 -3 -1 1
P1 0 0 1 0 1 1/2 0 0 0 0
2020/1/2
6
Max W’ = -30y1- 60y2 - 24y3 +0(y4 + y5 )-M (y6 + y7 ) y1+3y2 + 0y3 – y4 + y6 = 40
s.t 2y1+2y2 + 2y3 – y5 + y7 = 50 y1 , y2 , y3 , y4 , y5 0
cj
根据松紧定理,原问题的最优解必满足
ŶXS=0 及YSX=0^
x5 (y1,y2) x6 =0
x1
及 (y3,y4,y5,y6)
x=20 x3
x4
将y1=1.2,y2=0.2代入对偶问题的约束条件, 得 y3≠0,y4≠0,所以x1=x2=0
又因y1>0,y2>0。所以x5=x6=0,即原问题 为等式约束

最全的运筹学复习题及答案

最全的运筹学复习题及答案

5、线性规划数学模型具备哪几个要素?答:(1).求一组决策变量xi 或xij的值(i=1,2,…m j=1,2…n)使目标函数达到极大或极小;(2).表示约束条件的数学式都是线性等式或不等式;(3).表示问题最优化指标的目标函数都是决策变量的线性函数第二章线性规划的基本概念一、填空题1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

2.图解法适用于含有两个变量的线性规划问题。

3.线性规划问题的可行解是指满足所有约束条件的解。

4.在线性规划问题的基本解中,所有的非基变量等于零。

5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

7.线性规划问题有可行解,则必有基可行解。

8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。

9.满足非负条件的基本解称为基本可行解。

10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。

12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。

13.线性规划问题可分为目标函数求极大值和极小_值两类。

14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15.线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。

17.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

18.如果某个约束条件是“≤”情形,若化为标准形式,需要引入一松弛变量。

19.如果某个变量Xj 为自由变量,则应引进两个非负变量Xj′,Xj〞,同时令Xj=Xj′-Xj。

20.表达线性规划的简式中目标函数为max(min)Z=∑cij xij 。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案大家不妨来看看小编推送的运筹学试题及答案,希望给大家带来帮助!《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

2、图解法适用于含有两个变量的线性规划问题。

3、线性规划问题的可行解是指满足所有约束条件的解。

4、在线性规划问题的基本解中,所有的非基变量等于零。

5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

7、线性规划问题有可行解,则必有基可行解。

8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。

9、满足非负条件的基本解称为基本可行解。

10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。

12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。

13、线性规划问题可分为目标函数求极大值和极小_值两类。

14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。

17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。

20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m<n),系数矩阵的数为m,则基可行解的个数最为_C_。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《运筹学参考综合习题》(我站搜集信息自编,非南邮综合练习题,仅供参考)资料加工、整理人——杨峰(函授总站高级讲师)可能出现的考试方式(题型)第一部分填空题(考试中可能有5个小题,每小题2分,共10分)——考查知识点:几个基本、重要的概念第二部分分步设问题(即是我们平常说的“大题”,共90分)——参考范围:1、考两变量线性规划问题的图解法(目标函数为max z和min z的各1题)2、考线性规划问题的单纯形解法(可能2个题目:①给出问题,要求建立线性规划模型,再用单纯形迭代表求解;②考查对偶问题,要求写出原问题的线性规划模型之后写出其对偶问题的线性规划模型,然后用大M法求解其对偶问题,从而也得到原问题的最优解)3、必考任务分配(即工作指派)问题,用匈牙利法求解。

4、考最短路问题(如果是“动态规划”的类型,则用图上标号法;如果是网络分析的类型,用TP标号法,注意不要混淆)5、考寻求网络最大流(用寻求网络最大流的标号法)6、考存储论中的“报童问题”(用概率论算法模型解决)——未知是否必考的范围:1、运输规划问题(用表上作业法,包括先求初始方案的最小元素法和将初始方案调整至最优的表上闭回路法);2、求某图的最小生成树(用破圈法,非常简单)※考试提示:可带计算器,另外建议带上铅笔、直尺、橡皮,方便绘图或分析。

第一部分 填空题复习参考一、线性规划部分:㈠基本概念:定义:满足所有约束条件的解为可行解;可行解的全体称为可行(解)域。

定义:达到目标的可行解为最优解。

由图解法得到的三个结论:①线性规划模型的可行解域是凸集;②如果线性规划模型有唯一的最优解的话,则最优解一定是凸集(可行解域)的角顶;③任何一个凸集,其角顶个数是有限的。

㈡有关运输规划问题的概念:设有m 个产地A i (i=1,2,…,m ),n 个销地B j (j=1,2,…,n ), A i 产量(供应量)S i ,B j 销量(需求量)d i ,若产、销平衡,则:∑∑===nj j mi i d s 11二、网络分析中的一些常用名词:定义:无方向的边称为边;有方向的边称为弧。

定义:赋“权”图称为网络。

定义:有向图中,若链中每一条弧的走向一致,如此的链称为路。

闭链称为圈。

闭回路又称为回路。

定义:在图G 中任两点间均可找到一条链,则称此图为连通图。

无重复边与自环的图称为连通图。

定义:树是无圈的连通图。

树的基本性质:①树的任两点之间有且只有一条链;②若图的任两点之间有且只有一条链,则此图必为树;③有n个顶点的树有n-1条边;④任何一个具有p个顶点,p-1条边的连通图必为树。

有关网络最大流的几个概念:网络的每条弧上的最大通过能力称为该弧的容量。

若f ij=c ij,称弧(c i,c j)为饱和弧;若f ij<c ij,称弧(c i,c j)为非饱和弧。

第一部分到此结束第二部分 分步设问题复习参考除了已公布的《运筹学》复习参考资料.doc 中的题目外,补充几个参考题目:※给出问题,要求建立线性规划模型的补充题:补例1:某厂生产两种不同类型的通信电缆,出售后单位产品的收益分别为6万元和4万元,生产单位甲产品要消耗2单位的A 资源(铜)和1单位的B 资源(铅);生产单位乙产品要消耗1单位的A 资源和1单位的B 资源。

现该厂拥有10单位的A 资源、8单位的B 资源。

经调查,市场对乙产品的最大需求量为7单位,对甲产品的需求没有限制。

问:该厂应如何组织生产才能使产品的售后的收益为最大?(只要求建立线性规划模型,不必进行求解)解:设甲、乙产品的生产数量应为x 1、x 2 ∵ x 1、x 2≥0设z 是产品售后的总收益,则max z= 6x 1 +4x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x 补例2:某工厂生产中需要某种混合料,它应包含甲、乙、丙三种成份。

这些成份可由市场购买的A 、B 、C 三种原料混合后得到。

已知各种原料的单价、成份含量以及各种成份每月的最低需求量如下表:费的资金为最少?(该题只要求建立线性规划模型,不必进行求解)解:现设x 1、x 2、x 2为A 、B 、C 原料的购买数量,∵ x 1、x 2、x 3≥0设z 为总的耗费资金,则min z= 6x 1+3x 2+2x 3s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥++≥++≥++0,102641212120321321321321x x x x x x x x x x x x ,※运输规划问题补充题:类型一:供求平衡的运输规划问题(又称“供需平衡”、“产销平衡”)补例:课本P52例1—10(此题务必熟悉) 解:用“表上作业法”求解。

⑴先用最低费用法(最小元素法)求此问题的初始基础可行解:∴初始方案:运费Z=9×30+6×20+3×40+7×20+6×40+9×10=980元3020 341 402023240101 33⑵对⑴的初始可行解进行检验(表上闭回路法):从上表可看出,所有检验数σ<0,已得最优解。

(上述初始方案就是最优方案,不需要调整)∴最优方案的运费就是Z=9×30+6×20+3×40+7×20+6×40+9×10=980元类型二:供求不平衡的运输规划问题若∑∑==>nj j mi i d s 11,则是供大于求(供过于求)问题,可设一虚销地B n+1,令c i,n+1=0,d n+1=∑∑==-n j j m i i d s 11,转化为产销平衡问题。

若∑∑==<nj j m i i d s 11,则是供小于求(供不应求)问题,可设一虚产地A m+1,令c m+1,j =0,s m+1=∑∑==-mi i n j j s d 11,转化为产销平衡问题。

(,2,…,m ;,2,…,n )解:∑∑==<nj jm i i ds 11,此为供小于求(供不应求)问题,可设一虚产地A 4,令c 4,j =0,s 4=∑∑==-4131i ij j sd ,(i=1,2,3,4;j=1,2,3)转化为产销平衡问题。

仍用“表上作业法”求解。

⑴先用最低费用法(最小元素法)求此问题的初始基础可行解:∴初始方案:Z=1×10+6×70+6×10+3×5+2×10=525⑵对⑴的初始可行解进行迭代(表上闭回路法),求最优解:用表上闭回路法调整后,从上表可看出,所有检验数σ<0,已得最优解。

∴最优方案:最小运费Z=1×10+6×60+4×10++6×10+3×15=5157010B 1B 3A 2B 2 10A 1 510B 1B 2A 3B 210A 1B 2 106010B 1B 3A 2B 115A 3※任务分配(工作指派)问题补充题:类型一:求极小值的匈牙利法:(重点掌握这种基本问题)补例:某游泳队教练需选派一组运动员去参加4×200混合接力赛,候选运动员有甲、乙、丙、丁、戊五位,他们游仰泳、蛙泳、蝶泳、自由泳的成绩,根据统计资料算得平均值(以秒计)如下表:问:教练应选派哪四位运动员,各游什么泳姿,才能使总的成绩最好?解:用“匈牙利法”求解。

因人数多于任务数,作如下处理:(c ij)=⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛)0(9.13.29.502.15.03.0)0(8.26.122.99.7)0(8.20)0(03.00)0(25.73.2****至此已得最优解:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1000000010000010010001000∴使总成绩最好(耗时最少)的分配任务方案为:甲→自由泳,乙→蝶泳,丙→仰泳,丁→蛙泳 此时总成绩W=29.2+28.5+33.8+34.7=126.2秒类型二:求极大值的匈牙利法:min z=-max (-z )(c ij )→(M -c ij )=(b ij ),(c ij )中最大的元素为M max z=∑∑jij ijix c=∑∑-jijiji xc M )(=∑∑-jijijixc M )(-∑∑jij ijix c补例:有四个人分别操作四台机器,每人操作不同机器的产值如下表:求对四个工人分配不同的机器使得总产值为最大的方案。

解:用求极大值的“匈牙利法”求解。

效率矩阵表示为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛65342112654378910⎪⎪⎪⎪⎪⎭⎫⎝⎛4576899845673210⎪⎪⎪⎪⎪⎭⎫⎝⎛0132011001233210 ⎪⎪⎪⎪⎪⎭⎫⎝⎛)0(02200)0(00)0(13310)0(****** ∴使总产值为最大的分配任务方案为:甲→A ,乙→C ,丙→B ,丁→D 此时总产值W=10+5+1+6=22※动态规划问题(只要求“最短路问题”)补充题:补例:某旅游者要从A 地出发到终点F ,他事先得到的路线图如下: 各点之间的距离如上图所示数值,旅游者沿着箭头方向行走总能走到F 地,试找出A →F 间的最短路线及距离。

解:此为动态规划之“最短路问题”,可用逆向追踪“图上标号法”解决如下:最佳策略为:A →B 2→C 1→E 1→D 2→F此时的最短距离为5+4+1+2+2=14补例1求v 1到v 7的最短路径和最短距离。

解:此为网络分析之“最短路问题”,可用顺向追踪“TP 标号法”解决如下:v 1到v 7的最短路径是:v 1→v 3→v 4→v 7,最短距离为1+4+2=7。

补例2:教材P124图4—8补例3图中为(C ij ,f ij )解:此为网络分析之“寻求网络最大流问题”,可用“寻求网络最大流的标号法(福特—富克尔逊算法)”解决如下:㈠标号过程:1、给v s 标上(0,∞);2、检查v s ,在弧(v s ,v 1)上,f s1=0,C s1=3,f s1<C s1,给v 1标号(s , (v 1)),其中{}{}303m in )(),(m in )(111=-∞+=-=,s s s f C v l v l ,同理,给v 2标号(s , (v 2)),其中{}{}505m in )(),(m in )(222=-∞+=-=,s s s f C v l v l , 3、检查v 1,在弧(v 1,v 3)上,f 13=0,C 13=4,f 13<C 13,给v 3标号(1, (v 3)),其中{}{}3043m in )(),(m in )(131313=-=-=,f C v l v l ,(s ,5)(s ,5)(2,2)检查v 2,同理,给v 4标号(2, (v 4)),其中{}{}2025m in )(),(m in )(242424=-=-=,f C v l v l ,4、检查v 4,在弧(v 4,v t )上,f 4t =0,C 4t =2,f 13<C 13,给v t 标号(4, (v t )),其中{}{}2022m in )(),(m in )(444=-=-=,t t t f C v l v l ,v t 得到标号,标号过程结束。

相关文档
最新文档