2015年高考文科数学全国卷及答案

合集下载

2015年全国新课标2卷高考文科数学及答案详解

2015年全国新课标2卷高考文科数学及答案详解

2015年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}30|,21|<<=<<-=x x B x x A ,则=⋃B A ( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3)2.若a 为实数,且i iai +=++312,则=a ( ) A .-4 B .-3 C .3 D .43.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关4.向量()1,1-=a ,()2,1-=b ,则()=⋅+a b a 2 ( )A .-1B .0C .1D .25.设n S 是等差数列{}n a 的前n 项和,若3531=++a a a ,则=5S ( )A .5B .7C .9D .11 6.第6题图一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A.18 B.17 C.16 D.157.已知三点()01,A ()30,B ,()32,C ,则ABC ∆外接圆的圆心到原点的距离为( )A.53B.213C.253D.438.第8题图右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的=a ( )A .0B .2C .4D .149.已知等比数列{}n a 满足411=a ,()14453-=a a a ,则=2a ( ) A .2 B .1 C.12 D.1810.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ­ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B .64π C.144π D.256π11.如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x ,将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )12.设函数()()2111ln x x x f +-+=,则使得()()12->x f x f 成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1B.()∞+⋃⎪⎭⎫ ⎝⎛∞,,131- C.⎝ ⎛⎭⎪⎫-13,13 D.⎪⎭⎫ ⎝⎛∞+⋃⎪⎭⎫ ⎝⎛∞,,3131-- 第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数()x ax x f 23-=的图象过点()4,1-,则=a ________.14.若x ,y 满足约束条件⎩⎨⎧ x +y -5≤0,2x -y -1≥0,x -2y +1≤0,则y x z +=2的最大值为________. 15.已知双曲线过点()34,,且渐近线方程为x y 21±=,则该双曲线的标准方程为________.16.已知曲线x x y ln +=在点()1,1处的切线与曲线()122+++=x a ax y 相切,则=a ________. 三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分) ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,DC BD 2=(1)求CB sin sin (2)若︒=∠60BAC ,求B ∠18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.图①B地区用户满意度评分的频数分布表满意度评分[50,60)[60,70)[70,80)[80,90)[90,100] 分组频数281410 6 2015·新课标Ⅱ卷第4页(1)在图②中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分 低于70分 70分到89分 不低于90分满意度等级 不满意 满意 非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(本小题满分12分)如图,长方体1111D C B A ABCD -中,16=AB ,10=BC ,81=AA ,点E ,F 分别在11B A ,11C D 上,411==F D E A .过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.20.(本小题满分12分)已知椭圆C :12222=+by a x ()0.>>b a 的离心率为22,点()22,在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.21.(本小题满分12分)已知函数()()x a x x f -+=1ln .(1)讨论()x f 的单调性;(2)当()x f 有最大值,且最大值大于22-a 时,求a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22. (本小题满分10分)选修4-1:几何证明选讲如图O 是等腰三角形AB C 内一点, ⊙O 与△ABC 的底边BC 交于M ,N 两点,与底边上的高交于点G ,且与AB ,AC 分别相切于E ,F 两点.(I )证明EF ∥BC .(II )若AG 等于⊙O 的半径,且23AE MN == ,求四边形EDCF 的面积23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ== (I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值24.(本小题满分10分)选修4-5:不等式选讲设a ,b ,c ,d 均为正数,且a +b =c +d .证明:(1)若ab >cd ,则a +b >c +d ;N M G OFE D C B A(2)a+b>c+d是|a-b|<|c-d|的充要条件.2015·新课标Ⅱ卷第8页1、选A2、故选D3、选D4、选B5、解:在等差数列中,因为.,5525)(,1,335153531A a a a S a a a a 故选所以==⨯+===++6、解:如图所示,选D.7、选B.8、故选B.9、解:因为{}),1(4,414531-==a a a a a n 满足所以, .21241,2,2),1(4123144424=⨯=====-=q a a q q a a a a a 所以,所以又解得故选C.10、解:因为A,B 都在球面上,又为该球面上动点,C AOB ,90︒=∠所以 三棱锥的体积的最大值为3661213132==⨯⨯R R R ,所以R=6,所以球的表面积为 S=14442=R ππ,故选C.11、解:如图,当点P 在BC 上时, ,tan 4tan ,tan 4,tan ,22x x PB PA x PA x PB x BOP ++=+∴+===∠ 当4π=x 时取得最大值51+,以A,B 为焦点C,D 为椭圆上两定点作椭圆,显然,当点P 在C,D 之间移动时PA+PB<51+. 又函数)(x f 不是一次函数,故选B.xP O DC B A12、解:因为函数时函数是增函数是偶函数,),0[,11)1ln()(2+∞∈+-+=x x x x f .131,)12(,12)12()(22<<->∴->∴->x x x x x x f x f 解得 故选A.第二卷一、填空题:本大题共4个小题,每小题5分 13、答:a=-214、解:当x=3,y=2时,z=2x+y 取得最大值8.15、解:设双曲线的方程为.43,4),0(422=≠=-k k k y x )代入方程,解得,点(1422=-∴y x 双曲线的标准方程为16、解:.122,11'-=∴+=x y xy ,切线方程为切线的斜率为 .8120.08,08,021)2(12222=+=====-=∆=+++++=-=a x y a a a a a ax ax x a ax y x y 所以与切线平行,不符。

2015年高考文科数学真题及答案16套

2015年高考文科数学真题及答案16套

福建卷---------------------------------------------------2-18页新课标1-------------------------------------------------18-33 新课标2-------------------------------------------------33-47 重庆卷-------------------------------------------------47-62湖北卷-------------------------------------------------62-75天津卷-------------------------------------------------75-85安徽卷------------------------------------------------86-98北京卷-------------------------------------------------98-111 广东卷-------------------------------------------------111-121 湖南卷-------------------------------------------------121-136 江苏卷-------------------------------------------------136-152 山东卷-------------------------------------------------152-168 陕西卷-------------------------------------------------168-184 四川卷-------------------------------------------------184-195 上海卷-------------------------------------------------195-204 浙江卷-------------------------------------------------205-216第I 卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( ) A .3,2- B .3,2 C .3,3- D .1,4- 【答案】A 【解析】试题分析:由已知得32i a bi -=+,所以3,2a b ==-,选A . 考点:复数的概念.2.若集合{}22M x x =-≤<,{}0,1,2N =,则MN 等于( )A .{}0B .{}1C .{}0,1,2D {}0,1 【答案】D考点:集合的运算.3.下列函数为奇函数的是( ) A .y x = B .x y e = C .cos y x = D .x x y e e -=-【答案】D 【解析】试题分析:函数y x =和x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇函数,故选D .考点:函数的奇偶性.4.阅读如图所示的程序框图,阅读相应的程序.若输入x 的值为1,则输出y 的值为( ) A .2 B .7 C .8 D .128【答案】C 【解析】试题分析:由题意得,该程序表示分段函数2,2,9,2x x y x x ⎧≥=⎨-<⎩,则(1)918f =-=,故选C .考点:程序框图. 5.若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 【答案】C考点:基本不等式. 6.若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512-【答案】D 【解析】试题分析:由5sin 13α=-,且α为第四象限角,则212cos 1sin 13αα=-=,则sin tan cos ααα= 512=-,故选D .考点:同角三角函数基本关系式.7.设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于( ) A .32-B .53-C .53D .32【答案】A考点:平面向量数量积.8.如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0).且点C 与点D 在函数1,0()11,02x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD 内随机取一点,则该点取自阴影部分的概率等于( ) A .16 B .14 C .38 D .12xyOBCDAF【答案】B考点:古典概型.9.某几何体的三视图如图所示,则该几何体的表面积等于( ) A .822+ B .1122+ C .1422+ D .151112【答案】B 【解析】试题分析:由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为1,斜腰为2.底面积为12332⨯⨯=,侧面积为则其表面积为 2+2+4+22=8+22,所以该几何体的表面积为1122+,故选B .考点:三视图和表面积.10.变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( )A .2-B .1-C .1D .2 【答案】C 【解析】x–1–2–3–41234–1–2–3–4123BOC试题分析:将目标函数变形为2y x z =-,当z 取最大值,则直线纵截距最小,故当0m ≤时,不满足题意;当0m >时,画出可行域,如图所示, 其中22(,)2121mB m m --.显然(0,0)O 不是最优解,故只能22(,)2121m B m m --是最优解,代入目标函数得4222121m m m -=--,解得1m =,故选C . 考点:线性规划.11.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A . 3(0,]2 B .3(0,]4C .3[,1)2 D .3[,1)4【答案】A考点:1、椭圆的定义和简单几何性质;2、点到直线距离公式. 12.“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B考点:导数的应用.第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______. 【答案】25 【解析】试题分析:由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=. 考点:分层抽样.14.若ABC ∆中,3AC =,045A =,075C =,则BC =_______.【答案】2 【解析】试题分析:由题意得018060B A C =--=.由正弦定理得sin sin AC BC B A =,则sin sin AC ABC B=, 所以232232BC ⨯==.考点:正弦定理.15.若函数()2()x af x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______. 【答案】1 【解析】试题分析:由(1)(1)f x f x +=-得函数()f x 关于1x =对称,故1a =,则1()2x f x -=,由复合函数单调性得()f x 在[1,)+∞递增,故1m ≥,所以实数m 的最小值等于1. 考点:函数的图象与性质.16.若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________. 【答案】9考点:等差中项和等比中项.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【答案】(Ⅰ)2n a n =+;(Ⅱ)2101. 【解析】试题分析:(Ⅰ)利用基本量法可求得1,a d ,进而求{}n a 的通项公式;(Ⅱ)求数列前n 项和,首先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2nn b n =+,故可采取分组求和法求其前10项和.试题解析:(I )设等差数列{}n a 的公差为d .由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+.考点:1、等差数列通项公式;2、分组求和法. 18.(本题满分12分)全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.组号分组 频数 1 [4,5) 2 2 [5,6) 8 3 [6,7) 7 4[7,8]3(Ⅰ)现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【答案】(Ⅰ)910;(Ⅱ)6.05.解法一:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (II )这20家“省级卫视新闻台”的融合指数平均数等于28734.55.56.57.5 6.0520202020⨯+⨯+⨯+⨯=.解法二:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个. 所以所求的概率1911010P =-=.(II )同解法一.考点:1、古典概型;2、平均值. 19.(本小题满分12分)已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =. (Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【答案】(Ⅰ)24y x =;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)利用抛物线定义,将抛物线上的点到焦点距离和到准线距离相互转化.本题由3AF =可得232p+=,可求p 的值,进而确定抛物线方程;(Ⅱ)欲证明以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.可证明点F 到直线GA 和直线GB 的距离相等(此时需确定两条直线方程);也可以证明GF GF ∠A =∠B ,可转化为证明两条直线的斜率互为相反数.试题解析:解法一:(I )由抛物线的定义得F 22pA =+. 因为F 3A =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =. (II )因为点()2,m A 在抛物线:E 24y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由()2,22A ,()F 1,0可得直线F A 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22⎛⎫B - ⎪⎝⎭. 又()G 1,0-,所以()G 22022213k A -==--,()G 20221312k B --==---, 所以G G 0k k A B +=,从而GF GF ∠A =∠B ,这表明点F 到直线G A ,G B 的距离相等, 故以F 为圆心且与直线G A 相切的圆必与直线G B 相切. 解法二:(I )同解法一.(II )设以点F 为圆心且与直线G A 相切的圆的半径为r . 因为点()2,m A 在抛物线:E 24y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由()2,22A ,()F 1,0可得直线F A 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22⎛⎫B - ⎪⎝⎭. 又()G 1,0-,故直线G A 的方程为223220x y -+=,从而2222428917r +==+.又直线G B 的方程为223220x y ++=,所以点F 到直线G B 的距离2222428917d r +===+. 这表明以点F 为圆心且与直线G A 相切的圆必与直线G B 相切. 考点:1、抛物线标准方程;2、直线和圆的位置关系. 20.(本题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值; (Ⅲ)若2BC =,点E 在线段PB 上,求CE OE +的最小值.【答案】(Ⅰ)详见解析;(Ⅱ)13;(Ⅲ)262+.【解析】试题分析:(Ⅰ)要证明C A ⊥平面D P O ,只需证明AC 垂直于面D P O 内的两条相交直线.首先由PO 垂直于圆O 所在的平面,可证明C PO ⊥A ;又C OA =O ,D 为C A 的中点,可证明C D A ⊥O ,进而证明结论;(Ⅱ)三棱锥P ABC -中,高1PO =,要使得P ABC -体积最大,则底面ABC 面积最大,又2AB =是定值,故当AB 边上的高最大,此时高为半径,进而求三棱锥P ABC -体积;(Ⅲ)将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,此时线段'OC 的长度即为CE OE +的最小值. 试题解析:解法一:(I )在C ∆AO 中,因为C OA =O ,D 为C A 的中点, 所以C D A ⊥O .又PO 垂直于圆O 所在的平面, 所以C PO ⊥A . 因为D OPO =O ,所以C A ⊥平面D P O .(II )因为点C 在圆O 上,所以当C O ⊥AB 时,C 到AB 的距离最大,且最大值为1. 又2AB =,所以C ∆AB 面积的最大值为12112⨯⨯=. 又因为三棱锥C P -AB 的高1PO =, 故三棱锥C P -AB 体积的最大值为111133⨯⨯=. (III )在∆POB 中,1PO =OB =,90∠POB =,所以22112PB =+=.同理C 2P =,所以C C PB =P =B .在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值. 又因为OP =OB ,C C ''P =B , 所以C 'O 垂直平分PB , 即E 为PB 中点. 从而2626C C 222+''O =OE +E =+=, 亦即C E +OE 的最小值为262+. 解法二:(I )、(II )同解法一.(III )在∆POB 中,1PO =OB =,90∠POB =,所以45∠OPB =,22112PB =+=.同理C 2P =.所以C C PB =P =B ,所以C 60∠PB =.在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示. 当O ,E ,C '共线时,C E +OE 取得最小值.所以在C '∆O P 中,由余弦定理得:()2C 12212cos 4560'O =+-⨯⨯⨯+212312222222⎛⎫=+-⨯-⨯ ⎪ ⎪⎝⎭23=+. 从而26C 232+'O =+=. 所以C E +OE 的最小值为262+. 考点:1、直线和平面垂直的判定;2、三棱锥体积. 21.(本题满分12分) 已知函数()2103sincos 10cos 222x x xf x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2. (ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ⅱ)详见解析. 【解析】试题分析:(Ⅰ)首先利用证明二倍角公式和余弦降幂公式将()f x 化为()10sin 56f x x π⎛⎫=++ ⎪⎝⎭,然后利用2T πω=求周期;(Ⅱ)由函数()f x 的解析式中给x 减6π,再将所得解析式整体减去a 得()g x 的解析式为()10sin 5g x x a =+-,当sin x 取1的时,()g x 取最大值105a +-,列方程求得13a =,从而()g x 的解析式可求;欲证明存在无穷多个互不相同的正整数0x ,使得()00g x >,可解不等式()00g x >,只需解集的长度大于1,此时解集中一定含有整数,由周期性可得,必存在无穷多个互不相同的正整数0x .试题解析:(I )因为()2103sincos 10cos 222x x xf x =+ 53sin 5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭.所以函数()f x 的最小正周期2πT =. (II )(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象.又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =. 所以()10sin 8g x x =-.(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >. 由4352<知,存在003πα<<,使得04sin 5α=. 由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >. 因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-(k ∈Z )时,均有4sin 5x >. 因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数()002,2k x k k παππα∈++-,使得4sin 5k x >. 亦即存在无穷多个互不相同的正整数0x ,使得()00g x >. 考点:1、三角函数的图像与性质;2、三角不等式. 22.(本小题满分14分)已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) 150,2⎛⎫+ ⎪ ⎪⎝⎭;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】试题分析:(Ⅰ)求导函数()21x x f x x-++'=,解不等式'()0f x >并与定义域求交集,得函数()f x 的单调递增区间;(Ⅱ)构造函数()()()F 1x f x x =--,()1,x ∈+∞.欲证明()1f x x <-,只需证明()F x 的最大值小于0即可;(Ⅲ)由(II )知,当1k =时,不存在01x >满足题意;当1k >时,对于1x >, 有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意;当1k <时,构造函数()()()G 1x f x k x =--,()0,x ∈+∞,利用导数研究函数()G x 的形状,只要存在01x >,当0(1,)x x ∈时()0G x >即可.试题解析:(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得2010x x x >⎧⎨-++>⎩解得1502x +<<.故()f x 的单调递增区间是150,2⎛⎫+ ⎪ ⎪⎝⎭. (II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x-'=.当()1,x ∈+∞时,()F 0x '<, 所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意. 当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得()2111402k k x ---+=<,()2211412k k x -+-+=>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增. 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞. 考点:导数的综合应用.2015年普通高等学校招生全国统一考试(新课标1卷)文数一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为(A ) 5 (B )4 (C )3 (D )2 【答案】D 【解析】试题分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D. 考点:集合运算2、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)【答案】A考点:向量运算3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +【答案】C 【解析】试题分析:∴(1)1z i i -=+,∴z=212(12)()2i i i i i i ++-==--,故选C. 考点:复数运算4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A )310 (B )15 (C )110 (D )120【答案】C 【解析】试题分析:从1,2,3,4,51,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为110,故选C. 考点:古典概型5、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A ) 3 (B )6 (C )9 (D )12【答案】B考点:抛物线性质;椭圆标准方程与性质6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛【答案】B 【解析】试题分析:设圆锥底面半径为r ,则12384r ⨯⨯==163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B.考点:本题主要考查圆锥的性质与圆锥的体积公式7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )12 【答案】B 【解析】试题分析:∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 考点:等差数列通项公式及前n 项和公式8、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13(2,2),44k k k Z -+∈ 【答案】D【解析】 试题分析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 考点:三角函数图像与性质9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A ) 5 (B )6 (C )10 (D )12【答案】C考点:程序框图10、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -= (A )74-(B )54- (C )34- (D )14- 【答案】A【解析】试题分析:∵()3f a =-,∴当1a ≤时,1()223a f a -=-=-,则121a -=-,此等式显然不成立, 当1a >时,2log (1)3a -+=-,解得7a =,∴(6)f a -=(1)f -=117224---=-,故选A. 考点:分段函数求值;指数函数与对数函数图像与性质11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】试题分析:由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.考点:简单几何体的三视图;球的表面积公式;圆柱的测面积公式12、设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4【答案】C【解析】试题分析:设(,)x y 是函数()y f x =的图像上任意一点,它关于直线y x =-对称为(,y x --),由已知知(,y x --)在函数2x a y +=的图像上,∴2y a x -+-=,解得2log ()y x a =--+,即2()log ()f x x a =--+,∴22(2)(4)log 2log 41f f a a -+-=-+-+=,解得2a =,故选C. 考点:函数对称;对数的定义与运算二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .【答案】6【解析】试题分析:∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列, ∴2(12)12612n n S -==-,∴264n =,∴n=6. 考点:等比数列定义与前n 项和公式14. 已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = . 【答案】1【解析】试题分析:∵2()31f x ax '=+,∴(1)31f a '=+,即切线斜率31k a =+,又∵(1)2f a =+,∴切点为(1,2a +),∵切线过(2,7),∴273112a a +-=+-,解得a =1.考点:利用导数的几何意义求函数的切线;常见函数的导数;15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .【答案】4【解析】试题分析:作出可行域如图中阴影部分所示,作出直线0l :30x y +=,平移直线0l ,当直线l :z =3x +y 过点A 时,z 取最大值,由2=021=0x y x y +-⎧⎨-+⎩解得A (1,1),∴z =3x +y 的最大值为4.考点:简单线性规划解法 16. 已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆周长最小时,该三角形的面积为 . 【答案】126考点:双曲线的定义;直线与双曲线的位置关系;最值问题 三、解答题17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. (I )若a b =,求cos ;B(II )若90B =,且2,a =求ABC ∆的面积. 【答案】(I )14(II )1 【解析】试题分析:(I )先由正弦定理将2sin 2sin sin B A C =化为变得关系,结合条件a b =,用其中一边把另外两边表示出来,再用余弦定理即可求出角B 的余弦值;(II )由(I )知22b ac =,根据勾股定理和即可求出c ,从而求出ABC ∆的面积.试题解析:(I )由题设及正弦定理可得22b ac =.又a b =,可得2b c =,2a c =, 由余弦定理可得2221cos 24a cb B ac +-==. (II )由(1)知22b ac =.因为B =90°,由勾股定理得222a c b +=.故222a c ac +=,得2c a ==.所以D ABC 的面积为1. 考点:正弦定理;余弦定理;运算求解能力18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积. 【答案】(I )见解析(II )3+25试题解析:(I )因为四边形ABCD 为菱形,所以AC ^BD ,因为BE ^平面ABCD ,所以AC ^BE ,故AC ^平面BED.又AC Ì平面AEC ,所以平面AEC ^平面BED(II )设AB=x ,在菱形ABCD 中,由ÐABC=120°,可得AG=GC=32x ,GB=GD=2x . 因为AE ^EC ,所以在Rt D AEC 中,可得EG=32x . 由BE ^平面ABCD ,知D EBG 为直角三角形,可得BE=22x . 由已知得,三棱锥E-ACD 的体积3116632243E ACD V AC GD BEx -=醋?=.故x =2 从而可得AE=EC=ED=6.所以D EAC 的面积为3,D EAD 的面积与D ECD 的面积均为5.故三棱锥E-ACD 的侧面积为3+25.考点:线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值. x y w 21()n i i x x =-∑ 21()n i i w w =-∑ 1()()n i i i x x y y =--∑ 1()()n i i i w w y y =--∑ 46.6 56.3 6.8 289.8 1.6 1469 108.8表中w 1 =x 1, ,w =181n i i w =∑(I )根据散点图判断,y a bx =+与y c d x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题: (i )当年宣传费90x =时,年销售量及年利润的预报值时多少?(ii )当年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:121()()=()ni ii n ii u u v v u u β==---∑∑,=v u αβ-【答案】(Ⅰ)y c d x =+适合作为年销售y 关于年宣传费用x 的回归方程类型(Ⅱ)100.668y x =+(Ⅲ)46.24【解析】试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;(Ⅱ)令w x =,先求出建立y 关于w 的线性回归方程,即可y 关于x 的回归方程;(Ⅲ)(ⅰ)利用y 关于x 的回归方程先求出年销售量y 的预报值,再根据年利率z 与x 、y 的关系为z=0.2y-x 即可年利润z 的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值,列出关于x 的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用.考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识20. (本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )12OM ON ⋅=,其中O 为坐标原点,求MN .【答案】(I )4747,33骣-+琪琪桫(II )2 【解析】试题分析:(I )设出直线l 的方程,利用圆心到直线的距离小于半径列出关于k 的不等式,即可求出k 的取值范围;(II )设1122M(,y ),N(,y )x x ,将直线l 方程代入圆的方程化为关于x 的一元二次方程,利用韦达定理将1212,x x y y 用k 表示出来,利用平面向量数量积的坐标公式及12OM ON ⋅=列出关于k 方程,解出k ,即可求出|MN|.试题解析:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C 交于两点,所以2|231|11k k -+<+. 解得474733k -+<<. 所以k 的取值范围是4747,33骣-+琪琪桫. (II )设1122M(,y ),N(,y )x x .将1y kx =+代入方程()()22231x y -+-=,整理得22(1)-4(1)70k x k x +++=, 所以1212224(1)7,.11k x x x x k k ++==++ ()()21212121224(1)OM ONy 1181k k x x y k x x k x x k +?+=++++=++, 由题设可得24(1)8=121k k k+++,解得=1k ,所以l 的方程为1y x =+. 故圆心在直线l 上,所以|MN |2=.考点:直线与圆的位置关系;设而不求思想;运算求解能力21. (本小题满分12分)设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22ln f x a a a≥+. 【答案】(I )当0a £时,()f x ¢没有零点;当0a >时,()f x ¢存在唯一零点.(II )见解析【解析】试题分析:(I )先求出导函数,分0a £与0a >考虑()f x '的单调性及性质,即可判断出零点个数;(II )由(I )可设()f x ¢在()0+¥,的唯一零点为0x ,根据()f x '的正负,即可判定函数的图像与性质,求出函数的最小值,即可证明其最小值不小于22lna a a+,即证明了所证不等式. 试题解析:(I )()f x 的定义域为()0+¥,,()2()=20x a f x e x x ¢->. 当0a £时,()0f x ¢>,()f x ¢没有零点;当0a >时,因为2x e 单调递增,a x -单调递增,所以()f x ¢在()0+¥,单调递增.又()0f a ¢>,当b 满足04a b <<且14b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点. (II )由(I ),可设()f x ¢在()0+¥,的唯一零点为0x ,当()00x x Î,时,()0f x ¢<; 当()0+x x 违,时,()0f x ¢>.故()f x 在()00x ,单调递减,在()0+x ¥,单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x -,所以00022()=2ln 2ln 2a f x ax a a a x a a++?. 故当0a >时,2()2lnf x a a a ?. 考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图AB 是O 直径,AC 是O 切线,BC 交O 与点E.(I )若D 为AC 中点,求证:DE 是O 切线;(II )若3OA CE = ,求ACB ∠的大小.【答案】(Ⅰ)见解析(Ⅱ)60° 【解析】 试题分析:(Ⅰ)由圆的切线性质及圆周角定理知,AE ⊥BC ,AC ⊥AB ,由直角三角形中线性质知DE=DC ,OE=OB ,利用等量代换可证∠DEC+∠OEB=90°,即∠OED=90°,所以DE 是圆O 的切线;(Ⅱ)设CE=1,由3OA CE =得,AB=23,设AE=x ,由勾股定理得212BE x =-,由直角三角形射影定理可得2AE CE BE =,列出关于x 的方程,解出x ,即可求出∠ACB 的大小. 试题解析:(Ⅰ)连结AE ,由已知得,AE ⊥BC ,AC ⊥AB , 在Rt △AEC 中,由已知得DE=DC ,∴∠DEC=∠DCE , 连结OE ,∠OBE=∠OEB ,∵∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°, ∴∠OED=90°,∴DE 是圆O 的切线. ……5分(Ⅱ)设CE=1,AE=x ,由已知得AB=23,212BE x =-, 由射影定理可得,2AE CE BE =,∴2212x x =-,解得x =3,∴∠ACB =60°. ……10分考点:圆的切线判定与性质;圆周角定理;直角三角形射影定理 23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 【答案】(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)12【解析】试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN 的面积. 试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分 (Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1ρ=22,2ρ=2,|MN|=1ρ-2ρ=2,因为2C 的半径为1,则2C MN 的面积o 121sin 452⨯⨯⨯=12. 考点:直角坐标方程与极坐标互化;直线与圆的位置关系 24. (本小题满分10分)选修4-5:不等式选讲 已知函数()12,0f x x x a a =+--> . (I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 图像与x 轴围成的三角形面积大于6,求a 的取值范围. 【答案】(Ⅰ)2{|2}3x x <<(Ⅱ)(2,+∞)(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22(1)3a +. 由题设得22(1)3a +>6,解得2a >.所以a 的取值范围为(2,+∞). ……10分考点:含绝对值不等式解法;分段函数;一元二次不等式解法一、选择题:本大题共12道小题,每小题5分,共60分. 1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3 【答案】A考点:集合运算. 2. 若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4 【答案】D 【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D. 考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】 D考点:柱形图4. 已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( ) A .1- B .0 C .1 D .2 【答案】C 【解析】试题分析:由题意可得22=a ,3,⋅=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:向量数量积.5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11 【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6 1D.5【答案】D 【解析】试题分析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15,故选D.考点:三视图7. 已知三点(1,0),(0,3),(2,3)A B C,则△ABC外接圆的圆心到原点的距离为()5 A. 321B.325C.34D.3【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b分别为14,18,则输出的a为()A.0B.2C.4D.14【答案】B 【解析】试题分析:由题意输出的a 是18,14的最大公约数2,故选B. 考点:1. 更相减损术;2.程序框图. 9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1 1C.2 1D.8【答案】C 【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q == ,选C.考点:等比数列.10. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A.π36B. π64C.π144D. π256 【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】试题分析:由21()ln(1||)1f x x x =+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以 ()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<< .故选A.考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分。

2015年高考文科数学全国2卷(含详细解析)

2015年高考文科数学全国2卷(含详细解析)

绝密★启用前2015年高考全国2卷文科数学注意事项:1.本试卷分第I 卷(阅读题)和第Ⅱ卷(表达题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上.写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12道小题,每小题5分,共60分. 1.已知集合,,则( )A .B .C .D . 【答案】A考点:集合运算. 2. 若为实数,且,则( ) A . B . C . D . 【答案】D 【解析】试题分析:由题意可得 ,故选D. 考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( ){}|12A x x =-<<{}|03B x x =<<A B =()1,3-()1,0-()0,2()2,3a 2i3i 1ia +=++a =4-3-34()()2i 1i 3i 24i 4a a +=++=+⇒=A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】 D 考点:柱形图4. 已知,,则( ) A . B . C . D . 【答案】C 【解析】试题分析:由题意可得 , 所以.故选C.考点:向量数量积.5. 设是等差数列的前项和,若,则( ) A . B . C . D . 【答案】A 【解析】试题解析:,.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )()1,1=-a ()1,2=-b (2)+⋅=a b a 1-01222=a 3,⋅=-a b ()222431+⋅=+⋅=-=a b a a a b n S {}n a n 1353a a a ++=5S =5791113533331a a a a a ++==⇒=()15535552a a S a +===【答案】D 【解析】试题分析:截去部分是正方体的一个角,其体积是正方体体积的,所以截去部分体积与剩余部分体积的比值为 ,故选D.考点:三视图7. 已知三点,则△外接圆的圆心到原点的距离为( )【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为14,18,则输出的为( )1A.81B.71C.61D.51615(1,0),A B C ABC 5A.33 C.34D.3,a b a A.0 B.2 C.4 D.14【答案】B 【解析】试题分析:由题意输出的a 是18,14的最大公约数2,故选B. 考点:1. 更相减损术;2.程序框图. 9.已知等比数列满足,,则( )【答案】C 【解析】试题分析:由题意可得,所以,故 ,选C.考点:等比数列.10. 已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( )A. B. C. D. 【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记{}n a 114a =()35441a a a =-2a =A.2 B.11C.21D.8()235444412a a a a a ==-⇒=34182a q q a ==⇒=2112a a q ==B A ,O ︒=∠90AOBC ABC O -O π36π64π144π256,将动点P 到A ,B 两点距离之和表示为x 的函数 ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数,则使得成立的的取值范围是( )A .B .C .D .【答案】A 【解析】试题分析:由可知是偶函数,且在是增函数,所以 .故选A.BOP x ∠=()f x 21()ln(1||)1f x x x =+-+()(21)f x f x >-x 1,13⎛⎫ ⎪⎝⎭()1,1,3⎛⎫-∞+∞ ⎪⎝⎭11,33⎛⎫-⎪⎝⎭11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭21()ln(1||)1f x x x =+-+()f x [)0,+∞()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<<考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分13. 已知函数的图像过点(-1,4),则a = .【答案】-2 【解析】试题分析:由可得 .考点:函数解析式14. 若x ,y 满足约束条件 ,则z =2x +y 的最大值为 .【答案】8考点:线性规划15. 已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为 .【答案】考点:双曲线几何性质16. 已知曲线在点 处的切线与曲线 相切,则()32f x ax x =-()32f x ax x =-()1242f a a -=-+=⇒=-50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩(12y x =±2214x y -=ln y x x =+()1,1()221y ax a x =+++a = . 【答案】8 【解析】试题分析:由可得曲线在点处的切线斜率为2,故切线方程为,与联立得,显然,所以由.考点:导数的几何意义. 三、解答题17(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分BAC ,BD =2DC . (I )求;(II )若,求. 【答案】(I );.考点:解三角形试题解析:(I )由正弦定理得因为AD 平分BAC ,BD =2DC ,所以.(II )因为 所以 由(I )知, 11y x'=+ln y x x =+()1,121y x =-()221y ax a x =+++220ax ax ++=0a ≠2808a a a ∆=-=⇒=∠sin sin BC∠∠60BAC ∠=B ∠1230,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠∠sin 1.sin 2B DC C BD ∠==∠()180,60,C BAC B BAC ∠=-∠+∠∠=()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠2sin sin B C ∠=∠所以 考点:解三角形18. (本小题满分12分)某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图(I )在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B 地区用户满意度评分的频率分布直方图tan 30.B B ∠=∠=(II )根据用户满意度评分,将用户的满意度评分分为三个等级:估计那个地区的用户的满意度等级为不满意的概率大,说明理由.【答案】(I )见试题解析(II )A 地区的用户的满意度等级为不满意的概率大. 考点:1.频率分布直方图;2.概率估计.19. (本小题满分12分)如图,长方体中AB =16,BC =10,,点E ,F 分别在 上,过点E ,F 的平面与此长方体的面相交,交线围成一个正方形.(I )在图中画出这个正方形(不必说明画法与理由); (II )求平面把该长方体分成的两部分体积的比值. 【答案】(I )见试题解析(II )或1111ABCD A B C D -18AA =1111,A B D C 11 4.A E D F ==αα9779考点:1.几何体中的截面问题;2.几何体的体积20. (本小题满分12分)已知椭圆 的离心率为,点在C 上.(I )求C 的方程;(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.【答案】(I )(II )见试题解析()2222:10x y C a b a b+=>>2(2222184x y +=考点:直线与椭圆21. (本小题满分12分)已知.(I )讨论的单调性;(II )当有最大值,且最大值大于时,求a 的取值范围.【答案】(I ),在是单调递增;,在单调递增,在单调递减;(II ). 【解析】()()ln 1f x x a x =+-()f x ()f x 22a -0a ≤()f x ()0,+∞0a >()f x 10,a ⎛⎫ ⎪⎝⎭1,a ⎛⎫+∞ ⎪⎝⎭()0,1考点:导数的应用.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图O是等腰三角形AB C内一点,圆O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点.(I )证明;(II )若AG 等于圆O 半径,且,求四边形EBCF 的面积.【答案】(I )见试题解析;(II考点:1.几何证明;2.四边形面积的计算.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,曲线 (t 为参数,且 ),其中,在以O为极点,x 轴正半轴为极轴的极坐标系中,曲线 (I )求与交点的直角坐标;(II )若与 相交于点A ,与相交于点B ,求最大值.EF BC AE MN ==xOy 1cos ,:sin ,x t C y t αα=⎧⎨=⎩0t ≠0απ≤<23:2sin ,:.C C ρθρθ==2C 3C 1C 2C 1C 3C AB【答案】(I );(II )4. 【解析】 试题分析:(I )把与的方程化为直角坐标方程分别为,,联立解考点:参数方程、直角坐标及极坐标方程的互化.24. (本小题满分10分)选修4-5:不等式证明选讲设 均为正数,且.证明:(I )若 ,(II )的充要条件.【答案】【解析】 ()30,0,2⎫⎪⎪⎝⎭2C 3C 2220x y y +-=22230x y x +-=,,,a b c d a b c d +=+ab cd >>>a b c d -<-试题分析:(I )由及,可证明,开方即得(II )本小题可借助第一问的结论来证明,但要分必要性与充分性来证明.试题解析:解:(I )因为考点:不等式证明.a b c d+=+abcd>22>>22a b c d =++=++。

2015年高考全国卷2文科数学试题及答案解析(word精校版)

2015年高考全国卷2文科数学试题及答案解析(word精校版)

2015年高考全国卷2文科数学试题及答案(word 精校版)含详细解析一、选择题:本大题共12道小题,每小题5分1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =A .()1,3-B .()1,0-C .()0,2D .()2,3 【答案】A考点:集合运算.【名师点睛】本题属基础题,主要考查数列的交集运算。

2. 若为a 实数,且2i3i 1ia +=++,则a = A .4- B .3- C .3 D .4 【答案】D 【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D. 考点:复数运算.【名师点睛】本题主要考查复数的乘除运算,及复数相等,难度不大,但要注意运算的准确性。

3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】D考点:柱形图【名师点睛】本题考查学生对柱形图的理解,要求学生能从图中读出有用信息,背景比较新颖。

4. 已知()0,1=-a ,()1,2=-b ,则(2)+⋅=a b a A .1- B .0 C .1 D .2 【答案】B 【解析】试题分析:由题意可得21=a ,2,⋅=-a b 所以()222220+⋅=+⋅=-=a b a a a b .考点:向量数量积。

【名师点睛】本题主要考查向量数量积的坐标运算,属于基础题。

5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A .5 B .7 C .9 D .11【答案】A2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===. 考点:等差数列【名师点睛】本题主要考查等差数列性质及前n 项和公式,具有小、巧、活的特点。

2015年全国新课标2卷高考文科数学试题及答案

2015年全国新课标2卷高考文科数学试题及答案

2015年全国新课标2卷高考文科数学试题及答案2015普通高等学校招生全国统一考试II卷文科数学第一卷一、选择题:本大题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $A=x-1<x<2$,$B=x<x<3$,则 $A\cup B=$A。

$(-1,3)$ B。

$(-1,0)$ C。

$(0,2)$ D。

$(2,3)$2.若 $a$ 是实数,且 $\frac{2+ai}{1+i}=3+i$,则 $a=$A。

$-4$ B。

$-3$ C。

$3$ D。

$4$3.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是此处删除明显有问题的段落)4.已知向量 $a=(1,-1)$,$b=(-1,2)$,则 $(2a+b)\cdot a=$A。

$-1$ B。

$0$ C。

$1$ D。

$2$5.设 $S_n$ 是等差数列 $\{a_n\}$ 的前 $n$ 项和。

若$a_1+a_3+a_5=3$,则 $S_5=$A。

$5$ B。

$7$ C。

$9$ D。

$11$6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A。

$\frac{1}{1111}$ B。

$\frac{1}{8576}$ C。

$\frac{2}{1254}$ D。

$\frac{1}{333}$7.已知三点 $A(1,-1)$,$B(2,3)$,$C(2,3)$,则 $\triangle ABC$ 外接圆的圆心到原点的距离为A。

$\sqrt{5}$ B。

$3$ C。

$2\sqrt{5}$ D。

$3\sqrt{2}$8.右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。

执行该程序框图,若输入的$a,b$ 分别为14,18,则输出的 $a$ 为开始输入a,ba>b是a≠b 否输出a是否结束a=a-b b=b-aA。

2015年高考全国Ⅰ卷文科数学试题(含答案解析)

2015年高考全国Ⅰ卷文科数学试题(含答案解析)

绝密★启用前试题类型:A2015年普通高等学校招生全国统一考试文科数学适用地区:河南河北山西江西注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4.考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n N},B={6,8,12,14},则集合A∩B中元素的个数为(A)5(B)4(C)3(D)2(2)已知点A(0, 1), B(3, 2), 向量AC=(−4,−3), 则向量BC=(A)(−7,−4)(B)(7,4)(C)(−1,4)(D)(1,4)(3)已知复数z满足(z−1)i = i + 1,则z =(A)−2 − i (B)−2 + i (C)2 − i (D)2 +i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1, 2, 3, 4, 5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12, E的右焦点与抛物线C:y² = 8x的焦点重合,A,B是C的准线与E的两个焦点,则| AB |=(A)3 (B)6 (C)9 (D)12(6) 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周 八尺,高五尺。

问:积及为米几何?”其意思为:“在 屋内墙角处堆放米(如图,米堆为一个圆锥的四分 之一),米堆底部的弧度为8尺,米堆的高为5尺, 问米堆的体积和堆放的米各为多少?”已知1斛米 的体积约为1.62立方尺,圆周率约为3,估算出堆 放斛的米约有 (A )14斛(B )22斛 (C )36斛(D )66斛(7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和. 则S 8 = 4S 4,a 10 =(A )172(B )192(C )10(D )12(8)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为(A )13(,),44k k k Z ππ-+∈(B ) 13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈(9)执行右面的程序框图,如果输入的t = 0.01,则输出的n =(A )5 (B )6 (C )7 (D )8(10)已知函数f (x)={2x−1−2, x≤1−log2(x+1), x>1,且f (a)= −3,则f (6−a) =(A)−74(B)−54(C)−34(D)−14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

2015年高考文科数学全国卷1-答案

2015年高考文科数学全国卷1-答案

4
4
4
,故单调减区间为

2k

1 4
,
2k

3 4

,k

Z

故选 D.
【考点】三角函数图像与性质
9.【答案】C
【解析】执行第 1 次, t 0.01, S 1 , n 0 , m 1 0.5 , S S m 0.5 , m m 0.25 , n 1 ,
3 【考点】线面垂直的判定与性质,面面垂直的判定,三棱锥的体积与表面积的计算 19.【答案】(Ⅰ)由散点图可判断, y c d x 适合作为年销售 y 关于年宣传费用 x 的回归方程类型;
(Ⅱ)令 w
8
x
,先求出建立
y
关于
w 的线性回归方程,由于
d

(wi w)( yi
i 1
2(1 2n ) 126 , 1 2
2n 64 ,n 6 .
【考点】等比数列定义与前 n 项和公式
14.【答案】1
【解析】 f (x) 3ax2 1, f (1) 3a 1,即切线斜率 k 3a 1,又 f (1) a 2 ,切点为 (1,a 2) ,
时,
z
取最大值,由

x x

y 2=0 2y 1=0
解得
A(1,1)

z

3x


【考点】简单线性规划解法 16.【答案】12 6
【解析】设双曲线的左焦点为 F1 ,由双曲线定义知, | PF | 2a | PF1 | ,
△APF 的周长为 PA PF AF PA 2a | PF1 | AF 2a ,由于 2a AF 是定值,要使 △APF 的周长最

2015年高考全国卷2文科数学试题和答案解析

2015年高考全国卷2文科数学试题和答案解析

2015年高考全国卷2文科数学试题及答案(word精校版)含详细解析一、选择题:本大题共12道小题,每小题5分1.已知集合A={x|-l<x<2},B={x|0<x<3},则A B=A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)【答案】A【解析】试题分析:因为彳={x|-l<x<2},3={x|0<x<3},所以火汕={*|一1<*<3}.故选人.考点:集合运算.【名师点睛】本题属基础题,主要考查数列的交集运算。

2.若为a实数,且?+=3+i,则a=1+iA.-4B.-3C.3D.4【答案】D【解析】试题分析:由题意可得2+tri=(l+i)(3+i)=2+4ina=4,故选D.考点:复数运算.【名师点睛】本题主要考查复数的乘除运算,及复数相等,难度不大,但要注意运算的准确性。

3.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是A.逐年比较,2008年减少二氧化碳排放量的效果最显著B.2007年我国治理二氧化碳排放显现成效C.2006年以来我国二氧化碳年排放量呈减少趋势D.2006年以来我国二氧化碳年排放量与年份正相关【答案】D【解析】试题分析:由柱形图可知2006年以来,我国二氧化碳排放童基本成i走诚趋势,所以二氧化碳援放童与年份负相关,故选D.考点:柱形图【名师点睛】本题考查学生对柱形图的理解,要求学生能从图中读出有用信息,背景比较新颖。

4,己知«=(0,-1),*=(-1,2),贝i](2a+6)-a=A.-1B.0C.1D.2【答案】B【解析】试题分析:由题意可得«2=1,a b=-2,所以(2a+b)a=2a1+a b=2-2=0.考点:向量数量积。

【名师点睛】本题主要考查向量数量积的坐标运算,属于基础题。

5.设&是等差数列{%}的前"项和,若tZ]+O,+a5=3,则S5=A.5B.7C.9D.11【答案】A【解析】试题解析:%+%+%= 3% = 3 => % = 1,S)=---------= 5角=5.考点:等差数列【名师点睛】本题主要考查等差数列性质及前〃项和公式,具有小、巧、活的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年普通高等学校招生全国统一考试(新 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟. 第Ⅰ卷
2015·新课标Ⅰ卷 第1页一、选择题(本大题共12小题,每小题5分,共60分.在每
小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( )
A .5
B .4
C .3
D .2
2.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( )
A .(-7,-4)
B .(7,4)
C .(-1,4)
D .(1,4)
3.已知复数z 满足(z -1)i =1+i ,则z =( )
A .-2-i
B .-2+i
C .2-i
D .2+i
4.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A.310 B.15 C.110 D.120
5.已知椭圆E 的中心在坐标原点,离心率为12
,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )
A .3
B .6
C .9
D .12
6.
《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣
内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A .14斛 B .22斛
C .36斛
D .66斛
7.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.172 B.192
C .10
D .12 8.
函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )
A.⎝
⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝
⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14
,k +34,k ∈Z D.⎝
⎛⎭⎫2k -14,2k +34,k ∈Z
9.执行下面所示的程序框图,如果输入的t =0.01,则输出的n =( )
A .5
B .6
C .7
D .8
10.已知函数f (x )=⎩
⎪⎨⎪⎧
2x -1-2, x ≤1,-log 2(x +1), x >1,且f (a )=-3,则f (6-a )=( ) A .-74 B .-54 C .-34 D .-14
2015·新课标Ⅰ卷 第2页11.
第11题图
圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )
A .1
B .2
C .4
D .8
12.设函数y =f (x )的图象与y =2x +a 的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,
则a =( )
A .-1
B .1
C .2
D .4 第Ⅱ卷
二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
13.在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.
14.已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.
15.若x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y -2≤0,x -2y +1≤0,
2x -y +2≥0,
则z =3x +y 的最大值为________. 16.已知F 是双曲线C :x 2-y 2
8
=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.
三、解答题(解答应写出文字说明,证明过程或演算步骤)
17.(本小题满分12分)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin
C .
(1)若a =b ,求cos B ;
(2)设B =90°,且a =2,求△ABC 的面积. 2015·新课标Ⅰ卷 第3页18.
(本小题满分12分)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .
(1)证明:平面AEC ⊥平面BED ;
(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积为63
,求该三棱锥的侧面积. 19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
x
y w 8i =1 (x i -x )2 8i =1 (w i -w )2 8i =1 (x i -x )(y i -y ) 8i =1 (w i -w )(y i -y ) 46.6 563 6.8 289.8 1.6 1 469 108.8
表中w i =x i ,w =188i =1w i
. 2015·新课标Ⅰ卷 第4页(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;
(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少?
②年宣传费x 为何值时,年利润的预报值最大?
附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为
β^=n
i =1 (u i -u )(v i -v )n i =1
(u i -u )2
,α^=v -β^ u . 20.(本小题满分12分)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.
(1)求k 的取值范围;
(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |.
2015·新课标Ⅰ卷 第5页21.(本小题满分12分)设函数f (x )=e 2x -a ln x .
(1)讨论f (x )的导函数f ′(x )零点的个数;
(2)证明:当a >0时,f (x )≥2a +a ln 2a
. 请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.
22.(本小题满分10分)选修4-1:几何证明选讲
如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E .
(1)若D 为AC 的中点,证明:DE 是⊙O 的切线;
(2)若OA =3CE ,求∠ACB 的大小.
23.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.
(1)求C 1,C 2的极坐标方程;
(2)若直线C 3的极坐标方程为θ=π4
(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.
24.(本小题满分10分)选修4-5:不等式选讲
已知函数f (x )=|x +1|-2|x -a |,a >0.
(1)当a =1时,求不等式f (x )>1的解集;
(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围.
2015·新课标Ⅰ卷 第8页试(新课标Ⅱ卷)
2015年普通高等学校招生全国统一考试(新课标1卷)文 答案。

相关文档
最新文档