相似三角形培优提高拓展练习题

合集下载

北师大版九年级数学上册 相似三角形解答题培优专题(含答案)

北师大版九年级数学上册  相似三角形解答题培优专题(含答案)

2019-2020相似三角形解答题培优专题(含答案)一、解答题1.如图,在Rt ABC ∆中,90B ︒∠=,6cm AB =,8cm BC =,点P 由点A 出发沿AB 方向向终点B 以每秒1cm 的速度匀速移动,点Q 由点B 出发沿BC 方向向终点C 以每秒2cm 的速度匀速移动,速度为2cm /s .如果动点同时从点A ,B 出发,当点P 或点Q 到达终点时运动停止.则当运动几秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似?2.如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F . (1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AGBE的值为 : (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由: (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6,GH=22,则BC= .3.如图1,在Rt ABC 中,90,4,2B AB BC ∠︒===,点,D E 分别是边,BC AC 的中点,连接DE .将CDE △绕点C 逆时针方向旋转,记旋转角为α.1()问题发现①当0α=o 时,AE BD = ;②当180α=o 时,AEBD= . 2()拓展探究 试判断:当0360α︒≤︒<时,AEBD的大小有无变化?请仅就图2的情形给出证明. 3()问题解决 CDE △绕点C 逆时针旋转至,,A B E 三点在同一条直线上时,求线段BD 的长.4.在ABC ∆,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP . (1)观察猜想 如图1,当60α︒=时,BDCP的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 . (2)类比探究如图2,当90α︒=时,请写出BDCP的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当90α︒=时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时AD CP的值.5.如图1,在△ABC中,BA=BC,点D,E分别在边BC、AC上,连接DE,且DE=DC.(1)问题发现:若∠ACB=∠ECD=45°,则AEBD=.(2)拓展探究,若∠ACB=∠ECD=30°,将△EDC绕点C按逆时针方向旋转α度(0°<α<180°),图2是旋转过程中的某一位置,在此过程中AEBD的大小有无变化?如果不变,请求出AEBD的值,如果变化,请说明理由.(3)问题解决:若∠ACB=∠ECD=β(0°<β<90°),将△EDC旋转到如图3所示的位置时,则AEBD的值为.(用含β的式子表示)6.在矩形ABCD中,AB=4cm,BC=8cm,动点P从点A出发,以1cm/s的速度沿AB向点B运动,动点Q从点B出发,以2cm/s秒的速度沿BC向点C运动.P、Q分别从A、B同时出发,设运动时间为t秒.(如图1)(1)用含t 的代数式表示下列线段长度:①PB=__________cm,②QB=_____cm,③CQ=_________cm. (2)当△PBQ 的面积等于3 时,求t 的值.(3) (如图2),若E 为边CD 中点,连结EQ 、AQ.当以A 、B 、Q 为顶点的三角形与△EQC 相似时,直接写出满足条件的t 的所有值.7.如图l ,在ABCD 中,点M ,N 分别在边AD 和BC 上,点E ,F 在对角线BD 上,且AM CN =,12BE DF BD =<.(1)求证:四边形MENF 是平行四边形: (2)若6AB =,10BC =,8BD =.①当四边形MENF 是菱形时,AM 的长为______; ②当四边形MENF 是正方形时,BE 的长为______; ③当四边形MENF 是矩形且6AM =时,BE 的长为______.8.已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,点A ,C 的坐标分别为A (﹣3,0),C (1,0),BC =34AC(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.9.已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如果AFBF=DFAD.求证:EF=EP.10.如图,在△ C中,过点C作CD,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.求证:四边形AFCD是平行四边形.若, C,,求AB的长.11.已知:如图,点A .F ,E .C 在同一直线上,AB ∥DC ,AB=CD ,∠B=∠D . (1)求证:△ABE ≌△CDF ;(2)若点E ,G 分别为线段FC ,FD 的中点,连接EG ,且EG=5,求AB 的长.12.如图,直线 AB 与坐标轴交与点(0,6),(8,0)A B , 动点P 沿路线O B A →→运动.(1)求直线AB 的表达式;(2)当点P 在OB 上,使得AP 平分OAB ∠时,求此时点P 的坐标;13.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG ∥CD 交AF 于点G ,连接DG . (1)求证:四边形EFDG 是菱形; (2) 求证:21=2EG AF GF ⋅; (3)若AG=6,EG=25,求BE 的长.14.如图,在△ABC 中.AC=BC=5.AB=6.CD 是AB 边中线.点P 从点C 出发,以每秒2.5个单位长度的速度沿C-D-C 运动.在点P 出发的同时,点Q 也从点C 出发,以每秒2个单位长度的速度沿边CA 向点A 运动.当一个点停止运动时,另一个点也随之停止,设点P 运动的时间为t 秒.(1)用含t 的代数式表示CP 、CQ 的长度. (2)用含t 的代数式表示△CPQ 的面积.(3)当△CPQ 与△CAD 相似时,直接写出t 的取值范围.15.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B.C ,且AB=8,DC=6,BC=14,BC 上是否存在点P 使△ABP 与△DCP 相似?若有,有几个?并求出此时BP 的长,若没有,请说明理由.16.如图,正方形ABCD ,点P 为射线DC 上的一个动点,点Q 为AB 的中点,连接,PQ DQ ,过点P 作PE DQ 于点E .(1)请找出图中一对相似三角形,并证明;(2)若4AB ,以点,,P E Q 为顶点的三角形与ADQ △相似,试求出DP 的长.17.如图,正方形 ABCD 的边长为 8,E 是 BC 边的中点,点 P 在射线 AD 上, 过 P 作 PF ⊥AE 于 F .(1)请判断△PFA 与△ABE 是否相似,并说明理由;(2)当点 P 在射线 AD 上运动时,设 PA =x ,是否存在实数 x ,使以 P ,F ,E 为顶 点的三角形也与△ABE 相似?若存在,请求出 x 的值;若不存在,说明理由.18.已知:如图,△ABC 是等边三角形,点D 、E 分别在BC ,AC 且BD =CE ,AD 、BE 相交于点M ,求证:(1)△AME ∽△BAE ;(2)BD 2=AD×DM . 19.△ABC 中,AB =AC =5,BC =6,过AB 上一点D 作DE‖ C ,D ‖ C 分别交AC 、BC 于点E 和F(1)如图1,证明:△ADE∽△DBF;(2)如图1,若四边形DECF是菱形,求DE的长;(3)如图2,若以D、E、F为顶点的三角形与△BDF相似,求AD的长.20.如图,在矩形ABCD中,点E是AD的中点,连结BE,且BE⊥AC交AC于点F.(1)求证:△EAB∽△ABC;(2)若AD=2,求AB的长;(3)在(2)的条件下,求DF的长.21.如图,正方形ABCD中,M为BC上一点,F是AM上一点,EF⊥AM,垂足为F,交AD延长线于点E,交DC 于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=6,F为AM的中点,求DN的长;(3)若AB =12,DE =1,BM =5,求DN 的长.22.如图,在△ABC 中,AD 平分∠BAC ,按如下步骤作图:第一步,分别以点A 、D 为圆心,以大于12AD 的长为半径在AD 两侧作弧,交于两点M 、N ; 第二步,连接MN 分别交AB 、AC 于点E 、F ; 第三步,连接DE 、DF .若BD =6,AF =4,CD =3,求线段BE 的长.23.教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在ABC ∆中,,D E 分别是边,BC AB 的中点,,AD CE 相交于点G ,求证:13GE GD CE AD ==, 证明:连结ED .请根据教材提示,结合图①,写出完整的证明过程.结论应用:在ABCD 中,对角线AC BD 、交于点O ,E 为边BC 的中点,AE 、BD 交于点F . (1)如图②,若ABCD 为正方形,且6AB =,则OF 的长为 . (2)如图③,连结DE 交AC 于点G ,若四边形OFEG 的面积为12,则ABCD 的面积为 .24.正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:△ABM∽△MCN;(2)若△ABM的周长与△MCN周长之比是4:3,求NC的长.25.如图,在△ABC中,AB=8,BC=16,点P从点A开始沿AB向点B以2m/s的速度移动,点Q从点B开始沿BC向点C以4m/s的速度移动,如果P,Q分别从AB,BC同时出发,经过几秒△PBQ与△ABC相似?26.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?27.如图,在Rt△ABC中,∠ACB=90°,BC mAC n,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF=;(2)数学思考:①如图2,若点E在线段AC上,则DEDF=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.28.如图,已知△ABC是边长为6cm的等边三角形,动点P,Q同时从B,A两点出发,分别沿BA,AC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)如图①,当t为何值时,AP=3AQ;(2)如图②,当t为何值时,△APQ为直角三角形;(3)如图③,作QD∥AB交BC于点D,连接PD,当t为何值时,△BDP与△PDQ相似?29.如图,在△ABC中,∠C=90°,点D是边AB上的动点,过点D作DE∥BC交AC于E,过E作EF∥AB交BC 于F,连结DF.(1)若点D是AB的中点,证明:四边形DFEA是平行四边形;(2)若AC=8,BC=6,直接写出当△DEF为直角三角形时AD的长.30.如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.(1)求证:△ADC∽△ACB;(2)CE与AD有怎样的位置关系?试说明理由;(3)若AD=4,AB=6,求的值.31.(1)观察发现:如图1,在Rt△ABC中,∠B=90°,点D在边AB上,过D作DE∥BC交AC于E,AB=5,AD =3,AE=4.填空:①△ABC与△ADE是否相似?(直接回答);②AC=;DE=.(2)拓展探究:将△ADE绕顶点A旋转到图2所示的位置,猜想△ADB与△AEC是否相似?若不相似,说明理由;若相似,请证明.(3)迁移应用:将△ADE绕顶点A旋转到点B、D、E在同一条直线上时,直接写出线段BE的长.32.如图1,一次函数y=12x+4与x轴、y轴分别交于A,B两点.P是x轴上的动点,设点P的横坐标为n.(1)当△BPO∽△ABO时,求点P的坐标;(2)如图2,过点P的直线y=2x+b与直线AB相交于C,求当△P AC的面积为20时,点P的坐标;(3)如图3,直接写出当以A,B,P为顶点的三角形为等腰三角形时,点P的坐标.33.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,线段OA,OC的长是一元二次方程x2-12x+36=0的两根,BC=45,∠BAC=45°.(1)直接写出点A的坐标________点C的坐标________;(2)若反比例函数y=kx的图象经过点B,求k的值;(3)如图过点B作BD⊥y轴于点D;在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,直接写出满足条件的点P的坐标;若不存在,请说明理由.34.感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=6 2,CE=4,则DE的长为______.35.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A、C的横坐标是一元二次方程x2+2x-3=0的两根(AO>OC),直线AB与y轴交于D,D点的坐标为9 04⎛⎫ ⎪⎝⎭,(1)求直线AB的函数表达式;(2)在x轴上找一点E,连接EB,使得以点A、E、B为顶点的三角形与△ABC相似(不包括全等),并求点E的坐标;(3)在(2)的条件下,点P、Q分别是AB和AE上的动点,连接PQ,点P、Q分别从A、E同时出发,以每秒1个单位长度的速度运动,当点P到达点B时,两点停止运动,设运动时间为t秒,问几秒时以点A、P、Q为顶点的三角形与△AEB相似.参考答案1.当运动2.4秒或1811秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似 【解析】 【分析】设t 秒后,以Q ,B ,P 为顶点的三角形与△ABC 相似;则PB =(6−t )cm ,BQ =2tcm ,分两种情况:①当PB BQAB BC=时;②当BP BQBC BA=时;分别解方程即可得出结果. 【详解】解:设(04)t t <…秒后,以点Q ,B ,P 为顶点的三角形与ABC ∆相似,则(6)cm PB t =-,2cm BQ t =.∵90B ︒∠=,∴分两种情况讨论:①当PBQ ABC ∆∆∽时,PB BQ AB BC =,即6268t t-=,解得 2.4t =; ②当QBP ABC ∆∆∽时,BP BQBC BA=,即6286t t -=,解得1811t =. 综上所述,当运动2.4秒或1811秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似. 【点睛】本题考查了相似三角形的判定方法、解方程;熟练掌握相似三角形的判定方法,分两种情况进行讨论是解决问题的关键.2.(1)①四边形CEGF 是正方形;②2;(2)线段AG 与BE 之间的数量关系为AG=2BE ;(3)35 【解析】 【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=可得四边形CEGF 是矩形,再由ECG 45∠=即可得证;②由正方形性质知CEG B 90∠∠==、ECG 45∠=,据此可得CG2CE=、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG ∽△BCE 即可得; (3)证AHG ∽CHA 得AG GH AH AC AH CH ==,设BC CD AD a ===,知AC 2a =,由AG GHAC AH=得2AH a 3=、1DH a 3=、10CH a 3=,由AG AH AC CH =可得a 的值. 【详解】(1)①∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°, ∵GE ⊥BC 、GF ⊥CD , ∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形; ②由①知四边形CEGF 是正方形, ∴∠CEG=∠B=90°,∠ECG=45°,∴2CGCE=,GE ∥AB , ∴2AG CGBE CE==, 故答案为:2; (2)连接CG ,由旋转性质知∠BCE=∠ C =α, 在Rt △CEG 和Rt △CBA 中,CE CG =22、CB CA =22, ∴CG CE =2CACB=, ∴△ACG ∽△BCE ,∴2AG CABE CB==, ∴线段AG 与BE 之间的数量关系为AG=2BE ; (3)∵∠CEF=45°,点B 、E 、F 三点共线, ∴∠BEC=135°, ∵△ACG ∽△BCE , ∴∠AGC=∠BEC=135°, ∴∠AGH=∠CAH=45°, ∵∠CHA=∠AHG , ∴△AHG ∽△CHA , ∴AG GH AHAC AH CH==, 设BC=CD=AD=a ,则AC=2a ,则由AG GHAC AH=得6222AHa=,∴AH=23 a,则DH=AD﹣AH=13a,CH=22CD DH+=103a,∴由AG AHAC CH=得2632103aaa=,解得:a=35,即BC=35,故答案为:35.【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.3.(1)①5;②5;(2) 5;(3) 35 5【解析】【分析】(1)①根据勾股定理和三角形中位线的性质,即可得到答案;②根据平行线的性质即可得到答案;(2)根据相似三角形的性质和判定即可得到答案;(3) 根据勾股定理即可得到答案.【详解】解:()1①当0α︒=时,Rt ABC Q V 中,90B ∠︒=,22222425AC AB BC ∴++===,点,D E 分别是边,BC AC 的中点,115122AE AC BD BC ∴==,==,5AEBD∴=. ②如图1﹣1中,当180α︒=时, 可得//AB DE ,AC BCAE BD =Q , 5AE ACBD BC∴==. 故答案为:55①,②. 2()如图2,当0360α︒≤︒<时,AEBD的大小没有变化, ECD ACB ∠∠Q =, ECA DCB ∴∠∠=,又5EC ACDC BC==Q, ECA DCB ∴V V ∽,5AE ECED DC∴==. ()3①如图3﹣1中,当点E 在AB 的延长线上时,在Rt BCE V 中,5,2CE BC ==,22541BE EC BC ∴--===,5AE AB BE ∴+==,5AEBD=Q, 555BD ∴==.②如图3﹣2中,当点E 在AB 线段上时,易知1,413BE AE -===, 5AEBD=Q, 355BD ∴=, 综上所述,满足条件的BD 的长为355. 【点睛】本题考查勾股定理、三角形中位线的性质、平行线的性质和相似三角形的性质和判定,解题的关键熟练掌握勾股定理、三角形中位线的性质、平行线的性质和相似三角形的性质和判定. 4.(1)1,60︒(2)45°(3)22-,22+ 【解析】 【分析】(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .证明()CAP BAD SAS ∆≅∆,即可解决问题. (2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .证明DABPAC ∆∆,即可解决问题.(3)分两种情形:①如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .证明AD DC =即可解决问题.②如图3﹣2中,当点P 在线段CD 上时,同法可证:DA DC =解决问题.【详解】解:(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .60PAD CAB ︒∠=∠=,CAP BAD ∴∠=∠,CA BA =,PA DA =,()CAP BAD SAS ∴∆≅∆, PC BD ∴=,ACP ABD ∠=∠, AOC BOE ∠=∠,60BEO CAO ︒∴∠=∠=,1BDPC∴=,线BD 与直线CP 相交所成的较小角的度数是60︒, 故答案为1,60︒.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .45PAD CAB ︒∠=∠=, PAC DAB ∴∠=∠,2AB ADAC AP ==, DABPAC ∴∆∆,PCA DBA ∴∠=∠,2BD ABPC AC==, EOC AOB ∠=∠,45CEO OAB ︒∴∠=∠=,∴直线BD 与直线CP 相交所成的小角的度数为45︒.(3)如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .CE EA =,CF FB =,EF AB ∴∥,45∴∠=∠=,EFC ABC︒PAO︒∠=,45∴∠=∠,PAO OFH∠=∠,POA FOH∴∠=∠,H APO=,90∠=,EA ECAPC︒∴==,PE EA ECEPA EAP BAH∴∠=∠=∠,∴∠=∠,H BAH∴=,BH BA∠=∠=,ADP BDC︒45∴∠=,90ADB︒∴⊥,BD AHDBA DBC︒∴∠=∠=,22.5ADB ACB︒∠=∠=,90∴A,D,C,B四点共圆,DCA ABD︒∠=∠=,DAC DBC︒∠=∠=,22.522.5∴∠=∠=,22.5DAC DCA︒DA DC ∴=,设=AD a ,则DC AD a ==,22PD a =, 2222ADa CPa a∴==-+c .如图3﹣2中,当点P 在线段CD 上时,同法可证:=DA DC ,设=AD a ,则CD AD a ==,22PD a =,22PC a a ∴=-, 2222ADa PCa a∴==+-.【点睛】本题属于相似形综合题,考查了旋转变换,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.(1)2;(2)此过程中AE BD 的大小有变化,3AEBD=(3)2 osβ 【解析】 【分析】1)如图1,过E 作EF ⊥AB 于F ,根据等腰三角形的性质得到∠A=∠C=∠DEC=45°,于是得到∠B=∠EDC=90°,推出四边形EFBD 是矩形,得到EF=BD ,推出△AEF 是等腰直角三角形,根据等腰直角三角形的性质得到结论; (2)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=30°,根据相似三角形的判定和性质即可得到结论; (3)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=β,根据相似三角形的性质得到BC ACDC CE=,即BC DCAC EC =,根据角的和差得到∠ACE=∠BCD ,求得△ACE ∽△BCD ,证得AE AC BD BC=,过点B 作BF ⊥AC 于点F ,则AC=2CF ,根据相似三角形的性质即可得到结论. 【详解】解:(1)如图1,过E 作EF ⊥AB 于F ,∵BA=BC ,DE=DC ,∠ACB=∠ECD=45°, ∴∠A=∠C=∠DEC=45°, ∴∠B=∠EDC=90°, ∴四边形EFBD 是矩形, ∴EF=BD , ∴EF ∥BC ,∴△AEF 是等腰直角三角形,∴2BD EFAE AE==, 故填:2,(2)此过程中AEBD的大小有变化, 由题意知,△ABC 和△EDC 都是等腰三角形, ∴∠ACB=∠CAB=∠ECD=∠CED=30°, ∴△ABC ∽△EDC ,∴BC AC DC CE =,即BC DCAC EC=, 又∠ECD+∠ECB=∠ACB+∠ECB , ∴∠ACE=∠BCD , ∴△ACE ∽△BCD ,∴AE ACBD BC=, 在△ABC 中,如图2,过点B 作BF ⊥AC 于点F ,则AC=2CF ,在Rt △BCF 中,3cos302CF BC BC ︒=⋅=, ∴AC=3BC .∴3AE ACBD BC==; (3)由题意知,△ABC 和△EDC 都是等腰三角形,且∠ACB=∠ECD=β, ∴∠ACB=∠CAB=∠ECD=∠CED=β, ∴△ABC ∽△EDC ,∴BC AC DC CE =,即BC DCAC EC=, 又∠ECD+∠ECB=∠ACB+∠ECB , ∴∠ACE=∠BCD ,∴△ACE∽△BCD,∴AE AC BD BC=,在△ABC中,如图3,过点B作BF⊥AC于点F,则AC=2CF,在Rt△BCF中,C = C• osβ,∴ C=2 C osβ.∴AE ACBD BC==2 osβ,故答案为2 osβ.【点睛】本题考查了相似形的综合题、等腰直角三角形的性质、等腰三角形的性质、锐角三角函数、相似三角形的判定和性质等知识,解题的关键是灵活运用相似三角形的判定和性质解决问题,属于中考常考题型.6.(1)PB=4-t;QB=2t;CQ=8-2t;(2)1或3;(3)或或.【解析】【分析】(1)根据题意写出结果即可;(2)利用三角形的面积公式列方程求解即可;(3)根据相似三角形的性质,分两种情况列式求解即可.【详解】(1)由题意得,①PB=4-t;②QB=2t;③CQ=8-2t;(2)∵△PBQ的面积等于3,∴2t(4-t)=3×2,解之得,t=1或3;(3)当△ABQ~△QCE时,,∴,解之得,x1=,x2=;当△ABQ~△ECQE时,,∴,解之得,t=.∴满足条件的t的所有值为或或.【点睛】本题考查了列代数式,一元二次方程的应用,相似三角形的性质及分类讨论的数学思想,熟练掌握分类讨论的数学思想是解答本题的关键. 相似三角形的性质:如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.7.(1)证明见解析,(2)①5.②1.③41045 .【解析】【分析】(1)如图1中,设BD 的中点为O .连接AC ,AN ,CM ,MN .利用对角线互相平分的四边形是平行四边形证明即可.(2)①如图21-中,连接MN 交BD 于点O ,当MN BD ⊥时,四边形MENF 是菱形.利用平行线等分线段定理即可解决问题.②在①的基础上,OE OM =时,四边形MENF 是正方形.③如图32-中,连接MN 交BD 于点O ,作MH BD ⊥于H .当OE OF OM ON ===时,四边形MENF 是矩形. 【详解】(1)证明:如图1中,设BD 的中点为O .连接AC ,AN ,CM ,MN .四边形ABCD 是平行四边形, AC ∴与BD 互相平分且交于点O ,//AMCN ,AM CN =,∴四边形ANCM 是平行四边形,AC ∴与MN 互相平分且交于点O ,OM ON ∴=,OB OD =,BE DF =,OE OF ∴=,∴四边形MENF 是平行四边形.(2)①如图21-中,连接MN 交BD 于点O ,当MN BD ⊥时,四边形MENF 是菱形.6AB CD ==,10AD BC ==,8BD =, 222AD AB BD ∴=+,90ABD ∴∠=︒,90MOF ABD ∴∠=∠=︒,//OM AB ∴, OB OD =, 5AM DM ∴==.②在①的基础上,满足OM OE =时,四边形MENF 是正方形, 易知132OM AB ==, 3OE OF ∴==, 8BD =,1·(86)12BE DF ∴==-=.③如图32-中,连接MN 交BD 于点O ,作MH BD ⊥于H .//MH AB ,:::MH AB DM DA DH DB ∴== :64:10:8MH DH ∴==,125MH ∴=,165DH =, 164455OH ∴=-=, 224105OM MH OH ∴=+=, 当OE OF OM ON ===时,四边形MENF 是矩形,1810410(8)4255BE DF ∴==-=-. 故答案为:5,1,41045-. 【点睛】本题属于四边形综合题,考查了平行四边形的性质,矩形的判定,菱形的判定,正方形的判定,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.(1)y =34x +94;(2)D 点位置见解析,D (134,0);(3)符合要求的m 的值为12536或259.【解析】 【分析】(1)先根据A(−3,1),C(1,0),求出AC进而得出BC=3求出B点坐标,利用待定系数法求出直线AB的解析式即可;(2)运用相似三角形的性质就可求出点D的坐标;(3)由于△APQ与△ADB已有一组公共角相等,只需分△APQ∽△ABD和△APQ∽△ADB两种情况讨论,然后运用相似三角形的性质建立关于m的方程,就可解决问题.【详解】解:(1)∵A(﹣3,0),C(1,0),∴AC=4,∵BC=34 AC,∴BC=34×4=3,∴B(1,3),设直线AB的解析式为y=kx+b,∴303k bk b-+=⎧⎨+=⎩,∴3494kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=34x+94;(2)若△ADB与△ABC相似,过点B作BD⊥AB交x轴于D,∴∠ABD=∠ACB=90°,如图1,此时ABAC=ADAB,即AB2= C• D.∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴25=4AD,∴AD=25 4,∴OD=AD﹣AO=254﹣3=134,∴点D的坐标为(134,0);(3)∵AP=DQ=m,∴AQ=AD﹣QD=254﹣m.Ⅰ、若△APQ∽△ABD,如图2,则有APAB=AQAD,∴ P• D= • Q,∴254m=5(254﹣m),解得m=25 9;Ⅱ、若△APQ∽△ADB,如图3,则有APAD=AQAB,∴ P• = D• Q,∴5m=254(254﹣m),解得:m=125 36,综上所述:符合要求的m的值为12536或259.【点睛】此题是相似形综合题,主要考查了是待定系数法,相似三角形的判定与性质、勾股定理等知识,也考查了分类讨论的数学思想,属于中档题,解本题的关键是根据相似建立方程求解.9.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)利用正方形的性质得AB=AD ,∠BAD=90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE ≌△DAF ,则BE=AF ,然后利用等线段代换可得到结论;(2)利用AF DF BF AD =和AF=BE 得到BE BFDF AD=,则可判定Rt △BEF ∽Rt △DFA ,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP .【详解】(1)∵四边形ABCD 为正方形,∴AB=AD ,∠BAD=90°, ∵BE ⊥AP ,DF ⊥AP , ∴∠BEA=∠AFD=90°, ∵∠1+∠2=90°,∠2+∠3=90°, ∴∠1=∠3, 在△ABE 和△DAF 中12BEA AFDAB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△DAF , ∴BE=AF ,∴EF=AE ﹣AF=AE ﹣BE ;(2)如图,∵AF DFBF AD=, 而AF=BE ,∴BE DFBF AD =, ∴BE BFDF AD=, ∴Rt △BEF ∽Rt △DFA ,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质,熟练掌握相关的性质与定理、正确添加辅助线是解题的关键.10.证明见解析;.【解析】【分析】由E是AC的中点知 E CE,由CD知 E CDE,据此根据“ S”即可证△ E ≌△CED,从而得CD,结合CD即可得证;证△∽△ CD得,据此求得CD,由CD及可得答案.C CD【详解】E是AC的中点,E CE , CD , E CDE , 在△ E 和△CED 中, ,△ E ≌△CED S , CD ,又 CD ,即 CD , 四边形AFCD 是平行四边形; CD , △ ∽△ CD ,CCD,即CD,解得:CD,四边形AFCD 是平行四边形, CD,. 【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握相关的性质及定理是解题的关键.11.(1)证明见解析;(2)AB=10.【解析】分析:(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.详解:(1)证明:∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中===,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD=10.点睛:此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.12.(1)y=34x+6;(2)P(3,0).【解析】【分析】1)直接利用待定系数法即可得出结论;(2)方法1、利用角平分线判断出BC=AB=10,进而判断出△AOP∽△CBP,求出OP,即可得出结论;方法2、先判断出OP=PM,设OP=m,得出PM=m,BP=8-m,再求出AM=OA=6,进而得出BM=AB-AM=4,最后用勾股定理建立方程求解即可得出结论.【详解】解:(1)设直线AB的解析式为y=kx+b,∵A(0,6),B(8,0),∴680bk b⎧⎨+⎩==,∴346kb⎧=-⎪⎨⎪=⎩,∴直线AB的解析式为y=34-x+6;(2)方法1、如图1,∵A(0,6),B(8,0),∴OA=6,OB=8,AB=10,过点B作BC∥OA交AP的延长线于C,∴∠C=∠OAP,∵AP平分∠OAB,∴∠OAP=∠BAP,∴∠C=∠BAP,∴BC=AB=10,∵BC∥OA,∴△AOP∽△CBP,∴OP OA=BP BC=35,∴OP3=OB8,∴OP=3,∴P(3,0);方法2、如图3,过点P作PM⊥AB于M,∵AP是∠OAB的角平分线,∴OP=PM,设OP=m,∴PM=m,∴BP=OB-OP=8-m易知,△AOP≌△AMP,∴AM=OA=6,∴BM=AB-AM=4,在Rt△BMP中,根据勾股定理得,m2+16=(8-m)2,∴m=3,∴P(3,0).故答案为:(1)y=34x+6;(2)P(3,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,角平分线的定义,相似三角形的判定和性质,正确作出辅助线构造出相似三角形是解题的关键.13.(1)证明见解析;(2)证明见解析;(3)BE的长为125 5.【解析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=12GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明D 2= O• ,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.“点睛”本题考查的是四边形与三角形的综合应用,解题应用了矩形的性质,菱形的性质和判定、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.14.(1)当0<t≤85时,CP=2.5t,CQ=2t;当8552t<≤时,CP=8-2.5t,CQ=2t.(2)当0<t≤85时,S△CPQ=12•PC•sin∠ CD•CQ=12×2.5t×35×2t=232t;当8552t<≤时,S△CPQ=12•PC•sin∠ CD•CQ=1 2×(8-2.5t)×35×2t=232425t t-+.(3)0<t≤85或80t41=s【解析】【分析】(1)分两种情形:当0<t≤85时,当85<t52≤时,分别求解即可.(2)分两种情形:当0<t≤85时,当85<t≤52时,根据S△CPQ=12•PC•sin∠ CD•CQ分别求解即可.(3)分两种情形:当0<t≤85,可以证明△QCP∽△DCA,当85<t52≤,∠QPC=90°时,△QPC∽△ADC,构建方程求解即可.【详解】解:(1)∵CA=CB,AD=BD=3,∴CD⊥AB,∴∠ADC=90°,∴CD=22AC AD-=2253-=4,当0<t≤85时,CP=2.5t,CQ=2t,当85t52<≤时,CP=8-2.5t,CQ=2t.(2)∵sin∠ACD=ADAC=35,∴当0<t≤85时,S△CPQ=12•PC•sin∠ CD•CQ=12×2.5t×35×2t=23t2当85t52<≤时,S△CPQ=12•PC•sin∠ CD•CQ=12×(8-2.5t)×35×2t=2324t t25-+.(3)①当0<t≤85时,∵CP=2.5t,CQ=2t,∴CQCP=45,∵CDCA=45,∴CQ CD CP CA=,∵∠PCQ=∠ACD,∴△QCP ∽△DCA ,∴0<t≤85时,△QCP ∽△DCA , ②当85t 52<≤时,当∠QPC=90°时,△QPC ∽△ADC , ∴CP CQ CD CA =, ∴8 2.5t 2t 45-=, 解得:80t 41=, 综上所述,满足条件的t 的值为:0<t≤85或80t 41=s 时,△QCP ∽△DCA . 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形的应用等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.BC 上存在两个点P ,BP=6或8使△ABP 与△DCP 相似. 【解析】 【分析】设BP=x ,表示出PC=14-x ,然后分BP 与CP 是对应边,BP 与DC 是对应边两种情况,利用相似三角形对应边成比例列式求解即可. 【详解】设BP=x ,则PC=14−x ,BP 与CP 是对应边时,=BP ABCP DC, 即8146x x =-,解得x=8,BP 与DC 是对应边时,=BP ABDC CP, 即8=614x x-, 解得x1=6,x2=8,所以,BC 上存在两个点P ,BP=6或8使△ABP 与△DCP 相似. 【点睛】此题考查相似三角形的判定,解题关键在于根据相似三角形的性质对应边成比例列出方程. 16.(1)DPE QDA ∽,见解析;(2)2DP =或5DP =. 【解析】 【分析】(1)通过等角转换,可得出三角相等,即可判定DPE QDA ∽;(2)首先根据已知条件求出DQ ,由三角形相似的性质,列出方程,即可得解,注意分两种情况讨论. 【详解】(1)DPE QDA ∽根据已知条件,得∠DAQ=∠PED=90° 又∵∠ADQ+∠PDE=∠DPE+∠PDE=90° ∴∠ADQ =∠DPE ,∠AQD=∠PDE ∴DPE QDA ∽(2)由已知条件,得22224225DQ AD AQ =+=+=设DE 为x ∵DPE QDA ∽∴DA PEAQ DE= ∴PE 为2x ∵PEQADQ △△∴分两种情况:①AQ DAPE EQ = 即24225x x=- 解得255x =∴()2222DP x x =+=②AQ DAEQ PE= 即24225xx =- 解得5x =()2225DP x x =+=【点睛】此题主要考查三角形相似的性质,熟练掌握,即可解题.17.(1)见解析;(2)存在,x的值为2或5.【解析】【分析】(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.【详解】(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)若△EFP∽△ABE,则∠PEF=∠EAB.如图,连接PE,DE,∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.如图,延长AD至点P,作PF⊥AE于点F,连接PE, 若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE=22=25AB BE,∴EF=12AE=5.∵5==225,PE EF PEAE EB,即,∴PE=5,即x=5.∴满足条件的x的值为2或5.【点睛】此题考查正方形的性质,相似三角形的判定,解题关键在于作辅助线. 18.(1)见解析;(2)见解析.【解析】【分析】。

九年级数学相似三角形提高题含答案

九年级数学相似三角形提高题含答案

相似三角形题一、选择填空题1、如图1,已知AD 与BC 相交于点O,AB ABCD E BC AEBD ⊥O P 是AC 上一点,连结BP ,要使△ABP ∠=或APB ∠= 或ABAP= . 4、如图,正方形ABCD 的边长为2,AE =EB ,MN =1,线段MN 的两端分别在CB 、CD 上滑动,那么当CM =________时,△ADE 与△MN C 相似.5.已知菱形ABCD 的边长是8,点E 在直线AD 上,若DE =3,连接BE 与对角线AC 相交于点M ,则MCAM的值是________.6.如图,等边△ABC 的边长为3,点P 为BC 边上一点,且BP =1,点D 为AC 上一点;若∠APD =60°,则CD 长是 A.43 B.23 C.21 D.327、如图,正方形ABCD 中,E 是AD 的中点, BM ⊥CE,AB=6,则BM=______.图4 图6 图7AB C D O图1 BCAP CB8、如下图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )9.如图,四边形ABCD 是矩形,DH ⊥AC ,如果AH=9cm ,CH=4cm ,那么ABCD S 四边形=( )A .752cmB .762cmC .772cmD .782cm图9 图10图1110、如图,DE 是ABC △的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则:DMN CEM S S △△等于( )A.1:2 B.1:3 C.1:4 D.1:511.如图,△ABC 中,PQ ∥BC ,若3=∆APQ S ,6=∆PQB S ,则=∆cQB S ( )A .10B .16C .9D .1812、如图,已知D 、E 分别是ABC ∆的AB 、 AC 边上的点,,DE BC //且1ADEDBCE S S :=:8,四边形 那么:AE AC 等于( )A .1 : 9B .1 : 3C .1 : 8D .1 : 2PQCBA HDCBA A N D BCE M13、已知ABC DEF △∽△,相似比为3,且ABC △的周长为18,则DEF △的周长为( )A .2B .3C .6D .5414、如图,线段AB 、CD 相交于E ,AD EF BC ∥∥,若12AE EB =∶∶,1ADES =,则AEFS等于 ( )A.4 B.23 C.2 D.4315、如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是 △ABC 的面积的 ( )A.91 B.92 C.31D.94图12图1416、在同一时刻,身高米的小强在阳光下的影长为米,一棵大树的影长为米,则树的高度为( ) A 、米B 、米C 、米D 、10米B AC DE BCB((第15题图)17、如图,由点O 出发的13条射线恰好等分圆周,图中的三角形都是直角三角形.若641 OA ,则71A A 的长为________.二.解答题1.如图,已知菱形AMNP 内接于△ABC ,M 、N 、P 分别在AB 、BC 、AC 上,如果AB =21 cm ,CA =15 cm ,求菱形AMNP 的周长。

相似三角形培优题

相似三角形培优题

相似三角形培优题1、如图,在正方形ABCD 中,点P 是AB上一动点(不与A,B 重合),对角线AC ,BD 相交于点O,过点P分别作A C,BD 的垂线,分别交AC,BD 于点E ,F ,交AD,BC 于点M,N.下列结论:①△A PE ≌△AM E;②PM+PN=AC ;③PE 2+PF 2=PO 2;④△POF ∽△BN F;⑤当△PMN ∽△A MP 时,点P 是A B的中点.其中正确的结论有( )A .5 B.4 C .3 D.22、如图,Rt △AB C中,∠A CB=90°,∠AB C=60°,BC=2cm ,D 为BC 的中点,若动点E以1c m/s 的速度从A 点出发,沿着A →B →A的方向运动,设E 点的运动时间为t 秒(0≤t<6),连接D E,当△BDE 是直角三角形时,t 的值为( )3、如图,△ABC 中,DE ∥BC ,DE=1,AD=2,DB =3,则BC 的长是( )4、如图,在▱ABC D中,E 为CD上一点,连接A E、BD ,且AE 、BD 交于点F,S △DEF :S△ABF =4:25,则D E:EC =( ) A . 2:5 B. 2:3 C . 3:5 D.3:2 5、如图,在平行四边形A BCD 中,AB=6,AD=9,∠BAD 的平分线交BC于E ,交DC 的延长线于F ,B G⊥AE 于G ,BG=,则△EFC 的周长为( ) A . 11 B . 10 C . 9 D. 86、如图,在▱ABCD 中,E在AB 上,CE 、BD 交于F ,若AE:BE=4:3,且BF =2,则DF= ..7、如图,DE 是△ABC 的中位线,延长DE 至F 使E F=DE ,连接CF,则S △CEF :S 四边形BCED 的值为( )A . 1:3B . 2:3C .1:4 D . 2:5 8、如图,D 是△ABC 的边BC 上一点,已知AB=4,A D=2.∠DAC=∠B,若△ABD 的面积为a,则△ACD 的面积为( )A.a ﻩ B.ﻩ C.D .9、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16 B .17ﻩC .18ﻩD .1910如图,在△ABC 中,AB =AC=a ,BC=b(a >b).在△ABC 内依次作∠CBD=∠A ,∠DCE=∠CBD ,∠E DF=∠DC E.则E F等于( )11、如图,点A ,B,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( ) A . (6,0) B . (6,3) C . (6,5) D . (4,2)12、如图,正方形AB CD 是一块绿化带,其中阴影部分EO FB,GHM N都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( )A .B . 12C . D.13、如图所示,在平行四边形ABCD 中,AC与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC于点F,则DF:F C=( )A.2B . 2.5或3.5C. 3.5或4.5D . 2或3.5或4.5A .B .C .D .14.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值( )A. 只有1个ﻩB. 可以有2个ﻩC. 可以有3个D. 有无数个15、如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()16、如图,在△ABC中,M、N分别是边AB、AC的中点,则△AMN的面积与四边形MBCN的面积比为().(A)12(B)13(C)14(D)2317、如图4,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB. 若NF= NM= 2,ME= 3,则AN =ﻩA.3ﻩB.4ﻩC.5 D.618、如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.19、(2013•牡丹江)如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ABC∽△ACD.(只填一个即可)20、(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为.21、(2013•黔东南州)将一副三角尺如图所示叠放在一起,则的值是. 22、如图,将一张三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?()A.甲>乙,乙>丙B.甲>乙,乙<丙ﻩC.甲<乙,乙>丙D.甲<乙,乙<丙23、如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。

相似三角形培优训练(含答案)

相似三角形培优训练(含答案)

相似三角形分类提高训练一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.〔1〕当t为何值时,AD=AB,并求出此时DE的长度;〔2〕当△DEG与△ACB相似时,求t的值.2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C 移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.〔1〕①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S〔平方米〕关于时间t〔秒〕的函数解析式;〔2〕在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC 于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.〔1〕当AD=CD时,求证:DE∥AC;〔2〕探究:AD为何值时,△BME与△CNE相似?4.如下图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.〔1〕当x为何值时,PQ∥BC?〔2〕△APQ与△CQB能否相似?假设能,求出AP的长;假设不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t〔s〕表示移动的时间〔0<t<6〕。

2021年中考数学一轮复习《与相似三角形相关综合压轴题》培优提升专项训练【含答案】

2021年中考数学一轮复习《与相似三角形相关综合压轴题》培优提升专项训练【含答案】

2021 年中考数学一轮复习《与相似三角形相关综合压轴题》培优提升专项训练1.现有两块等腰直角形三角板,如图,把其中一块三角板A′B′C′的一个锐角顶点B'放在另一块三角板ABC 斜边AB 的中点处,并使三角板A′B′C′绕着点B′旋转.(1)当两块三角板相对位置如图①,即AC 与A′B′交于点D,BC 与B′C′交于点E 时,求证:△AB′D∽△BEB′:(2)当两块三角板相对位置如图②,即AC 边的延长线与A′B′交于点D,BC 与B′C′交于点E 时,△AB′D 与△BEB′还相似吗?(直接给出结论.不需证明)(3)在图②中,连结DE,试探究△AB′D 与△B′ED 是否相似,并说明理由或给出证明.(4)在图①中,若△ABC 改为角C 等于150°的等腰三角形,那么△A′B′C′只要满足∠A′B′C′=°时,仍有△AB′D∽△BEB′.2.已知Rt△ABC 中,AC=BC=2.一直角的顶点P 在AB 上滑动,直角的两边分别交线段AC,BC 于E.F 两点(1)如图1,当=且PE⊥AC 时,求证:=;(2)如图2,当=1 时(1)的结论是否仍然成立?为什么?(3)在(2)的条件下,将直角∠EPF 绕点P 旋转,设∠BPF=α(0°<α<90°).连结EF,当△CEF 的周长等于2+ 时,请直接写出α的度数.3.如图,在△ABC 中,∠B=90°,AB=6,BC=8,动点P 从A 点出发,沿AC 向点C移动,速度为每秒2 个单位长度,同时,动点Q 从C 点出发,沿CB 向点B 移动,速度为每秒1 个单位长度,当其中有一点到达终点时,它们都停止移动.设移动的时间为t 秒.(1)当t=2.5 秒时,求△CPQ 的面积;(2)求△CPQ 的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P、Q 移动的过程中,当t 为何值时,△CPQ 是等腰三角形?4.如图,在Rt△ABC 中,∠C=90°,AB=10cm,AC:BC=4:3,点P 从点A 出发沿AB方向向点B 运动,速度为1cm/s,同时点Q 从点B 出发沿B→C→A 方向向点A 运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC 的长;(2)当点Q 在BC 上运动时,若△PBQ 与△ABC 相似,求时间t 的值;(3)当点Q 在CA 上运动,使PQ⊥AB 时,△PBQ 与△ABC 是否相似,请说明理由.5.如图,在平面直角坐标系xOy 中,已知点B 的坐标为(2,0),点C 的坐标为(0,8),sin∠CAB=,E 是线段AB 上的一个动点(与点A、点B 不重合),过点E 作EF∥AC 交BC 于点F,连接CE.(1)求AC 和OA 的长;(2)设AE 的长为m,△CEF 的面积为S,求S 与m 之间的函数关系式;(3)在(2)的条件下试说明S 是否存在最大值?若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.6.如图1,等腰△ABC 中,AC=BC,DE∥AB,AD=DE=EB=5,AB=11.一个动点P从点A 出发,以每秒1 个单位长度的速度沿折线AD﹣DE﹣EC 方向运动,当点P 到达点C 时,运动结束,过点P 作PQ⊥AB 于点Q,以PQ 为斜边向右作等腰直角三角形PMQ,设点P 的运动时间为t 秒(t>0).(1)当t=时,点M 落在线段BD 上;当t=时,点P 到达点C;(2)在整个运动过程中,设△PMQ 与△ABD 重叠部分的面积为S,请直接写出S 与t的函数关系式和相应的自变量t 的取值范围;(3)如图2,当点P 在线段DE 上运动时,线段PQ 与对角线BD 交于点F,作点P 关于BD 的对称点G,连接FG、GQ,得到△FGQ.是否存在这样的t,使△FGQ 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.7.如图,已知在等腰Rt△ABC 中,∠C=90°,斜边AB=2,若将△ABC 翻折,折痕EF分别交边AC、边BC 于点E 和点F(点E 不与A 点重合,点F 不与B 点重合),且点C 落在AB 边上,记作点D.过点D 作DK⊥AB,交射线AC 于点K,设AD=x,y=cot∠CFE,(1)求证:△DEK∽△DFB;(2)求y 关于x 的函数解析式并写出定义域;(3)联结CD,当=时,求x 的值.8.等边△ABC 的边长为2,P 是BC 边上的任一点(与B、C 不重合),连接AP,以AP 为边向两侧作等边△APD 和等边△APE,分别与边AB、AC 交于点M、N(如图1).(1)求证:AM=AN;(2)设BP=x.①若BM=,求x 的值;②记四边形ADPE 与△ABC 重叠部分的面积为S,求S 与x 之间的函数关系式,并写出自变量的取值范围;③如图2,当x 取何值时,∠BAD=15°?9.已知:如图①,△ABC 中,AI、BI 分别平分∠BAC、∠ABC.CE 是△ABC 的外角∠ACD 的平分线,交BI 延长线于E,联结CI.(1)设∠BAC=2α.如果用α表示∠BIC 和∠E,那么∠BIC=,∠E=;(2)如果AB=1,且△ABC 与△ICE 相似时,求线段AC 的长;(3)如图②,延长AI 交EC 延长线于F,如果∠α=30°,sin∠F=,设BC=m,试用m 的代数式表示BE.10.如图,已知△ABC 是等边三角形,AB=4,D 是AC 边上一动点(不与A、C 点重合),EF 垂直平分BD,分别交AB、BC 于点E、F,设CD=x,AE=y.(1)求证:△AED∽△CDF;(2)求y 关于x 的函数解析式.并写出定义域;(3)过点D 作DH⊥AB,垂足为点H,当EH=1 时,求线段CD 的长.11.(1)问题如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.(2)探究如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ 时,上述结论是否依然成立?说明理由.(3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5,点P 以每秒1 个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A,设点P 的运动时间为t(秒),当以D 为圆心,以DC 为半径的圆与AB 相切时,求t 的值.12.已知△ABC 中,∠ABC=90°,点M 为BC 上一点,点E、N 在AC 上,且EB=EM,NM=NC,(1)求证:∠EMN=∠BEC;(2)探究:AE、EN、CN 之间的数量关系,并给出证明;(3)如图2,过点B 作BH∥EM 交NM 的延长线于H,当=n 时,求的值.13.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连接DC,以DC 为边在BC 上方作等边△DCF,连接AF.直接写出线段AF 与BD 之间的数量关系.(2)类比猜想:如图②,当△ABC 为以BC 为斜边的等腰直角三角形,D 是△ABC 边BA 上一动点(点D 与点B 不重合),连接DC,以DC 为斜边在BC 上方作等腰直角△FDC,连接AF.请直接写出它们的数量关系.(3)深入探究:Ⅰ.如图③,当△ABC 为以BC 为底边的等腰三角形,D 是△ABC 边BA 上一动点(点D 与点B 不重合),连接DC,以DC 为底边在BC 上方作等腰△FDC,∠BC A=∠DCF,且∠BAC=α,连接AF.线段AF 与BD 之间的有什么数量关系?证明你发现的结论;Ⅱ.如图④,当△ABC 为任意三角形,D 是△ABC 边BA 上一动点(点D 与点 B 不重合),连接DC,以DC 为边在BC 上方作△FDC∽△ABC,且=k,连接AF.线段AF 与BD 之间的有什么数量关系?直接写出你发现的结论.14.已知矩形ABCD 的一条边AD=8cm,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处,已知折痕与边BC 交于点O,连结AP、OP、OA.(1)如图1,若点P 恰好是CD 边的中点,①判断△ADP 与△APO 是否相似,并说明理由;②求边AB 的长;(2)如图2,若△OCP 与△PDA 的面积比为1:4,动点G 从点D 出发以每秒1cm 的速度沿DP 向终点P 运动,同时动点H 从点P 出发以每秒2cm 的速度沿PA 向终点A 运动,运动的时间为t(0<t<5),①求边AB 的长;②问是否存在某一时刻t,使四边形ADGH 的面积S 有最小值?若存在,求出S 的最小值;若不存在,请说明理由.15.在△ABC 中,∠ACB=90°,BE 是AC 边上的中线.(1)如图1,点D 在BC 边上,=,AD 与BE 相交于点P,则的值为;(2)如图2,点D 在BC 的延长线上,BE 的延长线与AD 交于点P,DC:BC:AC=1:2:3.①求的值;②若CD=2,则BP=.16.如图所示,E 是正方形ABCD 的边AB 上的动点,正方形的边长为4,EF⊥DE 交BC于点F.(1)求证:△ADE∽△BEF;(2)AE=x,BF=y.当x 取什么值时,y 有最大值?并求出这个最大值;(3)已知D、C、F、E 四点在同一个圆上,连接CE、DF,若sin∠CEF=,求此圆直径.答案1.证明:(1)由等腰直角三角形的性质可知:∠A=∠B=∠A′B′C′=45°,∵∠BB′D=∠ADB′+∠A,∠BB′D=∠A′B′C′+∠EB′B,∴∠ADB′=∠BB′D﹣∠A=∠BB′D﹣45°,∠EB′B=∠BB′D﹣∠A′B′C′=∠BB′D﹣45°.∴∠ADB′=∠EB′B.又∵∠A=∠B,∴△AB′D∽△BEB′.(2)相似.如图:理由:由等腰直角三角形的性质可知:∠A=∠B=∠A′B′C′=45°,∵∠BB′D=∠ADB′+∠A,∠BB′D=∠A′B′C′+∠EB′B,∴∠ADB′=∠BB′D﹣∠A=∠BB′D﹣45°,∠EB′B=∠BB′D﹣∠A′B′C′=∠BB′D﹣45°.∴∠ADB′=∠EB′B.又∵∠A=∠B,∴△AB′D∽△BEB′.(3)由(2)可知∴△AB′D∽△BEB′,∴,又∵BB′=AB′,∴,又∵∠A=∠A′B′C′=45°.∴△AB′D∽△B′ED.(4)当∠A′B′C′=15°时,△AB′D∽△BEB′.理由:∵∠C=150°,AC=BC,∴∠A=∠B=15°.∵∠BB′D=∠ADB′+∠A,∠BB′D=∠A′B′C′+∠EB′B,∴∠ADB′=∠BB′D﹣∠A=∠BB′D﹣15°,∠EB′B=∠BB′D﹣∠A′B′C′=∠BB′D﹣15°.∴∠ADB′=∠EB′B.又∵∠A=∠B,∴△AB′D∽△BEB′.2.解:(1)如图1,∵PE⊥AC,∴∠AEP=∠PEC=90°.又∵∠EPF=∠ACB=90°,∴四边形PECF 为矩形,∴∠PFC=90°,∴∠PFB=90°,∴∠AEP=∠PFB.∵AC=BC,∠C=90°,∴∠A=∠B=45°,∴∠FPB=∠B=45°,△AEP∽△PFB,∴PF=BF,=,∴==;(2)(1)的结论不成立,理由如下:连接PC,如图2.∵=1,∴点P 是AB 的中点.又∵∠ACB=90°,CA=CB,∴CP=AP=AB.∠ACP=∠BCP=∠ACB=45°,CP⊥AB,∴∠APE+∠CPE=90°.∵∠CPF+∠CPE=90°,∴∠APE=∠CPF.在△APE 和△CPF 中,,∴△APE≌△CPF,∴AE=CF,PE=PF.故(1)中的结论=不成立;(3)当△CEF 的周长等于2+ 时,α的度数为75°或15°.提示:在(2)的条件下,可得AE=CF(已证),∴EC+CF=EC+AE=AC=2.∵EC+CF+EF=2+ ,∴EF=.设CF=x,则有CE=2﹣x,在Rt△CEF 中,根据勾股定理可得x2+(2﹣x)2=()2,整理得:3x2﹣6x+2=0,解得:x1=,x2=.①若CF=,如图3,过点P 作PH⊥BC 于H,易得PH=HB=CH=1,FH=1﹣=,在Rt△PHF 中,tan∠FPH==,∴∠FPH=30°,∴α=∠FPB=30+45°=75°;②若CF=,如图4,过点P 作PG⊥AC 于G,同理可得:∠APE=75°,∴α=∠FPB=180°﹣∠APE﹣∠EPF=15°.3.解:(1)如图1,过点P,作PD⊥BC 于D.在Rt△ABC 中,AB=6 米,BC=8 米,由勾股定理得:AC=10 米由题意得:AP=2t,则CQ=t,则PC=10﹣2t∵t=2.5 秒时,AP=2×2.5=5 米,QC=2.5 米∴PD=AB=3 米.∴S=QC•PD=3.75 平方米;(2)如图1 过点Q,作QE⊥PC 于点E,∵∠C=∠C,∠QEC=∠ABC,∴Rt△QEC∽Rt△ABC.∴.解得:QE=,∴S=PC•QE=(10﹣2t)•=﹣t2+3t(0<t<5)(3)①当PC=QC 时,PC=10﹣2t,QC=t,即10﹣2t=t,解得t=秒;②当PQ=CQ 时,如图1,过点Q 作QE⊥AC,则CE==5﹣t,CQ=t,由(2)可知△CEQ∽△CBA,故,即,解得t=秒;③当PC=PQ 时,如图2,过点P 作PE⊥BC.∵PQ=PC,PE⊥QC,∴EC=.∴CE=.∵PE⊥QC,∴∠PEC=90°.∴∠PEC=∠ABC.∵∠C=∠C,∠PEC=∠ABC,∴△PCE∽△ACB.∴,即=,解得t=秒.4.解:(1)设AC=4x,BC=3x,在Rt△ABC 中,AC2+BC2=AB2,即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm;(2)若△PBQ 与△ABC 相似,由已知条件得:AP=t,BQ=2t,∴PB=10﹣t,①如图1,∠PQB=∠C=90°,∴,即,解得:t=;②如图2,∠QPB=∠C=90°,∴,即,解得:t=>3.综上所述:当t=时,△PBQ 与△ABC 相似;(3)如图3,当点Q 在CA 上运动,使PQ⊥AB 时,以点B、P、Q 为顶点的三角形与△ABC 不相似.理由如下:∵AP=x,∴AQ=14﹣2x,∵PQ⊥AB,∴△APQ∽△ACB,∴=,即:,解得:x=,PQ=,∴PB=10﹣x=,∴==≠,∴当点Q 在CA 上运动,使PQ⊥AB 时,以点B、P、Q 为顶点的三角形与△ABC 不相似.5.解:(1)∵点B 的坐标为(2,0),点C 的坐标为(0,8),∴OB=2,OC=8,在Rt△AOC 中,sin∠CAB==,∴.∴AC=10,∴.(2)依题意,AE=m,则BE=8﹣m,∵EF∥AC,∴△BEF∽△BAC.∴=.即=,∴EF=,过点F 作FG⊥AB,垂足为G,则sin∠FEG=sin∠CAB=,∴=,∴FG=×=8﹣m,∴S=S△BCE﹣S△BFE==﹣m2+4m,自变量m 的取值范围是0<m<8.(3)S 存在最大值.∵S=﹣m2+4m=,且﹣<0,∴当m=4 时,S 有最大值,S 最大值=8,∵m=4,∴点E 的坐标为(﹣2,0),∴△BCE 为等腰三角形.6.解:(1)如图1 中,作DT⊥AB 于T,EN⊥AB 于N,CH⊥AB 于H,MK⊥PQ 于K,则四边形DENT 是矩形,由△DTA≌△ENB,可得DE=NT=PQ=5,AT=BN=3,∵AD=EB=5,∴DT=EN=4,当点M 在BD 上时,∵PK=KQ,KM∥AB,∴DM=MB,易知KM=PK=KQ=2,DP=2,∴t=7 秒时,点M 在BD 上,∵EN∥CH,∴△ENB∽△CHB,∴=,∴=,∴BC=,EC=,∴点P 到达点C 时间为:5+5+ =秒.故答案为7 秒,秒.(2)①如图2 中,作DT⊥AB 于T,当0<t≤5 时,重叠部分是△PQM,∵sin A==,∴PQ=t,∴S=S△PQM=•t•t=t2.②如图3 中,当5<t≤7 时,重叠部分是四边形QMHK.取BD 的中点M′,作M′P′∥PM 交DE 于P′∵KQ∥DT,∴=,∴=,∴KQ=,PK=4﹣=,∵P′M′∥PH,∴=,∴=,∴DH=(t﹣5),∵DK=,∴HK=DH﹣DK=(t﹣5),∴S=S△PMQ﹣S△PKH=4﹣××=﹣t2+t+.③如图4 中,当7<t≤10 时,重叠部分是△QHK.GK,M′G′分别是△QHK、△Q′H′M′的高.由△QHK∽△Q′H′M′,得到,=,∴=,∴GK=,∴S=××=t2﹣t+.④如图5 中,10<t≤时,重叠部分是△QKH.由△QHK∽△Q′H′M′,得=,可得GK={5﹣,∴S=•HQ•GK=•{5﹣2=﹣t+ .综上所述,S=.(3)存在.①如图6 中,当FG=FQ 时,∵PF=FG=FQ=2,∴DP=4,∴t=5+4=9.②如图7 中,当GF=GQ 时,作GK⊥PQ,DN⊥AB 于N.由△DAN∽△GFK,得=,∴=,∴FK=(t﹣5),∵GF=GQ,GK⊥FQ,∴FQ=2FK=,∵PF+FQ=4,∴(t﹣5)+ (t﹣5)=4,∴t=.③如图8 中,当QF=QG 时,作QK⊥GF 于K.DN⊥AB 于N.由△ADN∽△FQK,得到=,∴=,∴FQ=(t﹣5),∵PF+FQ=4,∴(t﹣5)+ (t﹣5)=4,∴t=,综上所述,当△FGQ 是等腰三角形时,t 的值为9s 或s 或s.7.(1)证明:如图1,由折叠可得:∠EDF=∠C=90°,∠DFE=∠CFE.∵△ABC 是等腰直角三角形,∠C=90°,∴∠A=∠B=45°.∵DK⊥AB,∴∠ADK=∠BDK=90°,∴∠AKD=45°,∠EDF=∠KDB=90°,∴∠EKD=∠FBD,∠EDK=∠FDB,∴△DEK∽△DFB;(2)解:∵∠A=∠AKD=45°,∴DK=DA=x.∵AB=2,∴DB=2﹣x.∵△DFB∽△DEK,∴=,∴y=cot∠CFE=cot∠DFE===.当点F 在点B 处时,DB=BC=AB•sin A=2×=,AD=AB﹣BD=2﹣;当点E 在点A 处时,AD=AC=AB•cos A=2×=;∴该函数的解析式为y=,定义域为2﹣<x<;(3)取线段EF 的中点O,连接OC、OD,∵∠ECF=∠EDF=90°,∴OC=OD=EF.设EF 与CD 交点为H,根据轴对称的性质可得EF⊥CD,且CH=DH=CD.∵=,∴sin∠HOC==,∴∠HOC=60°①若点K 在线段AC 上,如图2,∵CO=EF=OF,∴∠OCF=∠OFC=∠HOC=30°,∴y=cot30°=,∴=,解得:x=﹣1;②若点K 在线段AC 的延长线上,如图3,∵OC=OF,∠FOC=60°,∴△OFC 是等边三角形,∴∠OFC=60°,∴y=cot60°=,∴=,解得:x=3﹣;综上所述:x 的值为﹣1 或3﹣.8.(1)证明:∵△ABC、△APD 和△APE 是等边三角形,∴AD=AP,∠DAP=∠BAC=60°,∠ADM=∠APN=60°,∴∠DAM=∠PAN.在△ADM 和△APN 中,,∴△ADM≌△APN(ASA),∴AM=AN.(2)解:①∵△ABC、△ADP 是等边三角形,∴∠B=∠C=∠DAP=∠BAC=60°,∴∠DAM=∠PAC,∵∠ADM=∠B,∠DMA=∠BMP,∴180°﹣∠ADM﹣∠DMA=180°﹣∠B﹣∠BMP,∴∠DAM=∠BPM ,∴∠BPM=∠NAP,∴△BPM∽△CAP,∴,∵BM=,AC=2,CP=2﹣x,∴4x2﹣8x+3=0,解得x1=,x2=.②∵四边形AMPN 的面积即为四边形ADPE 与△ABC 重叠部分的面积,△ADM≌△APN,∴S△ADM=S△APN,∴S 四边形AMPN=S△APM+S△APN=S△AMP+S△ADM=S△ADP.过点P 作PS⊥AB,垂足为S,在Rt△BPS 中,∵∠B=60°,BP=x,∴PS=BP sin60°=x,BS=BP cos60°=x,∵AB=2,∴AS=AB﹣BS=2﹣x,∴AP2=AS2+PS2=(x)2+(2﹣x)2=x2﹣2x+4(0<x<2);∴S=PA2=x2﹣x+(0<x<2).③连接PG,设DE 交AP 于点O.若∠BAD=15°,∵∠DAP=60°.∴∠PAG=45°.∵△APD 和△APE 都是等边三角形.∴AD=DP=AP=PE=EA.∴四边形ADPE 是菱形.∴DO 垂直平分AP.∴AG=GP.∴∠APG=∠PAG=45°.∴∠PAG=90°.设BG=t,在Rt△BPG 中,∠B=60°.∴BP=2t,PG=t.∴AG=PG=t.∴t+t=2.解得t=﹣1.∴BP=2t=2 ﹣2.故,当x=2﹣2 时,∠BAD=15°.9.解:(1)在△BCE 中有:∠E=180°﹣∠BCE﹣∠CBE,又∵AI、BI 分别平分∠BAC、∠ABC.∴CI 是∠ACB 的平分线,∵CE 是∠ACD 的平分线,∴∠ECI 是平角∠BCD 的一半,∴∠ECI=90°,∴∠E=90°﹣∠BCI﹣∠CBI,在△ABC 中,∠BAC=(180°﹣∠ABC﹣∠ACB)=90°﹣∠BCI﹣∠CBE=α,即∠E=α.在三角形BIC 中,由外角性质得到:∠BIC=90°+α,综上所述,∠BIC=90°+α,∠E=α.故填:90°+α,α;(2)由题意易证得△ICE 是直角三角形,且∠E=α.当△ABC∽△ICE 时,可得△ABC 是直角三角形,有下列三种情况:①当∠ABC=90° 时,∵∠BAC=2α,∠E=α;∴只能∠E=∠BCA,可得∠BAC=2∠BCA.∴∠BAC=60°,∠BCA=30°.∴AC=2 AB.∵AB=1,∴AC=2.②当∠BCA=90° 时,∵∠BAC=2α,∠E=α;∴只能∠E=∠ABC,可得∠BAC=2∠ABC.∴∠BAC=60°,∠ABC=30°.∴AB=2 AC.∵AB=1,∴AC=.③当∠BAC=90° 时,∵∠BAC=2α,∠E=α;∴∠E=∠BAI=∠CAI=45°.∴△ABC 是等腰直角三角形.即AC=AB.∵AB=1,∴AC=1.∴综上所述,当△ABC∽△ICE 时,线段AC 的长为1 或2 或.(3)∵∠E=∠CAI,由三角形内角和可得∠AIE=∠ACE.∴∠AIB=∠ACF.又∵∠BAI=∠CAI,∴∠ABI=∠F.又∵BI 平分∠ABC,∴∠ABI=∠F=∠EBC.又∵∠E 是公共角,∴△EBC∽△EFI.在Rt△ICF 中,sin∠F=,设IC=3k,那么CF=4k,IF=5k.在Rt△ICE 中,∠E=30°,设IC=3k,那么CE=3k,IE =6k.∵△EBC∽△EFI.∴==.又∵BC=m,∴BE=m.10.解:(1)证明:如图1,∵EF 垂直平分BD,∴EB=ED,FB=FD.在△BEF 和△DEF 中,,∴△BEF≌△DEF(SSS),∴∠EBF=∠EDF.∵△ABC 是等边三角形,∴∠A=∠ABC=∠C=60°,∴∠EDF=60°,∴∠ADE+∠FDC=180°﹣60°=120°.又∵∠AED+∠ADE=180°﹣60°=120°,∴∠AED=∠FDC,∴△AED∽△CDF;(2)∵△ABC 是等边三角形,∴AC=BC=AB=4.∵CD=x,AE=y,∴AD=4﹣x,ED=EB=4﹣y.∵△AED∽△CDF,∴==,∴==,∴DF=,CF=.∵DF+CF=BF+CF=BC=4,∴+=4,整理得:y=(0<x<4);(3)如图2,①H 在线段AE 上时,在Rt△AHD 中,∵AH=AE﹣EH=y﹣1,AD=4﹣x,∠A=60°,∴cos A===,∴y=3﹣x,∴=3﹣x,整理得:x2﹣14x+24=0,解得:x1=2,x2=12,∵0<x<4,∴x=2,②当H 在线段BE 上时,同理可求得x=9﹣即CD 的长为2 或9﹣.11.解:(1)如图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(2)结论AD•BC=AP•BP 仍然成立.理由:如图2,∵∠BPD=∠DPC+∠BPC,∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP.∵∠DPC=∠A=∠B=θ,∴∠BPC=∠ADP,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(3)如图3,过点D 作DE⊥AB 于点E.∵AD=BD=5,AB=6,∴AE=BE=3.由勾股定理可得DE=4.∵以点D 为圆心,DC 为半径的圆与AB 相切,∴DC=DE=4,∴BC=5﹣4=1.∴∠A=∠B,∴∠DPC=∠A=∠B.由(1)、(2)的经验可知AD•BC=AP•BP,∴5×1=t(6﹣t),解得:t1=1,t2=5,∴t 的值为1 秒或5秒.12.解:(1)∵EB=EM,NM=NC,∴∠EBM=∠EMB,∠NMC=∠NCM,∴∠EMB+∠NCM+∠EMN=180°,∵∠EBM+∠NCM+∠BEC=180°,∴∠EMN=∠BEC;(2)如图1,作DE⊥BC,NF⊥BC 分别交BC 于D,F,作GM⊥BC,交AC 于点G,∵EB=EM,∠ABC=90°,∴BD=MD,∴DE 为梯形ABMG 的中位线,∴AE=EG,同理可得CN=NG,∴EG+GN=AE+CN,即EN=AE+CN;(3)如图2,作GM⊥BC,交AC 于点G,作NF∥EM,∴==n,∵AE=EG,CN=NG,∴=n,即NG=CN=nEG,∵NF∥EM,∴=,即=,∴CF=MC,∴MF=MC﹣MC=MC,∵BH∥EM,NF∥EM,∴BH∥NF,∴=,∵=n,即BM=CM,∴==.13.解:(1)∵等边△ABC,等边△DCF,∴FC=DC,AC=BC,∠FCA+∠ACD=∠BCD+∠ACD=60°,∴∠FCA=∠DCB,在△FCA 和△DCB 中,,∴△FCA≌△DCB,∴BD=AF;(2)∵(1)∵△ABC 是等腰直角三角形,△DCF 是等腰直角三角形,∴=,=,∴=,∠FCA+∠ACD=∠BCD+∠ACD=45°,∴∠FCA=∠DCB,∴△FCA∽△DCB,∴=;(3)Ⅰ.∵△ABC 为以BC 为底边的等腰三角形,△FDC 为以DC 为底边的等腰三角形,∠BCA=∠DCF,∴△ABC∽△FDC,∴=,∠ACF=∠BCD,∴△BCD∽△ACF,∴=,如图③,作AP⊥BC,==2sin∠BAC=2sin α,∴=2sinα;Ⅱ、∵△FDC∽△ABC,∴,∠FCA+∠ACD=∠BCD+∠ACD,∴∠FCA=∠DCB,∴△FCA∽△DCB,∴==k.14.解:(1)①∵点P 恰好是CD 边的中点,设DP=PC=y,则DC=AB=AP=2y,在Rt△ADP 中,AD2+DP2=AP2,即:82+y2=(2y)2,解得:y=,∵∠OPA=∠B=90°,∴△ADP∽△PCO,∴AD:PC=DP:CO,∴8:y=y:CO,则AC==,∴OB=8﹣=,∵AB=2y=,∴tan∠OAB==,∴∠OAB=30°;∴∠OAP=∠DAP=30°,∵∠OPA=∠D=90°,∴△ADP∽△APO;②由①可知AB=,(2)∵△ADP∽△PCO,△OCP 与△PDA 的面积比为1:4,∴=,即DP=2CO,=.AD=2PC,∵AD=8,∴PC=4,在RT△ADP 中,AP2=AD2+DP2,∵AP=DC=AB,∴AB2=64+(AB﹣4)2,解得AB=10.②∵GP=6﹣t,PH=2t,设△GPH 的高为h,则有h=•2t=.∴S 四边形ADGH=S△ADP﹣S△GHP=DP•DA﹣GP•h=×8×6﹣×(6﹣t)×t=(t﹣3)2+,∴当t=3 时,四边形ADGH 的面积S 有最小值为.15.解:(1)如图1,作DF∥AC 交BE 于F,∴==,∴===,故答案为:;(2)①如图2,作CH∥AD 交BP 于H,∴=,又AE=EC,∴CH=AP,∵CH∥AD,∴==,∴=;②∵DC:BC:AC=1:2:3,CD=2,∴BC=4,AC=6,EC=AC=3,由勾股定理得,BE=5,∵CH∥AD,AE=EC,∴HE=EP,设HE=EP=x,则BH=5﹣x,BP=5+x,∵CH∥AD,∴=,即=,解得x=1,则BP=5+x=6.16.(1)证明:∵∠DEF=90°,∴∠AED+∠BEF=90°,又∠AED+∠ADE=90°,∴∠ADE=∠BEF,又∠A=∠B,∴△ADE∽△BEF;(2)解:∵△ADE∽△BEF,∴=,又AE=x,BF=y,AD=4,∴=,解得,y=﹣x2+x=﹣(x﹣2)2+1,∴当x=2 时,y 有最大值,最大值为1;(3)解:∵D、C、F、E 四点共圆,∴∠CEF=∠CDF,∴sin∠CEF=sin∠CDF==,又CD=4,∴DF=5,∵∠DCF=90°,∴DF 为此圆直径,∴此圆直径为5.。

课后培优练:27_2_1 相似三角形的判定(解析版)

课后培优练:27_2_1 相似三角形的判定(解析版)

姓名:班级27.2.1 相似三角形的判定全卷共24题,满分:100分,时间:60分钟一、单选题(每题3分,共36分)1.(2021·北京·牛栏山一中实验学校九年级月考)根据下列条件,判断△ABC与△A′B′C′能相似的有()对.①∠C=∠C′=90°,∠A=25°,∠B′=65°;②∠C=90°,AC=6,BC=4,∠C′=90°,A′C′=9,B′C′=6;③AB=10,BC=12,AC=15,A′B′=1.5,B′C′=1.8,A′C′=2.25;④△ABC与△A′B′C′为等腰三角形,且有一个角为80°.A.1对B.2对C.3对D.4对【答案】C【分析】根据相似三角形常用的判定方法对各个选项进行分析从而得到答案.【详解】解:①∵∠C=∠C′=90°,∠A=25°.∴∠B=65°.∵∠C=∠C′,∠B=∠B′.∴△ABC∽△A′B′C′.②∵∠C=90°,AC=6,BC=4,∠C’=90°,A′C′=9,B′C′=6.∴AC:BC=A′C′:B′C′,∠C=∠C′.∴△ABC∽△A′B′C′.③∵AB=10,BC=12,AC=15,A′B′=1.5,B′C′=1.8,A′C′=2.25.∴AC:A′C′=BC:B′C′=AB:A′B′.∴△ABC∽△A′B′C′.④∵没有指明80°的角是顶角还是底角.∴无法判定两三角形相似.∴共有3对.故选:C.【点睛】此题主要考查相似三角形的判定方法:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似.2.(2021·上海虹口·九年级月考)点P是△ABC中AB边上一点(不与A、B重合),过P作直线截△ABC使得截得的三角形与△ABC相似,这样的直线最多作()A.2条B.3条C.4条D.5条【答案】C【分析】根据相似三角形的判定方法分析,即可做出判断.【详解】满足条件的直线有4条,如图所示:如图1,过P作PE∥AC,则有△BPE∽△BAC;如图2,过P作PE∥BC,则有△APE∽△ABC;如图3,过P作∠AEP=∠B,又∠A=∠A,则有△APE∽△ACB;如图4,过P作∠BEP=∠A,又∠B=∠B,则有△BEP∽△BAC,故选:C.【点睛】本题考查了相似三角形的判定,解答的关键是对相似三角形的判定方法的理解与灵活运用.3.(2021·北京市古城中学九年级月考)如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.【答案】A【分析】利用三边对应成比例的两个三角形相似判断即可.【详解】∵AC22+AB=2,BC221310+=112A51210522:2比例,∴这两个三角形相似,A符合题意;B532B不符合题意;C51,2C不符合题意;D5213D不符合题意;故选A.【点睛】本题考查了网格中三角形相似,灵活运用勾股定理计算各边长,熟练运用三边对应成比例的两个三角形相似求解是解题的关键.4.(2021·内蒙古·包头市第二十九中学九年级月考)下列各组图形中可能不相似的是()A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形【答案】A【分析】根据判定三角形相似的方法:①有两个对应角相等的三角形相似;②有两组边对应成比例且夹角相等的两个三角形相似;③三组边对应成比例的两个三角形相似,逐项分析即可.【详解】解:A、不正确,因为没有指明这个45°的角是顶角还是底角,则无法判定其相似;B、正确,由已知我们可以得到这是两个等边三角形,从而可以根据三组边对应成比例的两个三角形相似判定这两个三角形相似;C、正确,已知一个角为105°,则我们可以判定其为顶角,这样我们就可以根据两组边对应成比例且夹角相等的两个三角形相似来判定这两个三角形相似;D、正确,因为是等腰直角三角形,则我们可以根据两组边对应成比例且夹角相等的两个三角形相似来判定这两个三角形相似.故选:A.【点睛】本题考查相似三角形的判定.熟练掌握相似三角形的判定方法是解决本题的关键.5.(2021·山东桓台·八年级期末)如图所示的4个三角形中,相似三角形有()A.1对B.2对C.3对D.4对【答案】A【分析】根据相似三角形的判定方法判断即可.【详解】解:如图:AC2=12+22=5,BC2=42+22=20,AB2=25,∵5+20=25,∴AC2+ BC2= AB2,∴△ABC是直角三角形,且∠ACB=90°,12 ACBC=;△DEF是直角三角形,且∠DEF=90°,12DEEF=;∴△ABC~△DEF;△JKL是直角三角形,且∠JKL=90°,111JKKL==;HI2=12+12=2,HG2=12+22=5,GI2=12+22=5,∵5+2≠5,∴HG 2+ HI 2= GI 2,∴△HGI 不是直角三角形,综上,只有△ABC ~△DEF ;故选:A .【点睛】本题考查了相似三角形的判定,勾股定理及逆定理的应用,解题的关键是熟练掌握相似三角形的判定方法.6.(2021·浙江温州·九年级期末)如图,下列条件不能判定ACD ∆与ABC ∆相似的是( )A .CD AC BC AB = B .AC AD AB AC= C .ADC ACB ∠=∠ D .ACD B ∠=∠ 【答案】A【分析】根据相似三角形的判定即可求出答案.【详解】A 、当CD AC BC AB =时,无法得出ACD ABC ∆∆,符合题意; B 、,AC AD A A AB AC =∠=∠,ACD ABC ∴∆∆,能判定相似,不符合题意;C 、,A A ADC ACB ∠=∠∠=∠,ACD ABC ∴∆∆,能判定相似,不符合题意;D 、,A A B ACD ∠=∠∠=∠,ACD ABC ∴∆∆,能判定相似,不符合题意;故选:A .【点睛】本题主要考查了相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.7.(2021·全国·九年级专题练习)如图,在正方形ABCD 中,E 是CD 的中点,P 是BC 边上的点,下列条件中不能推出△ABP 与以点E 、C 、P 为顶点的三角形相似的是( ).A .∠APB =∠EPCB .∠APE =90°C .P 是BC 的中点D .BP ∶BC =2∶3【答案】C 【分析】利用两三角形相似的判定定理逐一判断即可.【详解】解:A. ∠APB =∠EPC ,根据正方形性质得到∠B =∠C ,可以得到ΔABP ∽ΔECP ,不合题意;B. ∠APE =90︒,根据正方形性质得到∠B =∠C ,根据同角的余角相等,得到∠APB =∠PEC ,可以得到ΔABP ∽ΔPCE ,不合题意;C. P 是BC 的中点,无法判断ΔABP 与ΔECP 相似,符合题意;D. BP :BC =2:3,根据正方形性质得到AB :BP =EC :PC =3:2,又∵∠B =∠C ,可以得到ΔABP ∽ΔECP ,不合题意.故选:C .【点睛】本题考查相似三角形的判定定理,熟练掌握判定定理是解题关键.8.(2021·全国全国·九年级专题练习)ABC 和A B C '''中,9cm AB =,8cm BC =,5cm CA =,4.5cm A B ''=, 2.5cm B C ''=,4cm C A ''=,则下列说法不正确的有( )A .ABC 与B AC '''相似B .AB 与B A ''是对应边C .两个三角形的相似比是2:1D .BC 与B C ''是对应边 【答案】D【分析】根据相似三角形的判定定理判断即可.【详解】解:A 、2AB CA BC A B B C C A ==='''''',所以两个三角形相似,选项正确; B 、AB 与B A ''是对应边,选项正确;C 、两个三角形的相似比是2:1,选项正确; D 、BC 与C A ''是对应边,选项错误.故选:D【点睛】本题考查三角形相似的判定定理,根据定理内容解题是关键.9.(2021·浙江·诸暨市滨江初级中学九年级期中)如图,P 为线段AB 上一点,AD 与BC 交与点E ,∠CPD =∠A =∠B ,BC 交PD 与点F ,AD 交PC 于点G ,则下列结论中错误的是( )A .△CGE ∽△CBPB .△APD ∽△PGDC .△APG ∽△BFPD .△PCF ∽△BCP【答案】A【分析】根据∠CPD =∠A =∠B ,∠D =∠D ,∠C =∠C 即可得到△APD ∽△PGD ,△PCF ∽△BCP ,再根据∠APG =∠C +∠P ,∠BFP =∠C +∠CPD ,可以得到∠APG =∠BFP ,即可证明△APG ∽△BFP ,由此即可求解.【详解】解:∵∠CPD =∠A =∠B ,∠D =∠D ,∠C =∠C∴△APD ∽△PGD ,△PCF ∽△BCP 故B 、D 选项不符合题意,∵∠APG =∠C +∠P ,∠BFP =∠C +∠CPD ,∴∠APG =∠BFP ,∴△APG ∽△BFP ,故C 选项不符合题意,对于A 选项不能得到两个三角形相似,故选A .【点睛】本题主要考查了相似三角形的判定,三角形外角的性质,解题的关键在于能够熟练掌握相关知识进行求解.10.(2021·全国·九年级专题练习)如图,,ABC ADE BC ≌,DE 交于点O ,有下列三个结论:①12∠=∠,②BC DE =,③ABD ACE ∽.则一定成立的有( ).A .0个B .1个C .2个D .3个【答案】D 【分析】根据全等三角形的性质可判断①和②,再根据相似三角形的判定判断③即可.【详解】①∵ABC ADE △≌△,∴∠BAC =∠DAE ,∴∠1+∠DAC =∠2+∠DAC ,∴∠1=∠2,故①成立;②∵ABC ADE △≌△,∴BC=DE ,故②成立,③∵ABC ADE △≌△,∴AB=AD ,AC=AE ,∴AB AD AC AE =,又∠1=∠2,∴ABD ACE ∽,故③成立,综上,一定成立的有①②③共3个,故选:D .【点睛】本题考查全等三角形的性质、相似三角形的判定,熟练掌握全等三角形的性质和相似三角形的判定是解答的关键.11.(2021·河北海港·九年级期中)如图,己知ABC 中,D 为边AC 上一点,P 为边AB 上一点,12AB =,8AC =,6AD =,当AP 的长度为______时,ADP △和ABC 相似.( )A .9B .6C .4或9D .6或9【答案】C 【分析】分别根据当△ADP ∽△ACB 时,当△ADP ∽△ABC 时,求出AP 的长即可.【详解】解:当△ADP ∽△ACB 时,∴AP AD AB AC =,∴6128AP =,解得:AP =9, 当△ADP ∽△ABC 时,∴AD AP AB AC=,∴6128AP =,解得:AP =4, ∴当AP 的长度为4或9时,△ADP 和△ABC 相似.故选C .【点睛】此题主要考查了相似三角形的判定与性质,利用倒推法以及分类讨论得出是解题关键.x﹣1与x轴交于A,与y轴12.(2021·山东大学附属中学九年级月考)如图所示,直线y=12交于B,在第一象限内找点C,使△AOC与△AOB相似,则共能找到的点C的个数()A.1 B.2 C.3 D.4【答案】D【分析】因为点C在第一象限,所以只有点A,点C可能为直角顶点,由此讨论,可得结论.【详解】解:∵点C在第一象限,∴当点C为直角顶点时,有两种情形,当点A为直角顶点时,也有两种情形,共有4种情形.故选:D.【点睛】本题考查相似三角形的判定,一次函数的性质等知识,解题的关键是学会用分类讨论的思想思考问题.二、填空题(每题3分,共18分)13.(2021·全国·九年级专题练习)如图,△ABC与△DEF的顶点均在方格纸中的小正方形方格(边长为一个单位长)的顶点处,则△ABC__________△DEF(在横线上方填写“一定相似”或“不一定相似”或“一定不相似”).【答案】一定相似【分析】分别计算两个三角形的三边长,看三边是否成比例,即可判定这两个三角形是否相似.【详解】根据图示知:AB =2,BC =1,AC =5;DE =25,EF =5,DF =5, ∴1555AB BC AC DE EF DF ====,∴△ABC ∽△DEF .故答案为:一定相似. 【点睛】本题考查了相似三角形的判定,勾股定理,关键是熟悉相似三角形的判定. 14.(2021·山东张店·八年级期末)如图,D 是ABC 的边AB 上一点(不与点A ,B 重合),请添加一个条件后,使ACD ABC ~,则添加的这个条件可以是__________(只添加一个条件).【答案】ACD B ∠=∠(答案不唯一)【分析】根据相似三角形的判定定理:有两角对应相等的两三角形相似,添加条件ACD B ∠=∠即可.【详解】解:添加条件是:ACD B ∠=∠,理由是:A A ∠=∠,ACD B ∠=∠,ACD ABC ∴△∽△,故答案为:ACD B ∠=∠(答案不唯一).【点睛】本题考查了对相似三角形的判定定理的应用,本题是一道比较好的题目,答案不唯一,主要考查了学生对相似三角形的判定定理的运用能力.15.(2021·北京市第六十六中学九年级期中)如图,已知∠1=∠2,添加条件____后,使△ABC ∽△ADE .【答案】∠B =∠D【分析】先证出∠BAC =∠DAE ,再由∠B =∠D ,即可得出ABC ∽△ADE .【详解】解:添加条件∠B =∠D 后,△ABC ∽△ADE .理由如下:∵∠1=∠2,∴∠1+∠BAE =∠2+∠BAE ,即∠BAC =∠DAE ,又∵∠B =∠D ,∴ABC ∽△ADE .故答案为:∠B =∠D .【点睛】本题考查了相似三角形的判定方法;熟练掌握三角形相似的判定方法,并能进行推理论证是解决问题的关键.16.(2021·河南·郑州中原一中实验学校九年级月考)如图,在ABC 中,8AB cm =,16BC cm =,动点P 从点A 开始沿AB 边运动,速度为2/cm s ;动点Q 从点B 开始沿BC 边运动,速度为4/cm s ;如果P 、Q 两动点同时运动,那么经过______秒时QBP △与ABC 相似.【答案】0.8或2【分析】设经过t 秒时,QBP △与ABC 相似,则2AP tcm =,(82)BP t cm =-,4BQ tcm =,利用两组对应边的比相等且夹角对应相等的两个三角形相似进行分类讨论:BP BQ BA BC =时,BPQ BAC ∽,即824816t t -=;当BP BQ BC BA=时,BPQ BCA △∽△,即824168t t -=,然后解方程即可求出答案.【详解】解:设经过t 秒时,QBP △与ABC 相似,则2AP tcm =,(82)BP t cm =-,4BQ tcm =, ∵PBQ ABC ∠=∠,∴当BP BQ BA BC =时,BPQ BAC ∽,即824816t t -=,解得:2t =; 当BP BQ BC BA=时,BPQ BCA △∽△,即824168t t -=,解得:0.8t =; 综上所述:经过0.8s 或2s 秒时,QBP △与ABC 相似,【点睛】本题考查了相似三角形的判定:两组对应边成比例且夹角相等的两个三角形相似,解题的关键是准确分析题意列出方程求解.17.(2020·江苏·南通市跃龙中学九年级月考)如图,D 、E 是以AB 为直径的半圆O 上任意两点,连接AD 、AE 、DE ,AE 与BD 相交于点C ,要使ADC 与ABD △相似,可以添加的一个条件是___________(填正确结论的序号).①ACD DAB ∠=∠;②AD DE =;③2AD BD CD =⋅;④CD AB AC BD ⋅=⋅.【答案】①②③【分析】由两角法可得①正确;由等弦对等弧、等弧所对圆周角相等及两角法可知②正确;由两边夹一角法可以判断③正确,④错误.【详解】解:如图,∠ADC=∠ADB ,①、∵∠ACD=∠DAB ,∴△ADC ∽△BDA ,故①选项正确;②、∵AD=DE ,∴AD DE =,∴∠DAE=∠B ,∴△ADC ∽△BDA ,故②选项正确; ③、∵2AD =BD•CD ,∴AD :BD=CD :AD ,∴△ADC ∽△BDA ,故③选项正确;④、∵CD•AB=AC•BD ,∴CD :BD=AC :AB ,但∠ADC=∠ADB 不是对应夹角,故④选项错误.故答案为①②③.【点睛】本题考查了相似三角形的判定以及圆周角定理.熟练掌握三角形相似的判定方法及圆周角定理是解题关键.18.(2021·黑龙江集贤·九年级期中)已知在Rt ABC ∆中,90,3,4C BC cm AC cm ︒∠===,点,M N 分别在边AC AB 、上,将ABC ∆沿直线MN 对折后,点A 正好落在对边BC 上,且折痕MN 截ABC ∆所成的小三角形(即对折后的重叠部分)与ABC ∆相似,则折折痕MN =__________cm 【答案】32或158. 【分析】先画草图借草图分析.如图重叠的小三角形为'AMN △,由对折知'A MA N ∠=∠,所以要使△ABC 和'AMN △相似,只需'A90NM ANM ACB∠=∠=∠=︒,此时'A和C重合,N为AC中点,由三角形中位线定理易得MN的值;或只需'A90MN AMN ACB∠=∠=∠=︒,此时'A与B点重合,'A M=BM=AM=12AB,再由相似的知识算得MN的值.【详解】由AC=4,BC=3,∠ACB=90°据勾股定理得AB=5.下面分情况讨论:第一种情况如图1当∠MNC=90°时,折叠后A点落在C点.∵∠BCA=90°∴∠MNC=∠BCA又由对折知:∠MCN=∠A∴△MCN∽△ABC由对折知N为AC的中点,据三角形中位线定理得1133222MN BC==⨯=(㎝);第二种情况如图2当∠NMB=90°时,折叠后A点落在B点.∵∠C=90°∴∠C=∠NMB又由对折知∠A=∠NBM∴△ABC∽△BNM∴B MN M BC AC=又由对折知115B5222M AB==⨯=∴52B15348MMN BCAC==⨯=(㎝).综上分析得MN=32㎝或158㎝.故答案为:32或158.【点睛】本题是折叠类问题,考查相似三角形的判定,兼考查分类讨论的数学方法.关键之处在于紧抓折叠的图形成轴对称及全等解决之.三、解答题(19-20题每题7分,其他每题8分,共46分)19.(2021·浙江·杭州市十三中教育集团(总校)三模)如图,在5×6的方格中,点A、B 是两个格点,请按要求作图.(1)在图1中,以AB 为边作矩形ABEF (要求E 、F 两点均是格点);(2)在图2中,点C 、D 是两个格点,请在图中找出一个格点P ,使△P AB 和△PCD 相似(找出一个即可).【答案】(1)见解析;(2)见解析【分析】(1)根据矩形的定义作出图形即可.(2)连接BD ,AC ,延长BD 交AC 的延长线于点P ,点P 即为所求.【详解】解:(1)如图,四边形ABEF 即为所求.(2)如图,点P 即为所求.【点睛】本题考查作图−应用与设计作图,矩形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握相似三角形的判定方法.20.(2021·辽宁·大连市第三十七中学九年级月考)如图,在ABC 中,AD 平分BAC ∠,E 是AD 上一点,且BE BD =.求证:ABE ACD ∽△△.【答案】见解析【分析】根据角平分线的定义得到∠BAD =∠CAD ,根据等腰三角形的性质得到∠BED =∠BDE ,由等角的补角相等得到∠AEB =∠ADC ,根据相似三角形的判定定理即可得到结论【详解】证明:∵AD 平分BAC ∠,∴BAD CAD ∠=∠.∵BE BD =,∴BED BDE ∠=∠.∴AEB ADC ∠=∠.∴ABE ACD ∽△△. 【点睛】本题考查了相似三角形的判定,(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种基本方法.相似的基本图形可分别记为“A ”型和“X ”型,如图所示在应用时要善于从复杂的图形中抽象出这些基本图形.(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.21.(2021·全国·九年级课时练习)如图,Rt ABC ∆中,CD 是斜边AB 上的高.求证:(1)ACD ABC △∽△;(2)CBD ABC ∽△△. 【答案】(1)见解析;(2)见解析【分析】(1)根据有两组角对应相等的两个三角形相似进行证明即可.(2)根据有两组角对应相等的两个三角形相似进行证明即可.【详解】证明:(1)∵CD 是斜边AB 上的高,∴∠ADC =90°,∴∠ADC =∠ACB =90°, ∵∠A =∠A ,∴△ACD ∽△ABC .(2)∵CD 是斜边AB 上的高,∴∠BDC =90°,∴∠BDC =∠ACB =90°,∵∠B =∠B ,∴△CBD ∽△ABC .【点睛】本题考查了相似三角形的判定定理;熟记有两组角对应相等的两个三角形相似是解决问题的关键.22.(2021·上海市实验学校九年级月考)已知抛物线y 32433x 轴交于A 、B 两点(A 在B 的右侧),与y 轴交于点C .(1)求点A 、B 、C 的坐标.(2)试判断AOC 与BOC 是否相似,并说明理由.【答案】(1)(1,0),(3,0)A B --,3)C ;(2)相似,理由见解析【分析】(1)根据抛物线与坐标轴有交点,分别令,0x y =解方程即可求得,,A B C 的坐标;(2)根据(1)的结论,求得,,OA OB OC 的长,根据两边成比例夹角相等,证明三角形相似即可.【详解】(1)抛物线y 32433x 轴交于A 、B 两点,A 在B 的右侧,与y轴交于点C ,令0x =,解得3y =,(0,3)C ∴,令0y =,即23433033x x ++=, 解得121,3x x =-=-,∴(1,0),(3,0)A B --;(2)AOC COB △∽△,理由如下,如图,(1,0),(3,0)A B --,(0,3)C ;,1,3,3AO BO CO ∴===,133,333AO CO CO BO ===,AO CO CO BO ∴=, 又AOC COB ∠=∠,AOC COB ∴△∽△.【点睛】本题考查了二次函数与坐标轴的交点问题,相似三角形的判定,根据题意求得,,A B C 的坐标是解题的关键.23.(2021·内蒙古北方重工业集团有限公司第一中学九年级月考)如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,连接AD 、DE .且∠B =∠ADE =∠C .(1)证明:△BDA ∽△CED ;(2)若∠B =45°,BC =6,当点D 在BC 上运动时(点D 不与B 、C 重合).且△ADE 是等腰三角形,求此时BD 的长.【答案】()见解析;(2)632-或3.【分析】(1)根据题目已知条件可知180ADE ADB EDC ∠+∠+∠=︒,180B ADB DAB ∠+∠+∠=︒,所以得到DAB EDC ∠=∠,即可得证.(2)由题意易得ABC 是等腰直角三角形,所以90BAC ∠=︒,当ADE 是等腰三角形时,根据分类讨论有三种情况:①AD =AE ,②AD =DE ,③AE =DE ;因为点D 不与B C 、重合,所以第一种情况不符合,其他两种情况根据等腰三角形的性质“等边对等角”及45B ADE ∠=∠=︒,求出问题即可.【详解】(1)180ADE ADB EDC ∠+∠+∠=︒在ABD △中,180B ADB DAB ∠+∠+∠=︒B ADE ∠=∠∴EDC DAB ∠=∠又B C ∠=∠ ∴BDA CED △∽△;(2)B ADE C ∠=∠=∠,45B ∠=︒∴ABC 是等腰直角三角形∴90BAC ∠=︒BC =6,∴AB =AC =22BC =32 ①当AD =AE 时,则ADE AED ∠=∠45B ∠=︒,∴=45B ADE AED ∠=∠∠=︒∴90DAE ∠=︒∴90DAE BAC ∠=∠=︒点D 在BC 上运动时(点D 不与B C 、重合),点E 在AC 上 ∴此情况不符合题意. ②当AD =DE 时,如图,∴DAE DEA ∠=∠∴由(1)可知EDC DAB ∠=∠又B C ∠=∠:BDA CED ≌ ∴AB =DC =32632BD =-③当AE =DE 时,如图45B ∠=︒,∴==45B C DAE ADE ∠∠∠=∠=︒∴AD 平分BAC ∠,AD BC ⊥∴1=32BD BC =.综上所述:BD =632-3. 【点睛】本题主要考查相似三角形的判定及等腰三角形的存在性问题,解题的关键是利用“K ”型相似模型及根据“等边对等角”、等腰直角三角形的性质得到线段的等量关系,进而求解问题.24.(2021·浙江衢江·九年级期末)如图①,在矩形ABCD 中,AB =4,BC =m (m >1),点E 、F 分别在边AD 、AB 上,且AE =1.(1)当m =3,AF :FB =1:3时,求证:AEF ∽BFC ;(2)当m =3.5时,用直尺和圆规在图②的线段AB 上确定所有使AEF 与以点B 、F 、C 为项点的三角形相似的点F (请保留画图痕迹);(3)探究:对于每一个确定的m 的值,线段AB 上存在几个点F ,使得AEF 与以点B 、F 、C 为顶点的三角形相似?(直接写出结论即可)【答案】(1)见解析;(2)见解析;(3)当1<m<4且m≠3时,有3个;当m=3时,有2个;当m=4时,有2个;当m>4时,有1个.【分析】(1)根据矩形的性质可得∠A=∠B=90°,再由已知可推出13AE AFBC FB==,即可利用相似三角形的判定得出结论;(2)利用对称性或辅助圆解决问题即可;(3)根据交点个数分类讨论即可解决问题;【详解】(1)证明:∵四边形ABCD是矩形,∴∠A=∠B=90°,∵AE=1,BC=m=3,AF:FB=1:3,∴13AE AFBC FB==,∴AEF∽BFC;解:(2)如图,延长DA,作点E关于AB的对称点E′,连接CE′,交AB于点F1;连接CE,以CE为直径作圆交AB于点F2、F3.点F1、F2、F3即为所求;(3)如(2)中所作图形,当m=4时,由已知条件可得DE=3,则CE=5,即圆的直径为5,由梯形中位线定理可得此时圆心到AB的距离为2.5,等于半径,点F2、F3重合,符合条件的点F有2个;当m>4时,圆和AB相离,此时点F2、F3不存在,即符合条件的点F只有1个;当1<m<4且m≠3时,符合条件的点F有3个;综上所述,可得:当1<m<4且m≠3时,有3个;当m=3时,有2个;当m=4时,有2个;当m>4时,有1个.【点睛】本题考查了作图-相似变换,矩形的性质,圆的有关知识等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

相似三角形培优题

相似三角形培优题

相似三角形培优题(总17页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除1.(2013•雅安)如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=2.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()3.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()4.(2013•新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为()A.2B.或C.或D.2或或5.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.6.(2013安顺)在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE= .7.(2013•牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个B.2个C.3个D.4个8.(2013东营中考)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值()A. 只有1个B. 可以有2个C. 可以有3个D. 有无数个9.(2013台湾、33)如图,将一张三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确()A.甲>乙,乙>丙B.甲>乙,乙<丙C.甲<乙,乙>丙D.甲<乙,乙<丙10、(2013•黔东南州)将一副三角尺如图所示叠放在一起,则的值是.11、(2013•牡丹江)劳技课上小敏拿出了一个腰长为8厘米,底边为6厘米的等腰三角形,她想用这个等腰三角形加工成一个边长比是1:2的平行四边形,平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其它顶点均在三角形的边上,则这个平行四边形的较短的边长为 .12.(2013•天津)如图,在边长为9的正三角形ABC 中,BD=3,∠ADE=60°,则AE 的长为 7 .13.(2013•苏州)如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A 、C 分别在x ,y 轴的正半轴上.点Q 在对角线OB 上,且QO=OC ,连接CQ 并延长CQ 交边AB 于点P .则点P 的坐标为 .14.(2013•眉山)如图,∠BAC=∠DAF=90°,AB=AC ,AD=AF ,点D 、E 为BC 边上的两点,且∠DAE=45°,连接EF 、BF ,则下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE ;④BE 2+DC 2=DE 2, 其中正确的有( )个.A .1 B . 2C . 3D . 415.(2013年潍坊市)如图,直角三角形ABC 中,︒=∠90ACB ,10=AB , 6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点记为1A ;AD 的中点E 的对应点记为1E .若11FA E ∆∽BF E 1∆,则AD =__________.16(2013•巴中)如图,在平行四边形ABCD 中,过点A 作AE⊥BC,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE 的长.17(2013•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A.5个B.4个C.3个D.2个18.(2013聊城)如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为()A.a B. C. D.19.(2013菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S 1+S2的值为()A.16 B.17 C.18 D.1920.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.12C.D.21、(13年安徽省4分、13)如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,ΔPEF、ΔPDC、ΔPAB的面积分别为S、S1、S2。

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档