锅炉尾部烟道顶部包墙
循环流化床锅炉的结构是什么

循环流化床锅炉的结构是什么阀⑦对固体粒子流量进行分配,一部分通过回料器直接送入下炉膛以维持主循环回路固体粒子平衡;另一部分从旋风分离器分离下来的固体粒子通过布置在类似鼓泡床中的外置式换热器④放热后被送入炉膛。
分离后含少量飞灰的干净烟气进入尾部竖井③,经空气预热器和飞灰收集系统,最后由烟囱排入大气。
1.2锅炉整体布置锅炉为单汽包、自然循环、半露天布置的循环流化床锅炉,锅炉整体呈左右对称布置,支吊在锅炉钢架上,采用高温旋风分离器进行气固分离,采用外置换热器控制床温及再热汽温。
本锅炉由五跨组成,第一、二跨布置有主循环回路(炉膛、高温钢板旋风分离器、回料器以及外置式换热器)、冷渣器以及二次风系统等;第三、四跨布置尾部烟道(包括高温过热器、低温再热器以及省煤器);第五跨为单独布置的回转式空气预热器。
炉膛采用全膜式水冷壁结构,炉膛底部采用裤衩型将下炉膛一分为二。
布风板之下为由水冷壁管弯制围成的水冷风室。
锅炉采用回料器给煤的方式,四个给煤口布置在回料器上,石灰石采用气力输送,8个石灰石给料口布置回料腿上。
在水冷风室之前的两个一次风道内分别布置一台风道点火器,另外在炉膛下部还设置有2×4只不带点火和火检的床上助燃油枪,用于锅炉启动点火和低负荷稳燃。
四台流化床式冷渣器被分为两组布置在炉膛两侧,每台冷渣器有9个排渣口,分别将底渣排到机械除渣系统或地面。
四台高温旋风分离器布置在炉膛两侧的钢架副跨内,在旋风分离器下各布置一台回料器。
由旋风分离器分离下来的物料一部分经回料器直接返回炉膛,另一部分则经过布置在炉膛两侧的外置换热器后再返回炉膛。
外置式换热器内布置有受热面,靠后墙外置式换热器内设置有中温过热器(ITS1和ITS2),可以通过控制其间的固体粒子流量来控制炉膛温度;靠前墙外置式换热器内设置有低温过热器(LTS)和高温再热器(HTR),可以通过控制其间的固体粒子流量来控制再热蒸汽温度。
汽冷包墙包覆的尾部烟道内从上到下依次布置有高温过热器、低温再热器、省煤器。
锅炉热力计算部分总结

锅炉热力计算部分总结一、计算流程1,沿着烟气流动方向,一次计算炉膛、水平烟道、转向室、尾部烟道中的受热面 烟道 炉膛 水平烟道 转向室 尾部烟道 受热面 水冷壁,前屏后屏,高过、高再、后后水 省煤器出口管、包墙 低再、低过、省煤器、空预器 附加受热面顶棚顶棚、延伸侧墙顶棚、后、左、右包墙包墙、隔墙每一段烟道的换热计算可能会迭代3~5次,最终使计算结果收敛。
从炉膛到预热器出口的计算过程,成为一轮。
一般而言,第一轮计算往往达不到计算精度要求,需要根据预热器烟气温度计算结果将不合理的烟气焓降按照吸热比例分配到前面各段烟道的受热面。
从而进行下一轮精度更高的计算过程。
1, 误差要求 (1)烟气温度o 30C θθ−≤假设计算 (1)(2)空气温度o 10C t t −≤假设计算(2)(3)水、水蒸汽温度o 5C t t −≤假设计算(3)(4)换热量0.2%Q Q Q −≤假设计算计算(4)二、辐射换热计算根据第九章相关公式计算,主要是辐射换热基本方程(9-18)。
(1)保热系数φ的确定,根据第三章 锅炉机组热平衡中的内容确定。
(2)热有效系数 (3)角系数 (4)沾污系数 (5)炉膛黑度(6)理论燃烧温度 根据第三章 锅炉机组热平衡中的内容确定。
(7)炉壁面积按照水冷壁、顶棚、前屏的总面积计算。
三、对流换热计算根据Nu 数的经验公式计算对流换热系数,以锅侧受热面以烟气侧面积为准。
空气预热器的面积按照空气侧和烟气侧的面积的算术平均值计算。
传热量按照传热公式计算对于烟气较高部分的烟道,对流换热也伴随着辐射换热。
(1)灰污系数(2)热有效系数(3)管排数、结构等修正系数(4)辐射换热计算中,有效辐射层厚度的计算公式随着受热面的结构区别而发生变化。
(5)确定传热系数。
四、附加受热面计算(1)面积:存在折扣,修正系数=0.4~0.8(2)传热温差:烟气与附加受热面工质之间的平均温度之差。
(3)传热系数:主受热面的传热系数。
百万千瓦火电机组塔式锅炉尾部垂直烟道吊装技术

2020年第7期 Lifting technique«' ■塔式炉炉《-图1塔式锅炉炉后垂直烟道示意图吊装顺序和方法;相对于锅炉钢架和 本体受热面而言,烟道布置于炉外, 同等重量下构件尺寸和受风面更大, 相应的高空作业难度及安全风险大。
此外,烟道下方布置有烟气脱硝装 置、空气预热器、旁路省煤器等部 件,受施工工序和吊装空间影响,对 现场吊装、高空就位调整也提出了更 高技术要求。
2施工技术方案炉后垂直烟道包括烟道护板、图2塔式锅炉炉后垂直烟道实景图导流板、桁架、吊挂装置、限位装置、 膨胀节、喷氨装置等。
为减少高空作 业风险,综合考虑烟道结构强度、吊 车负荷、组合场地、运输路线、施工效 率等因素,确定将整个烟道分成10个 模块进行组合和吊装,以此为主线穿 插吊装吊挂装置、限位装置、膨胀节 等部件。
吊装机械的选用,以现场配置的MZQ 2250移动式吊车作为烟道模块由组合场地运输至炉后吊装区域的主 吊机械,以炉后布置的FZQ 1650动臂1工程槪况华能莱芜电厂百万千瓦机组“上 大压小”扩建工程的锅炉,为二次 再热超超临界参数、全悬吊结构塔 式燃煤直流锅炉,尾部垂直烟道与 炉膛出口处连接,底部与脱硝反应器入口连接,高度落差54m (见 图1、图2 >;竖直段烟道截面尺寸为 26.17m x 5.2m ,内部主桁架型钢沿 气流方向5列并行布置。
整个烟道总 重量504t ,通过12根吊杆悬挂在炉顶 钢梁上,其中前侧5根M 75吊杆承担着 炉膛出口膨胀节及其与竖直段烟道之 间倾斜段烟道的重量,后侧7根M 155 吊杆主要承担竖直段烟道、喷氨装置 及脱硝入口膨胀节的重量,悬挂吊杆 分别生根在标高147m 的炉顶大板梁 连梁和炉后148.5m 的炉后悬挑梁上。
由于塔式锅炉垂直烟道为全悬 挂结构,吊装作业、调整对接时仅上 方有生根点,与tr 型锅炉相比尾部烟 道安装位置更高,且无常规TT 型锅炉 设计的后竖井四周钢架和平台可以利 用,吊装时不能采用自下而上的垂直百万千瓦火电机组塔式锅炉尾部垂直烟道吊装技术赵海涛杜传国王建勇李开(中国电建集团山东电力建设第一工程公司济南250102 )摘要:锅炉炉膛出口连接尾部垂直烟道是塔式锅炉区别于n 型锅炉的重要特点之一,垂直烟道结构简 单,造价低廉,但地处高空位置,作业风险大,受结构及空间限制无法采用常规吊装方法。
220t循环硫化床锅炉运行规程

HG—220/9.8—L.MN17锅炉运行规程1 锅炉的基本特性1.1 概述循环流化床(CFB)锅炉是八十年代发展起来的高效率、低污染和良好综合利用的燃煤技术,由于它在煤种适应性和变负荷能力以及污染物排放上具有的独特优势,使其得到迅速发展。
我厂锅炉由德国EVT公司负责锅炉的性能设计,并提供技术支持。
哈尔滨锅炉有限责任公司根据国内现行标准、材料完成施工设计和制造。
这种锅炉采用了新的燃烧方式,具有以下优点:(1) 燃料适应性广与煤粉炉相比,其煤种的适应性较广。
(2) 低硫排放燃烧室内添加石灰石直接脱硫,无需在尾部设置烟气脱硫设备,即可满足环保标准要求。
(3) 高燃烧效率气固间高滑移速度导致固体颗粒在床内横向、纵向混合良好,且有较长的停留时间,因此可以保证最佳的碳燃尽率。
(4) 低NO x排放低燃烧温度和分级燃烧可降低NO x排放量,无需对烟气处理也能满足最严格的排放标准要求。
(5) 消除溶渣低温燃烧不产生溶渣,降低了碱性盐的挥发,因而减少了锅炉的腐蚀和对流受热面的沾污。
(6) 较大的负荷调节比从稳定燃烧的观点出发,不投油稳燃的锅炉负荷为30%。
负荷的调节比较大。
1.2 锅炉的主要规范型号:HG—220/9.8—L.MN17制造厂:哈尔滨锅炉制造厂燃料:设计煤种为70%煤泥+30%煤矸石;校核煤种为40%煤泥+60%煤矸石和原煤燃烧方式:循环流化过热蒸汽压力:9.81MPa锅炉燃烧额定蒸发量:220t/h汽包压力:10.8MPa给水温度:215℃过热蒸汽温度:540℃锅炉效率:89.81%预热器进口温度:25℃排烟温度:142℃1.3 燃料特性1.3.1 设计煤种和校核煤种数值名称符号单位煤泥煤矸石设计煤校核煤种煤泥70%+煤矸石30%煤泥40%+煤矸石60%原煤收到基碳 C % 43.25 30.46 39.41 35.58 62.92 收到基氢H % 2.89 2.07 2.64 2.40 3.95 收到基氧O % 6.59 8.2 7.07 7.56 7.84 收到基氮N % 0.8 0.52 0.72 0.62 1.13 收到基硫S % 0.42 0.62 0.48 0.54 0.56 收到基全水分W % 029 4.3 21.59 14.18 9.7收到基灰份A % 17.05 53.83 28.06 39.12 13.9 低热值Q kJ/kg 16309 11182 14771 13233 24732 粒度范围mm 0.1~5 0.1~5 0.1~5 1.3.2 点火用油(0#柴油)Cy Hy Oy Ny Sy 低热值闪点凝点单位% % % % % kj/kg ℃℃数值85.5~86.513.5~14.50.034 0.034 0.082 10200 68 01.4 石灰石数值名称符号单位数值碳酸钙CaCO3 % 92.8 碳酸镁MgCO3 % 6.5水H2O % 0.0 惰性物质% 0.7 石灰石粒度:max<1mm<0.5mm <0.2mm <0.1mm <0.05mm d50 mm%%%%%mm1100987030100.151.5 启动用砂:单位数值Na2O % 1.0~2.0K2O % 2.0~3.0 粒度范围:max<1mm<0.5 mm <0.2 mm <0.1 mm <0.05 mm d50 mm%%%%%mm1100987030100.151.6 锅炉具体设计特点1.6.1 设计煤种(70%煤泥+30%煤矸石)负荷% 100 70 50 30 高加不投水/蒸汽参数给水流量t/h 220 154 110 66 203 蒸汽流量t/h 220 154 110 66 203 排污量t/h 2.2 1.54 1.10 0.66 2.03 喷水幅度% 3.83 5.15 4.53 1.46 6.37 一级喷水量t/h 5.24 4.75 2.99 0.58 7.78二级喷水量t/h 3.38 3.17 1.98 0.40 5.18MPa 11.02 10.50 10.25 10.08 10.84 省煤器入口压力锅筒压力MPa 10.8 10.30 10.06 9.90 10.64 过热器出口MPa 9.80 9.80 9.80 9.80 9.80 压力℃215 196 183 170 158 省煤器入口温度℃540 540 540 540 540 过热器出口温度汽水温度省煤器入口℃215 196 183 170 158 省煤器出口℃280 267 263 285 252℃316 313 311 310 315 包墙过热器入口℃328 329 330 329 329 包墙过热器出口SHI入口℃328 329 330 329 329 SHI出口℃448 453 453 469 467 SHII入口℃429 425 429 460 429 SHII出口℃500 501 503 513 507 SHIII入口℃485 481 485 507 480 SHIII出口℃540 540 540 540 540汽水压力省煤器入口MPa 11.02 10.50 10.25 10.08 10.84 省煤器出口MPa 11.00 10.48 10.24 10.07 10.82 包墙过热器MPa 10.80 10.30 10.06 9.90 10.64 入口包墙过热器MPa 10.47 10.13 9.97 9.87 10.37 出口SHI入口MPa 10.47 10.13 9.97 9.87 10.37 SHI出口MPa 10.33 10.06 9.93 9.85 10.25 SHII入口MPa 10.25 10.02 9.91 9.84 10.18SHII出口MPa 10.00 9.90 9.85 9.82 9.97SHIII入口MPa 9.92 9.86 9.83 9.81 9.90 SHIII出口MPa 9.80 9.80 9.80 9.80 9.80烟气温度炉膛出口℃850 827 767 639 850 床温℃860 845 815 790 860 SHIII入口℃812 782 723 615 813 SHIII出口℃715 679 635 574 715 SHI出口℃438 412 396 397 443 省煤器出口℃268 236 219 217 226℃142 130 124 120 128 空气预热器出口空气温度空气入口℃14.5 14.5 14.5 14.5 .14.5空气预热器℃25 30 37 40 32 入口(平均)空气预热器℃185 174 167 164 162 出口(平均)质量流量煤kg/s 11.768 8.431 6.239 4.056 11.792 总燃烧空气kg/s 71.21 51.22 42.11 42.34 71.36kg/s 65.45 45.38 36.26 36.50 65.51 通过空气预热器空气烟气kg/s 79.45 57.15 46.44 45.07 79.61烟气流速(平均)炉膛m/s 6.0 4.2 3.3 2.9 6.1 SHIII m/s 9.0 6.2 4.8 4.3 9.0 SHI m/s 9.5 6.6 5.1 4.8 9.5 省煤器m/s 7.5 5.2 4.1 4.0 7.3 空气预热器m/s 8.8 6.0 4.8 4.6 8.3效率计算(按MN1942)过剩空气% 20 20 34.8 114.8 20 环境温度℃14.5 14.5 14.5 14.5 14.5计算的基准℃25 25 25 25 25 温度未燃碳损失% 3.11 2.70 3.86 6.73 3.10 灰渣热损失% 0.72 0.76 0.67 0.50 0.71 散热损失% 0.62 0.90 1.23 1.94 0.63 排烟热损失% 5.74 5.15 5.27 7.42 4.99 锅炉效率% 89.81 90.49 88.97 83.41 90.57 1.6.2 校核煤种(40%煤泥+60%煤矸石和原煤)原煤燃料40%煤泥+60%煤矸石负荷% 100 50 100 50水/水蒸气参数给水流量t/h 220 110 220 110 蒸汽流量t/h 220 110 220 110 排污量t/h 2.20 1.10 2.20 1.10 喷水幅度% 3.67 4.46 3.59 4.78 一级喷水量t/h 4.86 2.95 4.75 3.17 二级喷水量t/h 3.24 1.98 3.17 2.09 省煤器入口MPa 11.02 10.25 11.02 10.24 压力锅筒压力MPa 10.80 10.06 10.80 10.07 过热器出口MPa 9.80 9.80 9.80 9.80 压力℃215 183 215 183 省煤器入口温度℃540 540 540 540 过热器出口温度汽水温度省煤器入口℃215 183 215 183 省煤器出口℃280 263 273 256℃316 311 317 311 包墙过热器入口包墙过热器℃327 330 327 330出口SHI入口℃327 330 327 330 SHI出口℃449 454 441 449 SHII入口℃430 430 423 423 SHII出口℃499 502 497 499 SHIII入口℃485 484 483 480 SHIII出口℃540 540 540 540汽水压力省煤器入口MPa 11.02 10.25 11.02 10.24 省煤器出口MPa 11.00 10.24 11.00 10.23 包墙过热器MPa 10.80 10.06 10.80 10.07 入口MPa 10.47 9.97 10.47 9.97 包墙过热器出口SHI入口MPa 10.47 9.97 10.47 9.97 SHI出口MPa 10.33 9.93 10.33 9.93 SHII入口MPa 10.25 9.91 10.25 9.91 SHII出口MPa 10.00 9.85 10.00 9.85 SHIII入口MPa 9.92 9.83 9.92 9.83 SHIII出口MPa 9.80 9.80 9.80 9.80烟气温度炉膛出口℃854 771 888 805 SHIII入口℃817 728 845 755 SHIII出口℃720 638 733 649 SHI出口℃439 398 432 392 省煤器出口℃264 219 258 214 空气预热器℃142 124 135 120 出口空气温度风机入口℃14.5 14.5 14.5 14.5空气预热器℃25 37 25 40 入口(平均)空气预热器℃185 167 179 163出口(平均)质量流量煤kg/s 13.17 6.968 6.891 3.625 总燃烧空气kg/s 71.57 42.24 67.27 39.79 通过空气预kg/s 65.70 36.37 61.42 33.94 热器空气烟气kg/s 79.41 46.35 73.08 42.84烟气流速(平均)炉膛m/s 6.0 3.3 5.7 3.1 SHIII m/s 8.9 4.8 8.3 4.5 SHI m/s 9.4 5.1 8.6 4.7 省煤器m/s 7.5 4.1 6.7 3.7 空气预热器m/s 8.7 4.8 7.8 4.3效率计算(按DIN1942)过剩空气% 20 34.7 20 34.8 环境温度℃14.5 14.5 14.5 14.5℃25 25 25 25 计算的基准温度未燃碳损失% 2.77 3.45 2.55 3.18 灰渣热损失% 1.38 1.23 0.30 0.23 散热损失% 0.63 1.23 0.64 1.25 排烟热损失% 5.68 5.21 4.94 4.65 锅炉效率% 89.54 88.88 91.57 90.69 1.6.3 烟气压降计算燃料70%煤泥+30%煤矸石负荷% 100烟气压降数值旋风筒Pa 1500旋风筒出口烟道Pa 50转向室Pa 20SHIII(包括静压头)Pa 40SHI(包括静压头)Pa 264省煤器(包括静压头)Pa 285空气预热器(包括静压头)Pa 577烟气压力值炉膛出口kPa 102.20旋风筒出口kPa 100.70转向室出口kPa 100.63 SHIII出口kPa 100.59SHI出口kPa 100.33省煤器出口kPa 100.04空气预热器出口kPa 99.46大气压力kPa 100.701.6.4 空气分配流率流率流率范围% kg/s Kg/s一次风50 35.6 28.5—42.7 二次风17.2 12.2 2.2—21.4 通过燃烧器的空气17.2 12.2 5.4—22.0 给煤风 6.7 4.8冷渣器用风 4.1 2.9回料阀用风 1.6 1.1石灰石输送风0.4 0.3密封风 2.0 1.4火焰监视器用风0.3 0.2煤泥分配风0.6 0.4总燃烧用风100 71.2通过空气预热器风91.8 65.4冷风8.2 5.81.6.5 灰量分配70%煤泥+30%煤矸石40%煤泥+60%煤矸石100%原煤煤量kg/s11.77 13.17 6.89 石灰石量kg/s 0.31 0.34 0.27正常工况总灰量kg/s 3.62 5.52 1.21 底渣量kg/s 1.45 3.04 0.60 飞灰量kg/s 2.17 2.48 0.60 排渣温度℃100 100 100 飞灰温度℃142 142 135设计工况Max.底渣量kg/s 4.17Max飞灰量kg/s 3.61Max.底渣温度℃150Max飞灰温度℃1701.6.6 石灰石量和Ca/S70%煤泥+30%煤矸石40%煤泥+60%煤矸石100%原煤煤量kg/s 11.77 13.17 6.89 含硫量% 0.48 0.54 0.56 含灰量% 28.09 39.11 13.9 灰中CaO量% 3.52 3.43 3.36 石灰石中CaCO3量% 92.8 92.8 92.8 石灰石反应能力High High High 脱硫率% 90.7 90 90 SO2量(在含O26%干烟气中)Mg/m3N 167 225 131 需要的Ca/S比 2.1 2 2.3 石灰石流量kg/s 0.306 0.344 0.271 1.7 锅炉基本尺寸炉膛宽度(两侧水冷壁中心线距离) 6450mm炉膛深度(前后水冷壁中心线距离) 6450 mm尾部对流烟道宽度(两侧包墙中心线距离) 7500 mm尾部对流烟道深度(前后包墙中心线距离) 4240 mm尾部对流烟道宽度(空气预热器烟道宽度) 8530 mm尾部对流烟道深度(空气预热器烟道深度) 4240 mm 锅筒中心线标高 39830 mm 省煤器进口集箱标高 18000 mm 过热器出口集箱标高 36930 mm 锅炉运转层标高 8000 mm 锅炉最高点标高(顶板上标高) 45000 mm 锅炉宽度(两侧外支柱中心线距离) 19450 mm 锅炉深度(K1柱至K4柱中心线距离) 30860 mm 1.8 锅炉水容积名称单位锅筒水冷壁下水管连接管过热器省煤器总计水压时m3 19.23 36 30.43 17 102.66 正常运行时m3 6.9 36 0 17 59.9 1.9 锅炉整体布置本锅炉系高压参数、单锅筒、自然循环蒸汽锅炉,采用循环流化床燃烧方式,高温分离。
75th循环流化床锅炉设计说明

返料风系统
返料风主要用来流化回料装置内循环物料,以确保物料通过回料装置返回到燃烧室中,返料风起到松动物料及输送物料的作用。返料风要求具有较高压力。该返料风机的风量约为2500Nm3,压头为2000mmH2O。
6
锅炉水系统简述
6.1
水循环系统
给水(一部分经面式减温器)进入尾部烟道内的省煤器,再进入汽包,炉水经汽包下降管到下水集箱,经蒸发受热面(膜式水冷壁)回到汽包。饱和蒸汽从汽包引出后,首先经顶棚过热器后经尾部烟道的包墙过热器进入低温过热器,再经面式减温器进入高温过热器。
6.4
过热器
高温过热器布置在炉膛上部的水平烟道内,呈逆流顺列布置,其管径为φ38×4mm,材质为15CrMoG。低温过热器布置在尾部竖井烟道内,呈卧式逆流布置,管径为φ32×4mm,材质为20G(GB5310)。饱和蒸汽经4根φ108×4.5mm连接管,由锅筒引到顶棚管进口集箱,蒸汽从顶棚管尾部后包墙管,再经U型集箱,分别引到两侧包墙,蒸汽在两侧墙管内自下而上,汇集到两侧包墙上集箱,顶棚管及后包墙管均采用φ51×5mm的管子,两侧包墙采用φ42×4mm,蒸汽由两侧包墙上集箱再引到过热器吊挂集箱,通过54根φ42×5mm吊挂管将蒸汽引到低温过热器进口集箱。低温过热器管重量全部由吊挂管承担。为调节过热器中蒸汽温度,在低温过热器与高温过热器之间,布置一面式减温器,其减温能力可达到50℃。
燃烧室壁面开有:二次风口、回料口(包括循环灰入口、石灰石入口、燃料入口)、排渣口、启动燃烧器口、测温口、测压口、出烟口、人孔等各种门孔。
5.2
布风及点火系统
锅炉采用床下热烟气点火,水冷风箱和布风板等技术。在靠近风室入口的主风管道上开一旁通、油枪在旁通中先燃烧加热空气,并与主风道空气混合至800~900℃,作为点火期间一次风道入水冷风室。锅炉正常运行时,旁通要关闭。油枪工作压力2~2.5MPa。
卡门涡流对电站锅炉安全性的影响及治理措施_董琨

卡门涡流对电站锅炉安全性的影响及治理措施董 琨北京国华电力技术研究中心有限公司,北京 065201[摘 要] 分析了国华太仓发电公司8号锅炉尾部烟道振动、国华沧东发电公司1号锅炉和国华定州发电公司1号锅炉包墙过热器拉稀管断裂的原因,认为其主要由卡门涡流脱落频率接近于设备的声学驻波频率而使设备产生高频共振所致。
对此,提出了在锅炉尾部烟道省煤器区域加装防振隔板,在锅炉前包墙过热器加装管卡等措施。
改造后,无论高低负荷运行均未再发生尾部烟道振动现象和前包墙过热器拉稀管断裂事故。
[关 键 词] 卡门涡流(卡门涡街);锅炉;过热器;拉稀管;断裂;烟道;振动[中图分类号] TK223.3+2[文献标识码] B[文章编号] 1002-3364(2008)10-0031-04作者简介: 董琨(1979-),男,北京国华电力技术研究中心锅炉工程师,从事锅炉及热力系统相关技术工作,华北电力大学在读工程硕士研究生。
E -m ail :d k29@ 2005年9月,国华太仓发电有限公司(太仓发电公司)8号机组调试期间,锅炉尾部烟道省煤器区域发生大面积振动,并伴有低沉的轰鸣声,经对相关参数进行了调整,并无效果;2006年5月,国华沧东发电有限责任公司(沧东发电公司)1号锅炉包墙过热器拉稀管断裂;2007年2月6日,国华定州发电有限责任公司(定州发电公司)1号锅炉包墙过热器拉稀管断裂。
以上3次事件均是由于卡门涡流脱落频率接近设备的声学驻波频率,而使设备发生高频共振并造成损坏。
卡门涡流(又称卡门涡街)是粘性不可压缩流体动力学所研究的一种现象。
流体绕流高大烟囱、高层建筑、电线、油管道和换热器的管束时都会产生卡门涡流,这种涡流曾使潜水艇的潜望镜失去观察能力,海峡大桥受到毁坏,锅炉的空气预热器管箱发生振动和破裂。
1 锅炉尾部烟道振动太仓发电公司8号锅炉是上海锅炉厂有限公司引进美国ALS TON 技术制造的超临界600M W 、变压运行、螺旋管圈、单炉膛、一次中间再热、四角切圆燃烧、平衡通风、固态排渣、Π型布置直流燃煤锅炉,型号为SG -1913/25.4-M 950,主要技术参数见表1。
超临界锅炉水平烟道前包墙管泄漏原因分析与处理

超临界锅炉水平烟道前包墙管泄漏原因分析与处理宋效琦【摘要】针对超临界锅炉的水平烟道包墙管发生多次同位置泄漏问题,通过对锅炉结构、运行状况、泄漏部位管材的化学成分、金相组织及力学性能分析,找出泄漏主要原因是包墙管热膨胀差过大,采取在热应力集中部位加装膨胀弯及锅炉启动运行中保证通畅的汽水循环等措施,有效避免了泄漏的发生,保证机组的安全稳定运行.【期刊名称】《吉林电力》【年(卷),期】2017(045)006【总页数】3页(P51-53)【关键词】超临界锅炉;烟道包墙管;泄漏膨胀不均;应力释放【作者】宋效琦【作者单位】吉林电力股份有限公司白城发电公司,吉林白城 137000【正文语种】中文【中图分类】TK223.31锅炉是火力发电厂的重要设备之一,其安全与否直接影响机组的稳定运行。
如果在设计、安装、运行中存在金属部件膨胀受阻或相邻部件热偏差较大,将会导致金属部件产生很大的热应力,在热应力得不到有效释放时就会发生金属部件断裂或泄漏。
由热应力而引发的金属部件失效通常多发生在机组的启动过程中,严格执行锅炉启停机操作规程且保证热应力得到可靠释放,可有效降低金属部件断裂和泄漏事件发生,使机组安全稳定运行。
1 超临界锅炉概况某厂超临界燃煤锅炉型号为HG2071566-HM9,为全钢构架的变压本生直流炉,配置循环泵式启动系统、前后墙对冲低NOx轴向旋流燃烧器、一次中间再热、单炉膛平衡通风、固态排渣系统。
锅炉以最大连续负荷(BMCR)工况为设计参数,最大连续蒸发量2 070 t/h,过热器蒸汽出口温度为571 ℃,再热器蒸汽出口温度为569 ℃,给水温度为279.3 ℃。
锅炉呈“П”型布置,设计有固定的膨胀中心,受热面采用全悬吊结构。
炉膛上部布置有屏式过热器,水平烟道中布置有末级过热器、末级再热器。
尾部为双烟道,前烟道布置有低温再热器,后烟道布置有低温过热器和省煤器,水平低温过热器和水平低温再热器采用中间隔墙入口集箱引出管作为吊挂管。
350MW超临界循环流化床锅炉安装总结(徐州)资料

350MW超临界直流型循环流化床锅炉安装总结【摘要】徐州华美电厂是350MW超临界直流型循环流化床锅炉,锅炉受热面的安装、大件吊装等主要施工措施与其它普通锅炉存在着很大的差异,对设计和制造存在的问题进行了技术改造。
本文就此进行了论述和总结,为同类型的循环流化床锅炉的安装和设计提供参考。
【关键词】超临界;循环流化床;锅炉受热面;旋风分离器。
一、概述循环流化床(CFB)锅炉技术是七十年代发展起来的新技术,它发展的动力在于人类社会对环境保护的日益重视,作为清洁燃烧技术,其特殊的燃烧方式大大减少作为世界大气污染源——燃煤电站的二氧化硫(SO2)和氮氧化物(NOX)排放,即从根本上解决了酸雨问题。
同时循环流化床锅炉还具有燃料适应性广、负荷调节性好、投资和运行成本相对较低,因此作为世界上能源技术发展的三大方向之一,该技术在全世界得到迅猛发展。
现就徐州华美电厂350MW循超临界直流型循环流化床锅炉主要安装技术,作以下总结及探讨。
二、工程概况徐州华美热电二期为新建2×350MW级超临界直流型循环流化床机组工程。
锅炉为东方锅炉(集团)股份有限责任公司生产的型号为DG1150/25.4-Ⅱ1的超临界循环流化床锅炉,锅炉为超临界参数变压运行、单炉膛、一次中间再热、固态排渣、全钢架悬吊结构、露天布置、炉顶设置密封罩壳、循环流化床锅炉。
锅炉最大连续出力(BMCR)参数:低再入口处蒸汽压力MPa(g) 5.57温度℃352.4高再出口处蒸汽流量t/h 955.97压力MPa(g) 5.38温度℃569 省煤器进口处给水温度℃291三、350MW超临界流化床锅炉工艺流程350MW超临界循环流化床锅炉延续了135~150MW和300MW等级CFB炉的特色,主要由以下三大部分组成(如图):●炉膛(1)(包括屏过(8)、屏再(9)、双面水冷壁(10))●固体循环回路,主要由旋风分离器(2)、回料器(3)组成●尾部竖井(4)1-炉膛 2-分离器 3-回料器 4-尾部受热面5-一次风 6-二次风 7-给煤装置 8-屏式过热器9-屏式再热器 10-双面水冷壁 11-管式空预器 12-播煤风超临界流化床锅炉的心脏部件是炉膛(1),燃料(7)和播煤风(12)从这里给入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、原锅炉顶部包墙管存在的问题:
原我厂锅炉尾部烟道顶部包墙上联箱处
包墙管频繁泄漏,机组需降负荷维持运行,
并需请专业高温高压堵漏公司带压堵漏,
不仅需要高额的堵漏费用,而且该堵漏部 位不稳定,存在严重的安全隐患。严重制 约着我厂发电机组的安全稳定运行。
二、改造措施:
•
经分析研究,发现顶包墙管每次泄漏以上
的部位,由于该部位,内外的温差较大,
包墙管金属疲劳,造成泄漏,特对包墙管 处鳍片割开,使该部位包墙有应力释放空 间,并浇筑可塑料保温。
三、改造后的效果:
• 经改造后,至今未出现过包墙泄漏故障,为 我厂节约了客观的堵漏费用,同时保证了发电机 组的安全稳定运行。一年出现两次包墙泄漏事故, 每次堵漏费用5万,机组降负荷维持运行一个周, 损失近10万元。避免了类似事故的发生,经济效